Complexity: the good, the bad, and the ugly ... I didn't find a better title

Dimitri Papadimitriou (Alcatel-Lucent - Bell Labs)

IETF 89 London (UK) Mar.2-7, 2014

- Introduction
- 2 Examples
- 3 Complexity characterization and dependencies
- 4 Conclusion

- Introduction
- 2 Examples
- Complexity characterization and dependencies
- 4 Conclusion

Introduction

- Edmonds (1996) surveys different definitions (and their shortcomings): concluding that "complexity necessarily depends on the *language* that is used to *model* the system" (here, system = computer networks)
- Many formalism to characterize complexity (computational complexity, Kolmogorov complexity, information complexity)

 criteria, metrics, etc.
- Dependencies (affecting system's function, structure, and behaviour) ?
- Which language ?
- Which model ?

Source: Edmonds B. (1996), What is Complexity?, F. Heylighen and D. Aerts (eds.), The Evolution of Complexity (Kluwer, Dordrecht)

- Introduction
- 2 Examples
- 3 Complexity characterization and dependencies
- 4 Conclusion

Example (1)

Initially: Single queue with FIFO discipline + drop-tail Today: Hierarchical queues with advanced scheduling (rate-based, deadline-based, etc.) + AQM

- Other dependencies ?
- Which language: Markov chains, Stochastic process/network calculus (deterministic network calculus + statistical multiplexing)
- Which model: Markov model, (fractional) Brownian motion / Fluid flow model (taken out physics)

Language evolution

Languages themselves evolve over time:

				Stochastic
Requirements	Queueing networks	Effective bandwidth	Network calculus	network calculus
Traffic classes (incl. self-similar, heavy-tailed)	Limited	Broad	Broad (but loose)	Broad
Scheduling	Limited	No	Yes	Yes
QoS (bounds on loss, throughput delay)	Very limited	Loss, throughput	Deterministic	Yes
Statistical Multiplexing	Some	Yes	No	Yes

Source: A Statistical Network Calculus for Computer Networks, J.Liebeherr, 2005.

Example (2)

Initially: adaptive (deterministic) routing + manual configuration Today: self-adaptive stochastic routing + automated (re-)configuration

- Other dependencies? routing algorithmic, topology and policy dynamics, etc.
- Which language: control theory (P.S.Laplace, A.Lyapunov, L.Pontryagin, etc.)
- Which model: feedback loop + adaptive loop + model-reference + predictive

Example (2)

Initially: adaptive (deterministic) routing + manual configuration Tomorrow: so-called "self-organizing" systems

- Other dependencies? routing algorithmic, topology and policy dynamics, etc.
- Which language: (S)PDE
- Which model: epidemiology model, kinetic model, multi-cellular model, etc.

- Introduction
- 2 Examples
- 3 Complexity characterization and dependencies
- 4 Conclusion

Characterization

Emergence

- Information (= structure/pattern) at a higher scale that is not present at a lower scale
- Concept can be generalized in terms of computation, i.e., information transformation
- \rightarrow $E = \frac{I_{out}}{I_{in}}$ where, $I_{out} = f(I_{in})$

Self-organization

- Measured as change over time in organization (opposite of information)
- If information is reduced, then self-organization occurs (high organization (order) is characterized by a low information and low organization is characterized by a high information)
- ullet $ightarrow S = I_{in} I_{out}$

Complexity and Analysis

Following [Lopez-Ruiz,1995], one can then define:

Complexity C

Complexity $C = S \times E$ (in bit units)

Analysis

- High E implies a low S (and vice versa)
- High C (complex systems) can occur only when balance between order (high S) and chaos (high E)

Further Characterization

- Homeostasis: capacity to remain in "viable" zone
 - High homeostatic capacity: maintain system's dynamics close to a certain state or states (attractors). When perturbations or environmental changes occur, the system adapts to face the changes within the viability zone, i.e. without breaking [Ashby, 1947]
 - \bullet High homeostatis indicates stability \to no change, i.e. information is maintained
 - Notion closely related to sensitivity to initial conditions (high sensitivity to initial conditions is a signature of chaotic dynamics)

Apoptosis:

- No element part of the system is indispensable
- Maintaining and/or protecting the system must be given to every part of the system, incl. element(s) that may represent the threat → remove obsolete portions of the system

- Introduction
- 2 Examples
- Complexity characterization and dependencies
- 4 Conclusion

Conclusion ... if any

 Which parts/aspects (function, structure, behaviour) of a system are worth modelling?

Critical questions

- Holistic approach (is it possible ?) vs. atomistic (is it sufficient ?)
- Who "decides" which parts are in or out (subjective)
 - Note: requires also to "agree" on system properties (robustness, resilience, etc.)
- Requires to elaborate on "functions" of the system and their degree of independence (architectural complexity)
- Characterization of "objective" complexity taking into account: spatial scale (local vs. global, node vs. network, etc.) and temporal scale dimension (short-term dynamics vs. long-term evolution)

References and reading list

- Edmonds B., What is Complexity?, The Evolution of Complexity, Kluwer, Dordrecht, 1996.
- Lopez-Ruiz, R., Mancini, H.L., and Calbet, X., A statistical measure of complexity, Physics Letters A, 209 (5-6), pp.321–326, 1995.
- Gershenson, C., The world as evolving information, Proceedings of International Conference on Complex Systems (ICCS 2007).
- Heylighen, F., The Growth of Structural and Functional Complexity during Evolution, in F. Heylighen and D. Aerts (eds.), The Evolution of Complexity, Kluwer, Dordrecht, 1996.
- Cook, S., An overview of computational complexity,
 Communications of the ACM, 26(6), pp.400-408, 1983.