Probe Placement Problem

Dimitri Papadimitriou (Alcatel-Lucent - Bell Labs)

NMRG Meeting – IETF 89 London (UK) Mar.2-7, 2014

- Design of monitoring infrastructures : placement, maintenance and operation of monitors at all nodes in a network is not cost-efficient
- Messaging cost (master-slave): O(n), n = number of monitored nodes
- Sorting time: O(m.nlog(n.m)) to O((n.m)²), m = number of records per node
- Monitoring tasks (often) involves a subset of entities << total number of entities
- → Tune the number and placement of probes (required to realize a given measurement task)

• Network topology modeled as undirected graph G = (V, E)

- V: vertex set
- E: edge set
- Path p(s, t) from node s (source) to t (destination): node sequence [v₀(= s), v₁,..., v_{i-1} = u, v_i,..., v_n(= t)] such that v_i is adjacent to v_{i-1}, (v_{i-1}, v_i) ∈ E(G) ∀i
 - Length of path p(s, t): number of edges the path traverses from s to t
 - Distance d(s, t): cost of a minimum cost path p(s, t) from s to t
- P(s, t): set of all paths p(s, t) from node s to t

Problem

When monitoring network path (segments), probe placement shall account for P(s, t) dynamics (traffic/load, topology) as determined by the routing decisions at each $v \in V$.

 \rightarrow Probe placement implies "tracking" of routing path changes.

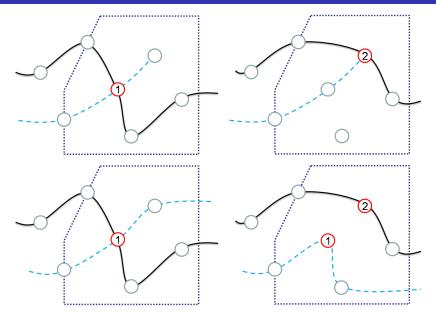
A solution (to the general problem) consists of two parts

- A set of locations where to deploy monitors (in particular thus the number of probes)
- A set of entities that are to be monitored over time (to realize a certain measurement task)

How does this relates to autonomics

- As objective functions are known: minimize input data processing cost
- Anticipate/predict probe placement

Example



Multi-period probe deployment/placement and monitoring decision problem

Cost of a solution

- Probe installation cost: c
- Probe maintenance cost: m
- Measurement costs, e.g., link selection or path crossing given link from which probe capacity utilization is derived

Monitoring deployment/placement problem

Time dimension: probe maintenance cost

Measurement cost problem

Upper bound on the number of probes and simultaneous events (frequency vs. accuracy)

- Directed graph G = (V, E)
- Set of periods $\Pi = 1, \dots, P$
- For each period $p \in \Pi$, demand matrix D^p
- For each link (*i*, *j*)
 - Probe capacity κ_{ij}
 - Probe installation cost c_{ij}
 - Probe maintenance cost m_{ij} (here we assume, $m_{ij} < c_{ij}$)
 - Bound *M* on the number of probes

- y^p_{ij} ∈ 0, 1: indicates if link (i, j) is newly monitored at period p
- *z*^p_{ij} ∈ 0, 1: indicates if monitoring of link (*i*, *j*) is maintained at period *p*
- x^{tp}_{ij} ∈ 0, 1: indicates if node *j* is the next hop for node *i* to destination *t* at period *p*
- *w*^{tp}_i ∈ 0, 1: indicates if the next hop for node *i* to destination *t* changed between periods *p* and *p* + 1
- $f_{ij}^{tp} \ge 0$: amount of traffic on link (i, j) to destination t at period p

Monitoring cost function

- For each period $p \in \Pi$, traffic load on link (i, j) during period p: $l_{ij}^{p} = \sum_{t \in V} f_{ij}^{tp}$
- Monitoring cost function depends on how close load *l^p_{ij}* is to the probe capacity κ_{ij}, *l^p_{ij}* associated to each edge (*i*, *j*) ∈ *E*
 - Passive case: cost \sim link/path load (cost of extraction)
 - Active case: cost \sim number of paths (cost of insertion)
- Monitoring cost per unit of traffic for each link (*i*, *j*) and each period *p* defined by an increasing convex function of its utilization: φ(κ_{ij}, l^p_{ij})
- Note: any increasing convex cost function φ(κ_{ij}, l^p_{ij}) can be considered (here assumed piecewise linear)

Objective: minimize the sum of installation, maintenance costs and monitoring costs

MILP formulation

$$\min \sum_{\boldsymbol{p}\in\Pi} \sum_{(i,j)\in \boldsymbol{E}} (\boldsymbol{c}_{ij}\boldsymbol{y}_{ij}^{\boldsymbol{p}} + \boldsymbol{m}_{ij}\boldsymbol{z}_{ij}^{\boldsymbol{p}} + \phi(\kappa_{ij}, \sum_{t\in \boldsymbol{V}} f_{ij}^{t\boldsymbol{p}}))$$

- First term: installation cost
- Second term: maintenance cost
- Last term: piecewise linear monitoring cost

(1)

Constraint (i) and (ii): conservation constraints (aggregated per destination) ensuring that monitored flow requirement given by matrix D^p routed at period p

Note: aggregation \rightarrow decrease substantially number of variables and conservation constraints

$$\sum_{i:(i,j)\in E} f_{ij}^{tp} - \sum_{j:(j,i)\in E} f_{ji}^{tp} = D^{p}(i,t) \ i,t \in V, i \neq t,p \in \Pi$$
(2)
$$\sum_{j:(j,t)\in E} f_{jt}^{tp} = \sum_{s\in V} D^{p}(s,t) \ t \in V, p \in \Pi$$
(3)

Constraints (2)

- Constraint (iii): a probe can be used for monitoring link (*i*, *j*) at period *p* only if it is installed or maintained open at period *p*
- Constraint (iv): a probe is not both installed and maintained during the same period p
- Constraint (v): a probe can be maintained for monitoring link (i, j) at period p only if it was installed during the previous period p - 1
- Constraint (vi): no probe installed before the first period starts

$$x_{ij}^{tp} \leq y_{ij}^{p} + z_{ij}^{p} (i,j) \in E, t \in V, p \in \Pi$$

$$\tag{4}$$

$$y_{ij}^{\rho}+z_{ij}^{\rho}\leq 1\ (i,j)\in E, t\in V, \rho\in\Pi \tag{5}$$

$$z_{ij}^{p} \leq y_{ij}^{p-1} + z_{ij}^{p-1} \ (i,j) \in E, p \in \Pi, p \geq 2$$
 (6)

$$\boldsymbol{z}_{ij}^{1} = \boldsymbol{0} \ (i,j) \in \boldsymbol{E} \tag{7}$$

Constraints (3)

- Constraint (vii): a monitoring flow can be sent/monitoring input can be received on a link (*i*, *j*) for given destination *t* at given period *p* only if corr. next-hop is in routing table, where
 C^{tp}_{ij} = min (κ_{ij}, ∑_{s∈V} D^p(s, t)) is a tight upper bound on the monitoring capacity for link (*i*, *j*) to destination *t* at period *p*
- Constraint (viii): a monitoring flow can be sent/monitoring input can be received only on links where probes are installed, and the monitoring capacity not exceeded, where
 C^p_{ij} = min (κ_{ij}, ∑_{s,t∈V} D^p(s, t)) tight upper bound on the monitoring capacity for link (i, j) at period p

$$f_{ij}^{tp} \leq C_{ij}^{tp} x_{ij}^{tp} (i,j) \in E, t \in V, p \in \Pi$$
(8)

$$\sum_{t \in V} f_{ij}^{tp} \leq C_{ij}^{\rho}(\boldsymbol{y}_{ij}^{\rho} + \boldsymbol{z}_{ij}^{\rho}) (i, j) \in \boldsymbol{E}, \rho \in \boldsymbol{\Pi}$$
(9)

Constraints (4)

- Constraint (ix): exactly one next-hop is selected by each node towards each destination *t* at each period *p*.
- Constraint (x): count the number of decision changes between periods
- Constraint (xi): bound by *M* the number decision changes that can be monitored

$$\sum_{j:(i,j)\in E} \boldsymbol{x}_{ij}^{tp} = 1 \ i, t \in V, i \neq t, p \in \boldsymbol{\Pi}$$
(10)

$$x_{ij}^{t(p+1)} - x_{ij}^{tp} \le w_i^{tp} (i,j) \in E, t \in V, p \in \Pi \setminus P$$
(11)

$$\sum_{p\in\Pi\setminus P}\sum_{t\in V}\sum_{i\in V}w_i^{tp}\leq M$$
(12)

Geant topology: 22 Nodes, 36 Links, Avg/max degree: 3.27/8, Diameter: 5

Topology	Changes	Installation cost	Monitoring cost	Total cost	Time
GEANT	39	85462	667280	752742	222
	12	85157	667439	752596	317
	10	85123	667935	753058	621
	5	84929	669011	753940	274
	4	84929	669146	754075	310
	3	84929	669339	754268	351
	2	90634	664001	754635	319
	1	96619	659818	756437	361
	0	85208	673026	758234	82

- The problem becomes rapidly intractable for large networks and large number of paths
 - One of the major limitations of the proposed model results from the large number of variables and constraints, that makes the optimization problem quickly non-tractable by off-the-shelf solvers
- Requires to consider decomposition method: installation (y_{ij}^{p}) , maintenance (z_{ij}^{p}) and change (w_{i}^{tp}) variables are kept in the master problem while decisions $(x_{ij}^{tp}, f_{ij}^{tp})$ are projected out and used only in subproblems
- Next steps
 - Distributed decomposition method
 - Include adaptation of sampling rate
 - Predictive scenarios

This research is conducted and funded by the mPlane FP7 project and in joint collaboration with ULB, Belgium.