Distributed SDN Controllers for rich and elastic services

DIStributed SDN COntrollers for rich and elastic services

IETF89

SOLUTIONS COMMUNICANTES SECUISÉES POLE DE COMPETITIVITÉ MONDIAL
Administrative context

- **DISCO: DIStributed SDN COntrollers for rich and elastic services**
 - French National project (ANR INFRA 2013)
 - Industrial project
 - Starting date: 01/2014
 - Duration: 42 months

- **Partners:**
 - Thales Communications & Security
 - INRIA Sophia Antipolis
 - ENS Lyon
 - 6WIND
Objectives

- **Resilient and scalable OpenFlow control plane**
 - How to resist to network failures?
 - How to avoid overloading the controller?

- **Rich and elastic network services**
 - When the network and all its components are virtual…
 - Where to place virtual appliances?
 - How/when to move virtual appliances?
 - What physical resources to allocate them?
 - How application can benefit from this versatility?
Communications for resilient distributed controllers
Distributed controller

- **Resilient SDN architecture:**
 - no single point of failure
 - increase responsiveness and reliability
 - scalable
 - adaptable to heterogeneous/asymmetric deployments (e.g., SATCOM link)

- **Decompose the network in domains**
 - a mechanism enables to manage Master/Slave controllers in a domain
Retained solution

- **Distributed Broker Architecture: AMQP (Advanced Message Queuing Protocol – OASIS Standard)**
 - With ActiveMQ, RabbitMQ or other implementations
 - **Complexity**
 - The system uses the simplicity and efficiency of AMQP
 - **Interoperability**
 - Every system can use the framework
 - **Resilience**
 - Each subnet is independent and in case of failure, the remaining Controllers could handle the orphan switches
 - **Westbound communications ensured with AMQP protocol**
 - underlying mechanisms are transparent and AMQP brokers ensures all other functionalities (heartbeats, failure handling, …)
Messenger driver

- **Overview of Messenger**
 - An application to make the link between the different controller’s modules
 - e.g., Link Discovery, Device Manager, …
 - Applications are agnostic of the system thanks to “agents”
 - Agents use the applications REST APIs to retrieve and push data from/to applications
 - Extension of the system with “drivers”.
 - Messenger uses high level methods (e.g., sendMessage, establishConnection)
 - The driver translates them to AMQP commands
- **AMQP driver must implement:**
 - `pair` (neighbor controller ID)
 - setup inter-domain control channel with a neighbor controller
 - `unpair` (neighbor controller ID)
 - terminates inter-domain control channel
 - `subscribe` (topic)/`unsubscribe` topic (topic)
 - add/delete a topic in/from the interest of the node
 - `send` (topic, message)/`receive` (topic, message)
 - send/receive a message on a specific topic
Disco architecture

Intra-domain
- Visualization
- Extended database
 - Device registry
 - Location registry
 - Link states
 - Reservations
- Path Computation
- Monitoring Manager

Inter-domain
- Monitoring Agent
- Reachability Agent
- Connectivity Agent
- Reservation Agent
- Agent …

Core
- OpenFlow Driver
- Open Proto. Driver
- Vendor Spec. Driver

REST

AMQP

OpenFlow protocol
Rich and elastic network services
Network appliance virtualization

- **SDN allows to virtualize network appliances**
 - (e.g., load balancers, ciphers, DPI, firewall)

- **Virtual network appliances allows to place appliances where and when they are needed**
 - (e.g., flash crowd, energy reduction when not necessary)

- **Mobile appliances implies agile resource (re)allocation**
 - (e.g., a load balancer and a cipher do not have the same processing needs)

=> How to (re)allocate resources?
Dynamic resource (re) allocation

- **Multiple devices**
 - Decide where to place each appliance
 - Based on traffic and policies

- **Multicore devices**
 - Provide a mechanism to increase and decrease the number of cores allocated to a virtual appliance
 - Dynamically and without service interruption

- **API**
 - Define an interface for virtual appliances to reserve and release resources
DIStributed SDN COntrollers for rich and elastic services

Damien Saucez (on behalf of the consortium)