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The Problem: Bearer Tokens

• Web services generate various security tokens (HTTP cookies, OAuth
tokens) for web applications to access protected resources.

• Currently these are bearer tokens, i.e. any party in possession of such 
token gains access to the protected resource.

• Attackers export bearer tokens from the user’s machine, present 
them to web services, and impersonate authenticated users.

• The idea of token binding is to prevent such attacks by creating a 
concept of long-lived, client-authenticated TLS channels, and 
cryptographically binding security tokens to these TLS channels.



Establishing a TLS Channel

• The user agent generates a private-public key pair (possibly within a 
secure hardware module, such as TPM) per target server.

• The user agent proves possession of the private key on every TLS 
connection to the target server.

• The proof of possession involves signing the tls_unique value for the 
TLS connection with the private key. 

• The ID of such TLS channel is the corresponding public key.

• TLS channels are long-lived, i.e. they encompass multiple TLS 
connections and TLS sessions between a given client and server.
• Privacy: users can reset TLS channel IDs at any time, e.g. when clearing 

cookies.



Preventing Token Theft

• When issuing a security token to a client that supports token binding, 
a server includes the ID of the client’s TLS channel in the token.

• Later on, when a client presents a security token containing a TLS 
channel ID, the server verifies that the TLS channel ID in the token 
matches the ID of the TLS channel established with the client. 

• In the case of a mismatch, the server discards the token.

• In order to successfully export and replay a TLS channel-bound 
security token, the attacker needs to also be able to export the 
client’s private key, which is hard to do in the case of e.g. TPM-
generated hardware backed key.



Token Binding Protocol

• We are introducing token binding as a new protocol, layered between 
TLS and the application protocols (such as HTTP and SMTP). 

• The client and server use ALPN protocol IDs to negotiate the use of 
the token binding protocol, in addition to the actual application 
protocol.

• ALPN IDs are also used to negotiate the type of token binding key 
(ECDSA, RSA). 

• This negotiation does not require TLS protocol changes, or additional 
round-trips.



Token Binding Protocol

• The token binding protocol consists of one message containing the proof of 
possession of a client-generated asymmetric key.

• This message is only sent if the client and server agree on the use of the 
token binding protocol and the token binding key type. 

• The token binding message is sent within a TLS application_data record. 

• When the parameters of the TLS handshake allow the use of FalseStart, this 
token binding message is sent immediately following (in the same round-
trip with) the client’s Finished message. 

• The token binding message can be followed by the messages of the 
negotiated application protocol (e.g. HTTP/2), and does not add network 
round-trips.
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Links And Contact Information

• Token binding Internet-Draft will be submitted after IETF 90.

• More background information: http://www.browserauth.net/

• Adam Langley agl@google.com

• Dirk Balfanz balfanz@google.com

• Andrei Popov andreipo@microsoft.com
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