Binding Security Tokens to TLS Channels

A. Langley, Google Inc.

D. Balfanz, Google Inc.

A. Popov, Microsoft Corp.

The Problem: Bearer Tokens

- Web services generate various security tokens (HTTP cookies, OAuth tokens) for web applications to access protected resources.
- Currently these are bearer tokens, i.e. any party in possession of such token gains access to the protected resource.
- Attackers export bearer tokens from the user's machine, present them to web services, and impersonate authenticated users.
- The idea of token binding is to prevent such attacks by creating a concept of long-lived, client-authenticated TLS channels, and cryptographically binding security tokens to these TLS channels.

Establishing a TLS Channel

- The user agent generates a private-public key pair (possibly within a secure hardware module, such as TPM) per target server.
- The user agent proves possession of the private key on every TLS connection to the target server.
- The proof of possession involves signing the tls_unique value for the TLS connection with the private key.
- The ID of such TLS channel is the corresponding public key.
- TLS channels are long-lived, i.e. they encompass multiple TLS connections and TLS sessions between a given client and server.
 - Privacy: users can reset TLS channel IDs at any time, e.g. when clearing cookies.

Preventing Token Theft

- When issuing a security token to a client that supports token binding, a server includes the ID of the client's TLS channel in the token.
- Later on, when a client presents a security token containing a TLS channel ID, the server verifies that the TLS channel ID in the token matches the ID of the TLS channel established with the client.
- In the case of a mismatch, the server discards the token.
- In order to successfully export and replay a TLS channel-bound security token, the attacker needs to also be able to export the client's private key, which is hard to do in the case of e.g. TPM-generated hardware backed key.

Token Binding Protocol

- We are introducing token binding as a new protocol, layered between TLS and the application protocols (such as HTTP and SMTP).
- The client and server use ALPN protocol IDs to negotiate the use of the token binding protocol, in addition to the actual application protocol.
- ALPN IDs are also used to negotiate the type of token binding key (ECDSA, RSA).
- This negotiation does not require TLS protocol changes, or additional round-trips.

Token Binding Protocol

- The token binding protocol consists of one message containing the proof of possession of a client-generated asymmetric key.
- This message is only sent if the client and server agree on the use of the token binding protocol and the token binding key type.
- The token binding message is sent within a TLS application_data record.
- When the parameters of the TLS handshake allow the use of FalseStart, this
 token binding message is sent immediately following (in the same roundtrip with) the client's Finished message.
- The token binding message can be followed by the messages of the negotiated application protocol (e.g. HTTP/2), and does not add network round-trips.

TLS Handshake And Token Binding Protocol

Links And Contact Information

- Token binding Internet-Draft will be submitted after IETF 90.
- More background information: http://www.browserauth.net/

- Adam Langley <u>agl@google.com</u>
- Dirk Balfanz balfanz@google.com
- Andrei Popov <u>andreipo@microsoft.com</u>