Path Computation Element (PCEs): An Overview and Ongoing Work

Daniel King, Ramon Casellas, Julien Meuric
Detnet BOF, IETF91 – Monday, November 10, 2014
Path Computation Element / Function: what is it?

- “An entity (component, application or network node) that is capable of computing a network path or route based on a network graph (TED) and applying computational constraints”
Why Was PCE Invented?

- The PCE was invented for a very specific reason
- Aimed to solve multi-domain computation
 - Find an a path across domains
 - I can see in my domain, but not into my peer’s
 - Which exit-point should I choose?

- Centralized path computation
 - All path computations for a given domain are performed by a single, centralized PCE

- Distributed path computation
 - Multiple PCEs are deployed in a given domain
 - Computation of paths is shared among those PCEs
PCE Main Components

- The PCE architecture has two functional components
 - The PCE
 - The functional component that is able to perform complex path computations
 - The Path Computation Client (PCC)
 - Any client application or component requesting a path to be computed
- PCE depends on the Traffic Engineering Database (TED)
 - This is a collection of information about the nodes and links in the network
PCEP Protocol

- Put the function remotely accessible via an open, standard, feature complete interface and protocol (PCEP, TCP / message based, standard port 4189, keep-alive,...)

- After an initial handshake, a Path Computation Client (PCC) can request point-to-point or point-to-multipoint computations specifying the endpoints and constraints:
 - Switching layer, traffic parameters, attributes,…
 - Exclude/include network nodes, links or whole domains

- Re-optimize existing paths
 - avoiding resource double-booking

- Request synchronized/dependent computation
 - Inter-request constraints

- Perform Global Concurrent Optimization
A Variety of PCEP Extensions

- IGP Extensions
 - 5088, 5089: OSPF and IS-IS extensions for PCE discovery

- Path Confidentiality
 - 5520: Path key for inter-domain confidentiality

- DiffServ Support
 - 5455: Diffserv-Aware Class-Type Object

- GMPLS & WSON Support
 - Optical RWA (hardware restrictions, ROADMs, Wavelength Continuity…)

- Point-to-Multipoint Support
 - 6006: Point-to-Multipoint Traffic Engineering Label Switched Paths

- Global Concurrent Optimization
 - 5557: Requirements and Protocol Extensions in Support of Global Concurrent Optimization

- Vendor-specific constraints in PCEP

- Objective functions, including:
 - Minimum Cost Path (MCP)
 - Minimize the Load of the most loaded Link (MLL)
 - Minimize the Cumulative Cost of a set of paths (MCC)
 - Plus many more…
Stateful PCE & Active PCE

- A stateful PCE allows for efficient path computation considering both:
 - the network state (TED)
 - the LSP state (LSPDB) (i.e., set of computed paths and reserved resources in use in the network).

- An active PCE is able to recommend re-routing or instantiation of LSPs
 - May be stateless or stateful, but likely to hold state.
 - PCEP protocol extensions so the PCE can “Update” an existing LSP or “instantiate” a new one

- With Stateful and Active PCE, we can perform more “intelligent” path computation
Additional PCE Applicability

- Including, but not limited to:
 - Application Based Network Operations (ABNO)
 - PCE for Segment Routing
 - PCE for Service Function Chaining
 - PCE Centralized Controller

- Next Steps For the Path Computation (PACE) - FP7 Coordination and Support Action
 - Education and dissemination of PCE concepts
 - Tutorials, papers, knowledge base, outreach
 - Development and applicability of new uses of PCE
 - Including SDN and NFV through support of ABNO

- Consolidate and coordinate existing (OpenSource) PCE developments

- http://www.ict-pace.net/

This work was supported in part by the PACE Support Action (http://ict-pace.net/) project under grant agreement number 619712 – EU FP7 call 11