
DNS over TCP and TLS

draft-hzhwm-dprive-start-tls-for-dns-00

John Heidemann and Sara Dickinson

Joint work with Liang Zhu, Zi Hu,
Duane Wessels, Allison Mankin,

Willem Toorop

USC/ISI, Verisign Labs, and Sinodun
in collaboration with NLnet Labs, getdns

IETF91 / 11 November 2014

Our Goals
•  DNS protocol changes

– encouraging TCP
– STARTTLS to initiate TLS

•  implementation choices for good performance
•  performance study to confirm costs

– client latency: only modestly more
– server memory: well within current hardware

DNS over TCP and TLS
2

Why DNS over TCP and TLS
•  here: protecting privacy

–  encrypt stub-to-recursive queries

•  use of TCP helps in other regards
–  defanging DoS

•  prevent attacks on the DNS server: use existing TCP anti-DoS
(SYN cookies)

•  reducing attacks on others: TCP avoids amplification attacks

–  relaxing limits of UDP packet sizes: TCP

DNS over TCP and TLS
3

Protocol Changes: Goals
•  minimize change
•  reuse existing approaches
•  follow IETF norms

•  implications:
– reuse TLS: Transport Layer Security
– add a STARTTLS-like “upgrade”
–  look at implementation choices

(as boring
as possible)

DNS over TCP and TLS
4

Protocol Changes: Goals
•  minimize change
•  reuse existing approaches
•  follow IETF norms

•  implications:
–  reuse TLS: Transport Layer Security
–  add a STARTTLS-like “upgrade”
–  dedicated port too, if that is acceptable under IANA

Port Review (RFC 6335)
–  innovation: careful implementation

(as boring
as possible)

DNS over TCP and TLS
5

SMTP before STARTTLS
C & S: open TCP connection

 S: 220 mail.imc.org SMTP service ready
C: EHLO mail.example.com

 S: 250-mail.imc.org hi, extensions are: -8BITMIME -STARTTLS DSN

C: STARTTLS

 S: 220 Go ahead
C & S: <negotiate a TLS session, in binary, using the TLS protocol>
C: EHLO mail.example.com

 S: 250-mail.imc.org hello, extensions are: -8BITMIME DSN

C: MAIL FROM:<sender@mail.example.com>
 S: 250 2.1.0 <sender@mail.example.com>... Sender OK

C: RCPT TO:<destination@mail.example.com>
 S: 250 2.1.5 <destination@mail.example.com>

C: <send mail contents>

problem: cleartext
mail is snoop-able
(fix: TLS)

DNS over TCP and TLS
6

SMTP with STARTTLS
(RFC-3207)

C & S: open TCP connection
 S: 220 mail.imc.org SMTP service ready

C: EHLO mail.example.com
 S: 250-mail.imc.org hi, extensions are: -8BITMIME -STARTTLS DSN

C: STARTTLS

 S: 220 Go ahead
C & S: <negotiate a TLS session with a new session key, in binary>

C: EHLO mail.example.com

 S: 250-mail.imc.org hello, extensions are: -8BITMIME DSN
C: MAIL FROM:<sender@mail.example.com>

 S: 250 2.1.0 <sender@mail.example.com>... Sender OK
C: RCPT TO:<destination@mail.example.com>

 S: 250 2.1.5 <destination@mail.example.com>
C: <send mail contents>

prologue: in clear
(no privacy here)

transition to TLS

contents now private

this example: SMTP;
idea used for IMAP, POP3, FTP,
XMPP, LDAP, NNTP… 7

Our STARTTLS for DNS
(draft-hzhwm-dprive-start-tls-for-dns-00)

C & S: open TCP connection

C: QNAME=“STARTTLS”, QCLASS=CH, QTYPE=TXT
with the new TO bit set in EDNS options

 S: RCODE=0, TXT=“STARTTLS”, with the TO bit set
C & S: <negotiate a TLS session, get new session key, in
binary>

C: <send actual query>

 S: <reply to actual query>

contents now private

pros: no new port (from IANA, or in firewalls)
cons: extra RTT; middleboxes may not like encrypted traffic
(other signaling approaches are possible)

prologue
transition to TLS

DNS over TCP and TLS
8

Protocol Details
•  keeps standard DNS framing before and after

TLS upgrade
– allows easy retrofit to existing resolver software

•  use dummy query to avoid leaking information
•  i-d says TO bit is only signaling
•  pre-IANA, we use STARTTLS QNAME and

no TO bit in our implementations

DNS over TCP and TLS
9

Our Goals
•  DNS protocol changes

– encouraging TCP
– STARTTLS add TLS

•  implementation choices for good performance
•  performance study to confirm costs

– client latency: only modestly more
– server memory: well within current hardware

DNS over TCP and TLS
10

Careful Implementation Choices
•  problem: no tuning of DNS TCP for queries

(until now!)
–  see draft-dickinson-dnsop-5966-bis-00

(on DNSOP agenda today)
•  connection reuse (or restart)

–  persistent connections
–  TCP fast open
–  TLS resumption

•  query pipelining
•  query reordering (out-of-order processing)

details in Sara’s talk, and supplemental slides

DNS over TCP and TLS
11

Our Goals
•  DNS protocol changes

–  encouraging TCP
–  STARTTLS add TLS

•  implementation choices for good performance
•  performance study to confirm costs

–  client latency: only modestly more
–  server memory: well within current hardware

details in tech report: “T-DNS: Connection-Oriented DNS
to Improve Privacy and Security (extended)”, ISI-
TR-2014-693, http://www.isi.edu/~johnh/PAPERS/
Zhu14b.pdf

DNS over TCP and TLS
12

Connection Reuse Helps? (YES!)

what fraction of queries
find open TCP
connections?

method: replay 3 traces:
recursive (DNSchanger,
Level3) and authoritative
(B-Root)

(graph shows medians,
quartiles are tiny)

120s timeout =>
>94% connection reuse
(reuse is effective!)

we propose 20s/60s (conservative)
=> still >85% connection reuse

conclusion: connection reuse is
often helpful

DNS over TCP and TLS
13

Cost of Connection Reuse? (ok!)

how many connections?
how much memory?

method: replay same 3
traces (here we show 2
biggest)

experimental estimate of
memory: 360kB/connection
(very conservative)

(graph shows medians and quartiles)

120s timeout =>
16 to 40GB RAM

we propose 20s/60s (conservative)
=> 3.6GB from study for recursive
(L3), 7.4GB for root (B)

conclusion: connection reuse is
often helpful and it’s not too costly
(easy to add server parallelism if needed)

DNS over TCP and TLS
14

Latency: CPU Cost
•  we used micro-benchmarks to study CPU cost

TLS setup is noticeable,
but RTT (40-100+ms) more impt.

DNS over TCP and TLS
15

Latency: Stub to Recursive
TCP and TLS vs. UDP?
effects of implementation
choices?
with short (1ms, left) and
medium (35ms, right) RTTs

method: live experiments of
random 140 names from Alexa
top 1000; stub-recursive
RTT=1ms

(graph shows medians and quartiles)

TCP and TLS:
as fast as UDP

(why? 1ms RTT is ~free)

DNS over TCP and TLS
16

Latency: Stub to Recursive
TCP and TLS vs. UDP?
effects of implementation
choices?
with short (1ms, left) and
medium (35ms, right) RTTs

method: live experiments of
random 140 names from Alexa
top 1000

(graph shows medians and quartiles)

DNS over TCP and TLS
17

no pipelining:
head-of-line blocking

query reordering (out-
of-order processing)
avoids HOL blocking

(different
scale)

End-to-End Latency: Methodology

•  controlled experiments are hard
– variable stub query timing
– caching at recursive resolver
– different RTTs (many stubs and authoritatives)

•  approach: model expected latency
–  i.e., just averages
– median connection reuse from trace replay
– other parameters from experiments

DNS over TCP and TLS
18

End-to-End Latency: Results
protocol choices: stub-
recursive and recursive-
authoritative

method: modeling; vary
stub-recursive RTT; assumes
all optimizations (TCP FO,
TLS resumption, pipelining,
OOOP)

(graph shows expected values, plus
slowdown relative to case (a), UDP/
UDP)

TLS (s-r, 60s t.o.) + UDP (r-a)
5 to 34% slower: modest cost -> most benefit

DNS over TCP and TLS
19

Our Goals
•  DNS protocol changes

– encouraging TCP
– STARTTLS add TLS

•  implementation choices for good performance
•  performance study to confirm costs

– client latency: only modestly more
– server memory: well within current hardware

DNS over TCP and TLS
20

T-DNS Implementation Project Recap

•  Aim: Running T-DNS code!
•  People: Verisign Labs, Sinodun, NLnet Labs, getdns team,

 USC-ISI, …..
•  Implementation Website:

 https://portal.sinodun.com/wiki/display/TDNS/T-DNS+Project+Homepage

•  Past Presentations:
 DNSE at IETF89
 http://www.ietf.org/proceedings/89/slides/slides-89-dnse-3.pdf
 DNS-OARC Spring 2014 Workshop
 https://indico.dns-oarc.net//contributionDisplay.py?contribId=11&confId=19

21
DNS over TCP and TLS

Implementation Status
•  initial prototyping

–  http://www.isi.edu/ant/software/index.html
–  digit: t-DNS client queries
–  (also client and server-side proxies; supports full protocol and cert

authentication, but not for production use)
•  current phase: targeting production software

–  LDNS (drill) / Unbound / NSD (NLnet Labs)
–  getdns (http://getdnsapi.net/)

•  next phase includes BIND
•  implementation notes

–  current code uses only dummy query (qname=STARTTLS, CH/TXT) to
negotiate

•  use of TO bit pending IANA allocation
–  TLS-1.1 or better only (not SSL) as per UTA BCP
–  work-in-progress, still to do: certificate authentication

22
DNS over TCP and TLS

Performance and Functionality
•  current focus: functionality

– T-DNS (TLS)
– TCP Fast open (reduces latency)
– TCP connection re-use, and pipelining
– query reordering (out-of-order processing)

23
DNS over TCP and TLS

Query Pipelining
send several queries immediately (not stop-and-wait)

q1, q2 q1

a1

q2

a2

connection reuse
without pipelining

q2 delayed
waiting for q1

(+1 RTT)

q1, q2 q1

a1
q2

a2

connection reuse
with pipelining

0 extra
RTT

pipelining matters:
62% of web has 4+ domain names
(dataset: common crawl)

(stub)
(recursive)

DNS over TCP and TLS
24

Out-of-Order Processing
process queries on same connection in parallel

q1, q2 q1

a1

q2

in-order (only)
(stub) (recursive)

(authoritative)
(for Q2)

q1

a1

a2

a2

q2

q2 delayed
waiting for a1

(+1 RTT)

(for Q1)
q1, q2

out-of-order processing

q1

a1

q2

(stub) (recursive)
(authoritative)

(for Q2)

q1

a1
a2

a2

q2

(for Q1)

queries run in parallel

reply as soon as possible
(maybe reorder)

out-of-order matters:
avoid head-of-line blocking DNS over TCP and TLS

25

Current Status (Detailed)
Software digit! LDNS! getdns! Unbound! NSD!

mode client! client!
(drill)! stub! recursive*! server! client! server!

TLS

T-DNS

TFO

Conn reuse

Pipelining

Dark Green: Latest stable release supports this
Light Green: Patch available
Yellow: Patch in progress, or requires building a patched dependancy
Grey: Not applicable or not planned
* getdns in its recursive mode uses libunbound

Demo Time
•  patched version of drill querying patched

Unbound
–  regular DNS UDP/TCP query
– DNS query over TLS (dedicated port)
– T-DNS (STARTTLS upgrade on TCP port 53)
–  [connection reuse/pipelining]
–  [TCP Fast Open]

•  STARTTLS goes in SYN; linux only

•  wireshark screenshots at the end

27
DNS over TCP and TLS

T-DNS Next Steps
•  more information:

–  tech report ISI-TR-2014-693
www.isi.edu/~johnh/PAPERS/Zhu14b/

•  code:
–  client, client & server proxies, unbound patch
–  http://tdns.net
–  http://www.isi.edu/ant/software/
–  interoperability meeting tonight—come by for demo
–  working to get patches upstream
–  Bind implementation will begin next

•  i-d for WG to consider adopting
–  draft-hzhwm-dprive-start-tls-for-dns-00

DNS over TCP and TLS
28

Appendices
Wireshark Screenshots

Supplemental Slides

29
DNS over TCP and TLS

TCP Query 3-way
handshake

session
take down

TCP Query DNS query
and response

TCP ACKs

TCP connection re-use

Multiple DNS queries-responses
on same TCP connection

ACK filtered out

TCP pipelining (getdns 0.1.5)

Multiple DNS queries sent together:
•  responses processed when they arrive
•  each query in own packet here
•  could have multiple queries in one packet

ACK filtered out

TLS (port 443) - handshake

TLS Handshake
•  certificate
•  cipher spec
•  session ticket

ACK filtered out Decode as SSL

TLS (port 443) - DNS query
ACK filtered out

Encrypted DNS query
- Wireshark can decrypt if
given the key

Decode as SSL

T-DNS - STARTTLS dummy query
ACK filtered out

•  STARTTLS query
•  Server is T-DNS aware and

enabled -> STARTTLS
response

Decode as DNS

T-DNS - TLS handshake
ACK filtered out

Server supports STARTTLS
- lets do a TLS handshake

Decode as SSL

ACK filtered out

Encrypted DNS query
- Wireshark can decrypt if
given the key

Decode as SSL

T-DNS - DNS query

ACK filtered out

NO_TLS response
- fall back to TCP
 (on same connection)

Decode as DNS

T-DNS - Fallback to TCP

Supplemental Slides
•  stresses on UDP-only DNS
•  secure DNS relationship to TLS
•  details about performance optimizations
•  recursive-to-authoritative performance
•  getdns

DNS over TCP and TLS
40

UDP Packet Size Limits
•  for >25 years, policy decisions

forced by UDP packet sizes
–  number of root servers: all fit in

512B
–  DNSsec: required EDNS
–  crypto algorithm and key size

•  partial fix: EDNS0 deployment
(10+ years, since 1999)

•  but packet size lurks
–  keysizes
–  IPv6 records
–  certs in DNS (for DANE)

response sizes today

DNS over TCP and TLS

key rollover:
temporary
overflow

some large
responses already

overflow

41

Doesn’t DNSsec already
“Secure DNS”?

A: yes, but…
•  DNSsec is about query integrity

–  that is: if you are told X, is X true?
–  it signs answers; signatures prove X is true

•  DNSsec does nothing for privacy and DoS
–  everything sent in the clear: no privacy
–  nothing about DoS
–  large signatures stress UDP size limits

=> need DNSsec’s integrity and T-DNS’ privacy

DNS over TCP and TLS
42

Latency in DNS/TLS
C & S: open TCP connection

C: QNAME=“STARTTLS”, QCLASS=CH, QTYPE=TXT
with the new TO bit set in EDNS options

 S: RCODE=0, TXT=“STARTTLS” with the TO bit set
C & S: <negotiate a TLS session with a new session key, in binary>

C: <send actual query>

 S: <reply to actual query>

TCP 3wh: +1 RTT

STARTTLS: +1 RTT

TLS handshake:
+2 RTTs

query: 1 RTT

DNS over TCP and TLS
43

Connection Reuse
•  basic idea:

reuse connection -> no setup cost
– persistent connections (in client and server)

•  secondary idea:
if must close, client keeps state to restart quickly
– TCP fast open: client has cookie to send data in 3wh

•  draft-ietf-tcpm-fastopen-08: in Linux-3.6, default 3.13
– TLS resumption (RFC-5077): client keeps

•  RFC-5077: in OpenSSL and GnuTLS

DNS over TCP and TLS
44

Connection Reuse
•  basic idea:

reuse connection -> no setup cost
– persistent connections (in client and server)

•  secondary idea:
if must close, client keeps state to restart quickly
– TCP fast open: client has cookie to send data in 3wh

•  draft-ietf-tcpm-fastopen-08: in Linux-3.6, default 3.13
– TLS resumption (RFC-5077): client keeps

•  RFC-5077: in OpenSSL and GnuTLS

DNS over TCP and TLS
45

Query Pipelining
send several queries immediately (not stop-and-wait)

q1, q2 q1

a1

q2

a2

before pipelining

q2 delayed
waiting for q1

(+1 RTT)

q1, q2 q1

a1
q2

a2

with pipelining

0 extra
RTT

pipelining matters:
62% of web has 4+ domain names
(datset: common crawl)

(stub)
(recursive)

DNS over TCP and TLS
46

(Digression) DNS Resolution:
stub -> recursive -> authoritative

stub
at end-user

generates queries,
recursive does work

Q: A www.example.com? -> rec

recursive
at user’s ISP or
public DNS
in a CDN

converts user query
to many authoritatives;
caches replies

Q: A www.example.com? -> .
Q: A www.example.com? -> .com
Q: A www.example.com?

 -> example.com
A: 192.0.52.1

authoritative
at provider
(maybe
replicated)

has actual answers

A: see NS for .com
A: see NS for example.com
A: 192.0.52.1

DNS over TCP and TLS
47

Latency: Recursive to Authoritative

TCP and TLS vs. UDP?
effects of implementation
choices?
with long RTT (=35ms)

method: live experiments of
random 140 names, each
repeaed 10x; recursive-
authoritative RTT=35ms

(graph shows medians and quartiles
for (h) and (i), or bars where median
and quartiles are the same)

new connections
are expensive

(RTTs exactly as
predicted!)

m

DNS over TCP and TLS
48

Latency: Recursive to Authoritative

TCP and TLS vs. UDP?
effects of implementation
choices?
with long RTT (=35ms)

method: live experiments of
random 140 names, each
repeaed 10x; recursive-
authoritative RTT=35ms

(graph shows medians and quartiles
for (h) and (i), or bars where median
and quartiles are the same)

new connections
are expensive

(RTTs exactly as
predicted!)

reusing connections
avoids much

overhead

DNS over TCP and TLS
49

getdns
•  getdns API (http://getdnsapi.net/)

– modern, asynchronous DNS API specification
– API originally by Paul Hoffman
–  created by and for application developers

•  getdns is the first (and currently only)
implementation of this specification

•  open source C implmentation developed and
maintained in collaboration by NLnet Labs,
Verisign Labs, and No Mountain Software

50
DNS over TCP and TLS

