

Bloom Filter-based Flat Name Resolution System for ICN

IEFT 91, Honolulu

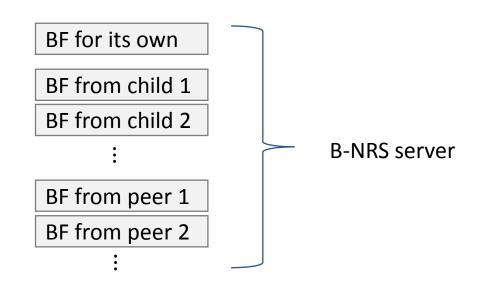
Jungha Hong, Woojik Chun, and Heeyoung Jung November 10, 2014

Problem and challenge

- Location independent and flat name is assumed in ICN
- The binding between name and locator is required for lookup-by-name routing
- Name resolution system (NRS) maintains and resolves the bindings
- The most important challenge on designing NRS is <u>scalability</u> on the ever-increasing number of named data object

Bloom filter-based NRS (B-NRS)

- Hierarchical structure
 - Constructs a network of B-NRS servers
 - B-NRS consists of a forest by several disjoint trees
 - Relationships of parent-child and peering
 - No constraint for peering
- Bloom filter (BF)
 - Used as an aggregated form of names
 - Announced instead of the whole list of names



B-NRS server components

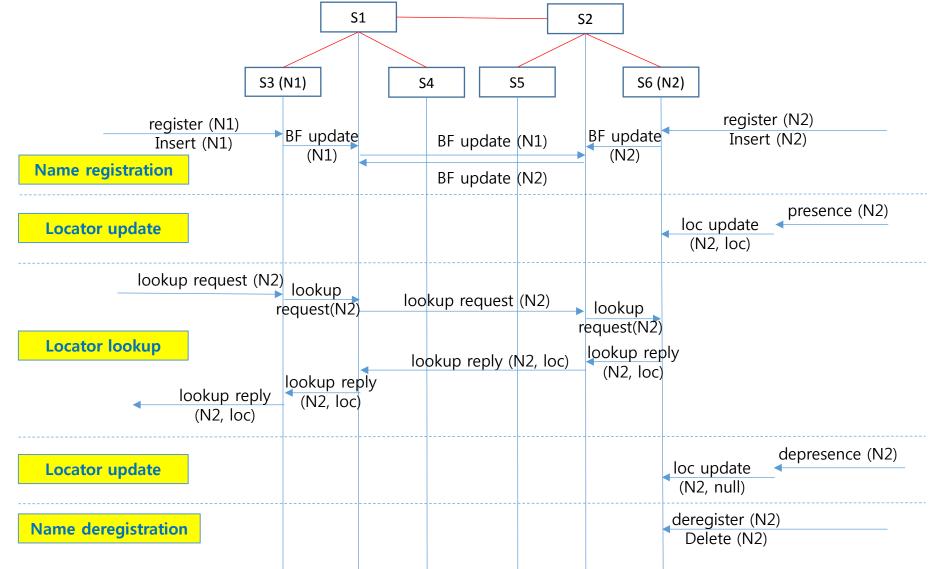
• Name lookup table

Name	Locator(s)
Name ₁	LOC ₁
Name ₂	LOC ₂₋₁ , LOC ₂₋₂
Name ₃	-
:	÷

• Bloom filter

Key operations (1)

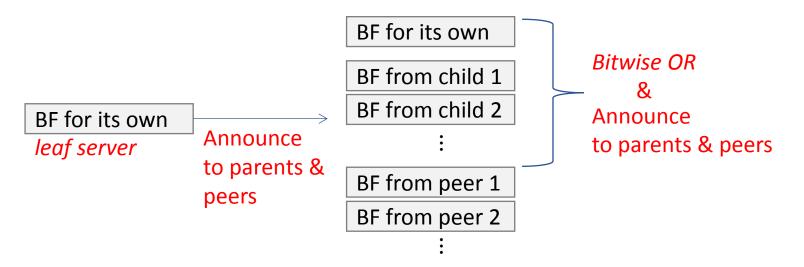
- Name registration
 - <u>No constraints</u>
 - Flat names can be registered to any arbitrary B-NRS server
 - Followed by BF updates : *insert-through*
 - No BF update when name is deleted
 - BF cannot handle deletion
- Locator update
 - Locator information for the registered names is inserted(deleted) into(from) name lookup table
 - No effects on both BFs and structure of B-NRS
 - Inherently supports mobility



Key operations (2)

- Locator lookup
 - Through the BF test with the given name, locator lookup request is forwarded into the B-NRS server where the binding is actually stored
 - Lookup request is forwarded into all child and peer severs which return positive answers from the BF test
 - If none of BFs returns positive answer, then lookup request is forwarded into parent server
 - Locator lookup reply takes the reverse path of the lookup request

Operation flows

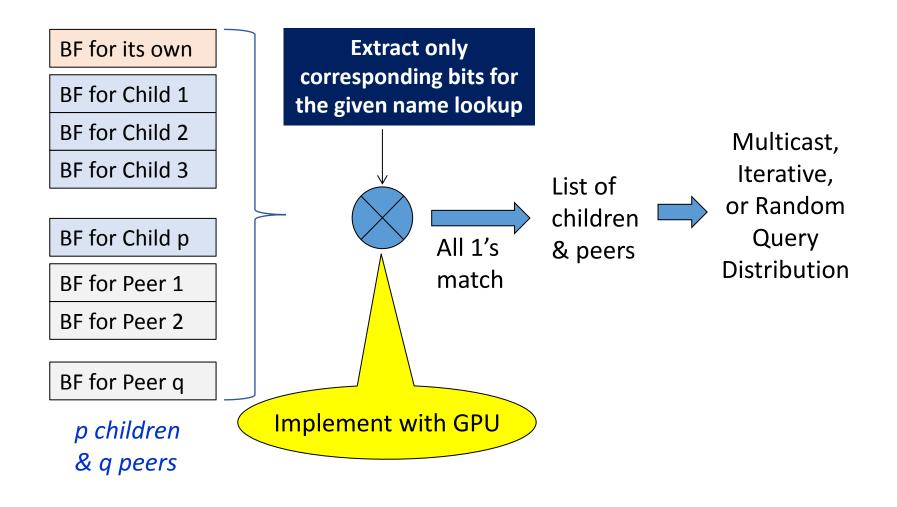

How to handle BF deletion issue

- Completely ignoring the BF updates for deletion
 - B-NRS would eventually be able to find the locator for a given name
 - Generates the fewest number of control messages for BF updates but significantly increases the false positive rates
- Updates the entire BFs in B-NRS for every single deregistration
 - Generates the lowest false positive rates but extremely high control message for BF updates
- Counting BF can be simply adopted
 - Needs to have sufficient additional bits for counter
 - BF size is a challenge of B-NRS to be optimized

Periodic refresh for B-NRS

- Periodically rebuilds and replaces BFs using the shadow memory
- Refresh frequency can be few hours, a day, a week, a month, etc.

Lossless compressed BF can be used to announce the merged BF


BF size and FPP

- *n* is the # of names in a BF: n = 1M
- *m* is the size of BF: *m* = 16Mb (=2MB)
- *k* is the # of hash functions: *k* = 11.09
- FPP = 0.00046 (0.046%)
- If a server on the top of the B-NRS has 1M child servers with 1M entries for each

\rightarrow <u>1T entries</u> \rightarrow <u>2TB memory for FPP=0.00046</u>

HW assisted implementation

Questions or Comments

www.idnet.re.kr

2014-11-10