Update on BIER Architecture and BIER MPLS Encapsulation

- A few changes and additions since early revisions of the drafts
- Some issues to which the WG should attend

MPLS Encapsulation Changes

- Entropy field length: $\underline{8} \rightarrow \underline{20}$ bits
- Now same length as MPLS entropy label
- Note: when tunneling through non-BFRs
- BIER encaps entropy should \rightarrow tunnel encaps entropy
- Thus tunnel "rewrite string" depends on tunnel payload
- BFIR-id field: optional 32-bit \rightarrow mandatory 16-bit
- Bit flags: $\underline{8} \rightarrow \underline{16}$ bits
- Will probably change further
- Please, if you think you need a flag, do not resort to self-help

MPLS Encapsulation Issues

- Newly Raised Issue re Version Field
- First nibble declared to be version field
- 4 and 6 "reserved" to avoid spurious IPv4/IPv6 ECMP treatment at transit nodes
- Given use of first nibble in ECMP and other data plane heuristics, maybe not a good place for version field
- Fixed value probably better:
- 5 could be a poor man's protocol type ©
- 0 aligned with PW usage, maybe would then use 1 for OAM
- (Let's try to avoid the MPLS payload protocol type rathole)

Additions to Architecture

- Sub-domains
- Automatic tunneling through non-BFRs
- Deterministic ECMP (presently optional, but ...)
- BitStringLength Issues

Domains and Sub-Domains

- Domain is scope of control plane (e.g., IGP signaling scope)
- BFR-prefix: per-domain (control plane) scope
- A domain contains one or more sub-domains:
- Each domain contains at least the default sub-domain, sub-domain 0
- BFR-id: per-sub-domain scope
- What is a sub-domain?
- An assignment of BFR-ids to BFIRs and BFERs
- A routing underlay (e.g., an IGP topology)

Sub-Domains

- Per architecture doc, each BFR is provisioned to know:
- the sub-domains to which it belongs
- The routing underlay for each of those sub-domains
- Its BFR-id (if any) for each of those sub-domains
- BFR-id zero not legal, reserved for use by control plane to mean "no BFR-id"
- No such thing as dynamically joining a sub-domain
- BIER-MPLS label (BoS label in BIER packet) bound to <Sub-domain, BitStringLength, SetIndex>
- This is what is needed to properly interpret the BitString
- BitStringLength not part of sub-domain

Automatic Tunneling From BFR to BFR through non-BFRs

$\xrightarrow{\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{D}}$

Whoops, need to get packet from A to $\{D, G\}$, but E hasn't advertised MPLS label for packet's sub-domain

- Act as if topology is one of:

- Tunneling can be as simple as pushing on MPLS unicast label for F or G (with suitable entropy, TTL)
- Same procedure useful if E goes down

BitStringLength

- Each BFR provisioned with:
- BitStringLength to use as BFIR
- BitStringLengths supported as BFR/BFER
- Not specific to sub-domain
- All BFRs/BFERs in domain SHOULD support any BitStringLength that may be originated in that domain
- But what if BFR next hop doesn't support the BitStringLength in a packet that you have to forward?
- MAY drop the packet
- MAY modify the BitStringLength (might require making a second copy of packet)
- MAY tunnel through (as per slide 5)

Deterministic ECMP

- Deterministic ECMP: (S,G) path from BFIR-A to BFER-B depends only on routing underlay plus entropy
- Without: path may change as other BFERs join/prune
- OAM problem when ECMP is non-deterministic:
- BFER-B complains about intermittent problems
- Problems occur only when BFER-C joins the stream (resulting in change of path), but no one knows this
- Difficult to troubleshoot
- Deterministic ECMP eliminates this problem (cost is possible extra packet-hops)
- Troubleshooting does require knowledge of entropy, but this is just function of (S, G)

