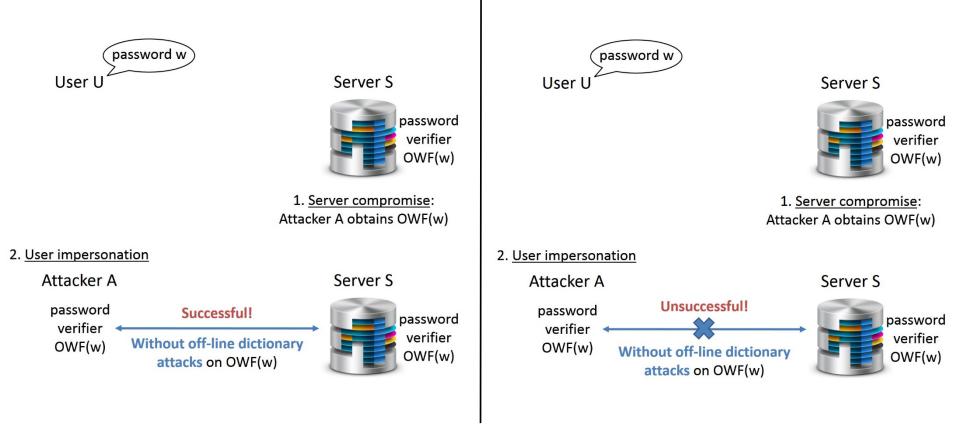
AugPAKE Update draft-irtf-cfrg-augpake-03

SeongHan Shin and Kazukuni Kobara AIST, JP

RECAP AUGPAKE

PAKE

- Password-Authenticated Key Exchange
 - It does not rely on PKI
 - Users do not need to carry any devices
 - Very convenient
- Which kind of security should be achieved in PAKE?
 Security against off-line dictionary attacks (at least)
- Inherent limitations of PAKE
 - On-line dictionary attacks are always possible
 - But, controllable
 - Server compromise always leads to password compromise


PAKE (cont)

- PAKE can be classified into
 - Balanced PAKE
 - Security against off-line dictionary attacks
 - Augmented PAKE
 - Security against off-line dictionary attacks
 - Plus extra protection for server compromise (i.e., resistance to server compromise)
 - Examples: A-EKE, AuthA, VB-EKE, B-SPEKE, PAK-X/Y/Z/Z+, AMP [IEEE 1363.2, ISO/IEC 11770-4], SRP [IEEE 1363.2, ISO/IEC 11770-4, RFC2945, RFC5054], AugPAKE, ...

PAKE (cont)

Balanced PAKE

Augmented PAKE

AugPAKE

- Security
 - Provably secure in RO model [SKI10]
 - Security against passive/active/off-line dictionary attacks + resistance to server compromise

Highly efficient

	Modular exp. of user (excluding pre- computable costs)	Modular exp. of server (excluding pre- computable costs)	
DH key exchange	2 (1)	2 (1)	
AugPAKE	2 (1)	2.17 (1.17)	

Most efficient over SRP and AMP

Other Features of AugPAKE

- Over any cryptographically secure DH groups
 Neither FDH nor ideal cipher used
- IPR disclosure
 - Royalty-free license of AugPAKE
 - <u>https://datatracker.ietf.org/ipr/2037/</u>
- Can be easily converted to 'balanced' one

DIFF FROM -01

AugPAKE over EC Groups

- Domain parameters
 - p, q: sufficiently large primes, and q (order of the desired group)
 - m: some positive integer
 - Elliptic curve E with point at infinity O_E
 - $y^2 = x^3 + a x + b$ over GF(p) or
 - y² + x y = x³ + a x² + b over GF(2^m)
 - #E: number of points on E
 - k: cofactor (#E/q) satisfying k=2ⁿ q₁ q₂ ... q_t where n={0,1,2,3} and every primes q_i > q for i=1, 2, ..., t. Optionally, k=2ⁿ
 - G: generator for a subgroup of q points on E

EC-AugPAKE

User U (w)		Server S (W=[w]G)
X=[x]G	U, X	If X is not a point on E or [2 ⁿ]X=0 _E , abort
		r=H(1 U S X)
If Y is not a point on E or [2 ⁿ]Y=0 _E , abort	S, Y	- Y=[y](X + ([r]W))
z=1/(x + w∙r) mod q		
$V_{U} = H(2 U S X Y [z]Y)$	V _U	If V _U ≠H(2 U S X Y <mark>[y]G</mark>), abort
lf V _s ≠H(3 U S X Y <mark>[z]</mark> Y), abort	V _S	V _s =H(3 U S X Y <mark>[y]G</mark>) SK=H(4 U S X Y [y]G)
SK=H(4 U S X Y [z]Y)		

March 25, 2015

CFRG@IETF 92

THANK YOU FOR YOUR ATTENTION!