Processing Multiple Replies for One
Request in NETCONF

(draft-liu-netconf-multiple-replies-00)

Bing Liu (Ed.) , Guangying Zheng, Mahesh Jethanandani, Kent Watsen

IETF92 @Dallas, Mar 2015



Background

* This draft intends to merge following works
— draft-liu-netconf-fragmentation
— draft-mahesh-netconf-persistent-00
— Some relevant mailing list discussion

* Currently, focusing on scenarios collection and
requirements analysis

e After that, wish to come out a unified solution
for these similar requirements



Scenarios & Requirements

Bulk <rpc-reply>

— response data might be very
big

Persistent <rpc-reply>

— Persistent replies for ping,
tracert .etc

Long time <rpc-reply>

— Multiple responses for
monitoring progress

“data-push”

— client subscribes for
datastore update; server
pushes the updates

Requirements for
NETCONF messaging

Handle for correlating
multiple <rpc-reply>
messages to a given <rpc>
message

terminate response at any
time

be able to cancel the request
in pipeline scenarios



Next Steps

* Complete the scenario collection and
requirement analysis (welcoming
contributions)

* Provoke solutions discussion
* Add the requirements into NETCONF charter?

Comment?
Thank you!



Backup Slides



Scenarios

e Bulk <rpc-reply>
— Discussed in draft-liu-netconf-fragmentation
— Problem: response data might be very big (e.g. routes, statistics,
synchronizing)
— Proposed solution: fragmented replies, controlled via a newly defined
<get-block> operation

e Persistent <rpc-reply>
— Discussed in draft-mahesh-netconf-persistent
— Problem: multiple responses might be returned for an operation (e.g.
ping, tracert)
— Proposed solution: linked replies, adding an “link-id” element in
response messages
* Long time <rpc-reply>
— Discussed in mailing list

— Problem: some operations might take a long time to perform (e.g.
network link performance validation)

— Proposed solution: initial responses returns handle which the client
uses to monitor progress till the final result (no detailed solution yet)



Open Question

* According to the requirements, should we also
include the “data-push” scenario as well?

— Discussed in draft-netmod-clemm-datastore-push

— defines a subscription and push mechanism to
allow client applications to request updates from
a datastore, which are then pushed by the server
to the client per a subscription policy, without
requiring additional client requests.



