DISTRIBUTED WIRELESS BROADCAST PROTOCOLS WITH NETWORK CODING FOR SINGLE/MULTIPLE SOURCES

IETF/IRTF 92 DALLAS Cedric Adjih, Ichrak Amdouni, Oliver Hahm (Inria) Claudio Greco, Michel Kieffer (CentraleSupelec)

IPR Statement

□ No IPR from our side

□ From IPR disclosures at IETF, look for:

IETF IPR Disclosure	Patent	This presentation
ID #2183	"Randomized distributed network coding", US 7706365	Random linear [re]coding (slide 4, and following)

Wireless Multihop Broadcast

- Single source: many packets to entire network
- Multiple sources: one packet to entire network
- Use cases in Wireless Sensor Networks:
 - "OTA" (over-the-air programming)
 - Data collection with "unmanaged" network
- □ Without NC: SMF (RFC 6221), Trickle (RFC 6206)

Fully Distributed Protocols

Fully Distributed Broadcast Protocol:

- No knowledge of the entire network (sources/dest.)
- Ex: protocol DRAGONCAST/DragonNet
 - I. Amdouni, C. Adjih, and T. Plesse "Network Coding in Military Wireless Ad Hoc and Sensor Networks: Experimentation with DragonNet", accepted at ICMCIS 2015
 - S-Y. Cho and C. Adjih, "Wireless Broadcast with Network Coding: DRAGONCAST", Inria RR-6569, July 2008
 - Every node retransmits coded payloads at a given packet rate per second (e.g. with random linear coding)
 - Coded payloads are maintained in a (decoding) set
 - Control plane: state piggybacked on coded payloads
 Decoded payloads, number of neighbors, ex: ...
- This presentation: sliding encoding window (single source), encoding vectors (multiple source)

Corresponding use cases

5

From http://www.ietf.org/proceedings/91/slides/slides-91-nwcrg-0.pdf

Single source: Sliding Window

- 6
- □ Sliding Encoding Window (SEW in DRAGONCAST):
 - Each node transmits decoding state: "first undecoded"
 - Node generates packets considering neighbor state

Simple functionning

Single source: CISEW

Coding Interval-based Sliding Encoding Window

- I.Amdouni, C. Adjih, « Coding Interval-based Sliding Encoding Window », draft-amdouni-nwcrg-cisew-00 (work in progress), July 2014, http: //tools.ietf.org/html/draft-amdouni-nwcrg-cisew-00
- Redesign of SEW, aware of:

Heterogeneous decoding rate at nodes

- Introduce « losses »
- Limited buffer size (overflow)
 - Choice between throwing decoded or undecoded packets
 - Combinations may become useless: P₁₁+... if P₁₁ dropped
- Encoding strategy:
 - Fit at best neighbors needs in terms of payloads
 - Needs more information about the state of neighbors
 - state advertizement from signaling

CISEW: Finer Signaling

- CISEW state: each original payload is one of:
 - Decoded (or « lost ») but no longer available
 - Decoded and available
 - Not yet decoded but received in one/some linear combinations
 - Not yet decoded but never received

4 types of index intervals

- 9
- Black: unwanted indices (e.g. payloads that are no longer buffered)
- Grey: indices that the node is not interested in, but would not harm decoding
- **Gold:** indices that the node is interested in, in the near future
- White: indices that the node is interested in

How to set these intervals: it is a POLICY

Functioning

- Question1: How to set intervals ?
- □ **Question2:** How to set encoding windows^{apation:}
 - No universal answer: flexibility

state advertizement from signaling principles and policies

Multiple sources (inter-flow NC)

11

Multiple sources in full distributed network:

• How to index payloads? $7P_1 + 3P_2 + P_3 + 2P_4$: whose P_1 ?

7312

 ID_1

7

ID₂

1

3

□ NeCo<mark>RPIA</mark>

- C. Greco, M. Kieffer, and C. Adjih, "NeCoRPIA: Network Coding with Random Packet-Index Assignment for Mobile Crowdsensing", accepted at ICC 2015
 - Just choose a Random Payload Index
- Problem:
 - "payload index collisions"

ID₃

2

ID_₄

Multiple sources (inter-flow NC)

- Use knowledge of payload content to guide resolution
 - Crowdsensing application: time and position
- Hash on content: mechanism to check decoded
- Gaussian Elimination on the <u>full</u> packets
- □ NeCoRPIA (ICC'15):
 - constraint satisfaction problem defined over a finite field
 - Relaxation, in a sequence linear of linear programs

NeCoRPIA-lite

0110001111100000	6Ca0.	ezfaufadab3892a20
00000000 <mark>11</mark> 000000	5962	0 <mark>1</mark> 0000000000000000000 e2cd5a24f4f8e4bac2a579
0 <mark>11</mark> 0000 <mark>1</mark> 00000000	823d	00 <mark>1</mark> 000000000000 3410e <u>b0434ee9573d4e870</u>
0 <mark>1</mark> 0000 <mark>1</mark> 000000000	9ele	000000 <mark>1</mark> 000000000 7cd31 <mark>01</mark> 00000000000000 efe8b649(Q0+Q8)
0 1 000000 111 00000	4e38	0000000 <mark>1</mark> 00000000 54e00000 <mark>1</mark> 0000000000000 af0788cd(Q1+Q9+Q7)
000000 <mark>11</mark> 0 1 000000	c9c7	00000000 <mark>1</mark> 0000000 b5b37000000 <mark>1</mark> 000000000 4218b499(Q2+Q7)
00 1 000 1 000000000	48c3	000000000 <mark>1</mark> 000000 ecd15000000 <mark>1</mark> 000000000 4f3d58f4(Q2+Q8+Q7)
0 1 0000 1 00 1 000000	72cf	000000000 <mark>1</mark> 00000 cb5ca000000 <mark>1</mark> 000000000 e7c470d3(Q2+Q9+Q7)
0110000111000000	7e83	0000000000000000 3ecba0000000 <mark>1</mark> 00000000 cff76483(Q3+Q9+Q7)
		00000000000000000000000000000000000000
		0000000000000000 a5dcc000000000 <mark>1</mark> 000000 490d9bab(Q5+Q9)
		000000000 <mark>1</mark> 000000 d21af862(Q5+Q7)
		000000000 <mark>1</mark> 00000 63a58d4a(Q6+Q8+Q9)

Conclusion

Elements for NC in wireless multi-hop networks Interest of the RG ?

THANK YOU

DragonNet Packet Format

3 0 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 Node ID Sequence Number DRAGON Parameters -+-+-+-+-+-+ Flow Parameters Coded Data -+-+-+-+-+-+

Figure 4.1: The format of DragonNet message as specified for WSNs.

SEW: Sliding Encoding Window

Principle: "real-time" robust decoding

Variant of Gaussian elimination ("inverted" RREF)

CISEW Policy

Depends on:

- Computing and storage capacity of nodes:
 - E.g; a huge advertized Gold interval -> too many undecoded packets, no suitable for low capacity sensors
- Application requirements:
 - E.g1: real time application: nodes decoding should evolve in parallel, nodes should have close intervals. A too late node should increase its interval even if some payloads are not decoded in order not prevent neighbors from progressing
 - E.g2: For code distribution (over the air reflashing in WSNs), all payloads are equally important, a node must still requesting the same undecoded indices if its neighbors are much more progressed.

Protocol Overview

