

UiO Conversity of Oslo Shared Bottleneck Detection for Coupled Congestion Control for RTP Media Update (draft-hayes-rmcat-sbd-02)

David Hayes (UiO) Simone Ferlin (SRL) and Michael Welzl (UiO)

[simula . research laboratory]

REDUCING INTERNET TRANSPORT LATENCY

David Hayes

IETF'92 1/11

Mechanism based on Summary Statistics

IFTF'92

2/11

Why summary statistics?

- To limit feedback from receivers
- To deal with noise
- To deal with differing path lags

Mechanism based on Summary Statistics

Why summary statistics?

- To limit feedback from receivers
- To deal with noise
- To deal with differing path lags

Statistics Used

- a measure of delay variance (var_est)
- a measure of delay skewness (skew_est)
- a measure of delay oscillation (freq_est)
- a measure of packet loss (pkt_loss), a supplementary measure.
- not a closed list

Overview of work so far

The mechanism has been demonstrated using:

- Simulation experiments with multiple hops, changing bottlenecks, and realistic background traffic.
- Real network tests over the Internet and 3G mobile using NORNET(https://www.nntb.no/)

Publication

D. A. Hayes, S. Ferlin, and M. Welzl. Practical passive shared bottleneck detection using shape summary statistics. In *Proc. of the IEEE Local Computer Networks (LCN)*, pages 150–158, Sept. 2014. URL http://dx.doi.org/10.1109/LCN.2014.6925767

イロト 不得 トイヨト イヨト 正言 のなる

IFTF'92

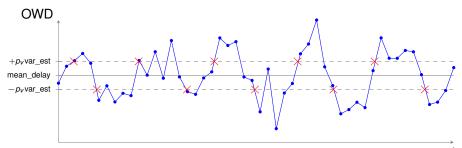
Key changes in -02

Some terminology improvements

Section on reducing noise in the statistical estimators

- removing noise from freq_est due to periods where there is no congestion
- removing bias in skew_est
- a simple adjustment for clock drift

Section on decreasing decision lag


• e.g. changes in networks and new signals

These are minor improvements that can improve the performance in certain circumstances.

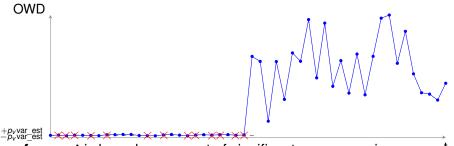
IFTF'92

4/11

David Hayes

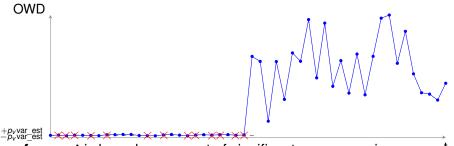
-

5/11


IETF'92

freq_est is based on a count of significant mean crossings

But when there is no congestion (ie no bottleneck), this is noise


IFTF'92

- freq_est is based on a count of significant mean crossings
- But when there is no congestion (ie no bottleneck), this is noise

Enhancement:

Only use PDV values obtained when path is congested (by skew_est)

- freq_est is based on a count of significant mean crossings
- But when there is no congestion (ie no bottleneck), this is noise

Enhancement:

Only use PDV values obtained when path is congested (by skew_est)

PDV = NaN when no congestion

 $\frac{sum_M(PDV! = NaN)}{num \ VM(PDV)}$

Removing small sample bias in skew_est

Bias

a minority of small sample size skew_est_T can bias skew_est

IFTF'92

Removing small sample bias in skew_est

Bias

a minority of small sample size skew_est_T can bias skew_est

Avoiding bias

 $skew_base_T = sum_T(OWD < mean_delay) \\ -sum_T(OWD > mean_delay)$

David Hayes

IETF'92 6/11

Removing small sample bias in skew_est

Bias

a minority of small sample size skew_est_T can bias skew_est

Avoiding bias

$$skew_base_T = sum_T(OWD < mean_delay) \\ -sum_T(OWD > mean_delay)$$

$$skew_est = \frac{sum_MT(skew_base_T)}{num_MT(OWD)}$$

IETF'92 6 / 11

イロト 不得 トイヨト イヨト 正言 のなる

David Hayes

Adjusting for clock drift

Clock drift

- Significant clock drift can influence key metrics
 - makes grouping flows with similar characteristics difficult

Adjusting for clock drift

Clock drift

- Significant clock drift can influence key metrics
 - makes grouping flows with similar characteristics difficult

Possible approaches

- M<N helps, but at the expense of poorer estimates.
- Linear correction based on a history of selected min(OWD)
 - Uses state not currently kept, but being investigated.
- Proposed approach is based on already stored E_T(OWD) values
 - modifies mean_delay calculation
 - may not track drift as well as using selected min(OWD), but
 - helps congestion determination when OWDs slowly fall.

イロト 不得 トイヨト イヨト 正言 のなる

1. Divide the N stored E_T(OWD) values into two halves

IETF'92 8/11

- 1. Divide the N stored E_T(OWD) values into two halves
- 2. Old half mean:

$$Older_mean = \frac{E_old(E_T(OWD))}{N/2}$$

- 1. Divide the N stored E_T(OWD) values into two halves
- 2. Old half mean:Older_mean = $\frac{E_old(E_T(OWD))}{N/2}$ 3. Recent half mean:Newer_mean = $\frac{E_new(E_T(OWD))}{N/2}$

IETF'92 8 / 11

- 1. Divide the N stored E_T(OWD) values into two halves
- 2. Old half mean:Older_mean = $\frac{E_old(E_T(OWD))}{N/2}$ 3. Recent half mean:Newer_mean = $\frac{E_new(E_T(OWD))}{N/2}$
- 4. Clock Drift per T: $CD_T = \frac{(Newer_mean Older_mean)}{N/2}$

1. Divide the N stored E_T(OWD) values into two halves

2. Old half mean:Older_mean =
$$\frac{E_old(E_T(OWD))}{N/2}$$
3. Recent half mean:Newer_mean = $\frac{E_new(E_T(OWD))}{N/2}$ 4. Clock Drift per T: $CD_T = \frac{(Newer_mean - Older_mean)}{N/2}$ 5. Adjusted mean: $mean_delay = E_M(E_T(OWD)) + CD_T * M/2$ • Used as the basis for skew_est and freq_est.

IETF'92 8 / 11

Past and Present

- Measurement based mechanisms make decisions in the present based on what was measured in the past.
 - decision lag: can be several seconds

Past and Present

- Measurement based mechanisms make decisions in the present based on what was measured in the past.
 - decision lag: can be several seconds

Options

- Measure in the future
- Reduce N and/or M less accurate
- Exploit the fact that recent measurements are more important.

IFTF'92

Past and Present

- Measurement based mechanisms make decisions in the present based on what was measured in the past.
 - decision lag: can be several seconds

Options

- Measure in the future *timeware* support required
- Reduce N and/or M less accurate
- Exploit the fact that recent measurements are more important.

IFTF'92

Past and Present

- Measurement based mechanisms make decisions in the present based on what was measured in the past.
 - decision lag: can be several seconds

Options

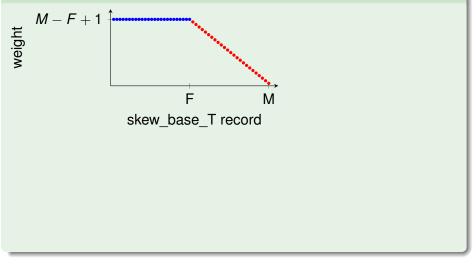
- Measure in the future
- Reduce N and/or M less accurate
- Exploit the fact that recent measurements are more important.

IFTF'92

Past and Present

- Measurement based mechanisms make decisions in the present based on what was measured in the past.
 - decision lag: can be several seconds

Options

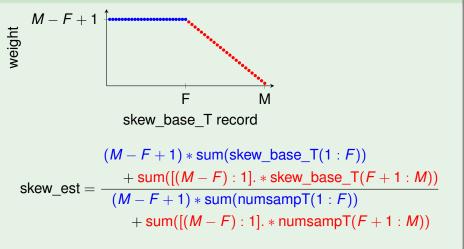

- Measure in the future
- Reduce N and/or M less accurate
- Exploit the fact that recent measurements are more important.

Weighting

- Old measurements are still important for stability
- EMA: infinite tail, not enough weight for recent values
- Linear decreasing weights: not enough weight for recent values
- Propose a piecewise linear approach

UiO : University of Oslo

Piecewise linear weighted skew_est to reduce lag

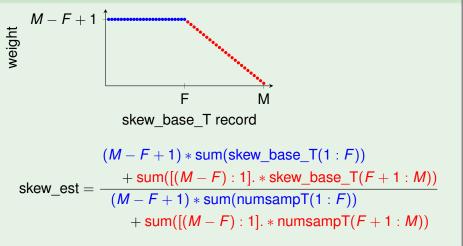


IETF'92 10 / 11

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

UiO : University of Oslo

Piecewise linear weighted skew_est to reduce lag


IETF'92 10 / 11

イロト 不得 トイヨト イヨト 正言 のなる

David Hayes

UiO : University of Oslo

Piecewise linear weighted skew_est to reduce lag

Similarly for var_est

David Hayes

IETF'92 10 / 11

イロト (過) (ヨト (ヨト (ヨト (の)))

Conclusions and plans

- Outline the effect each threshold has on performance
- Define sender receiver interaction
- Evaluate the effect of time resolution
- Extend tests to wifi scenarios
- Journal
 - algorithm refinements
 - quantitative tests

Acknowledgements

The authors are funded by the European Community under its Seventh Framework Programme through the Reducing Internet Transport Latency (RITE) project (ICT-317700). The views expressed are solely those of the authors.

IFTF'92

UiO **Conversity of Oslo**

Extra slides

David Hayes

<ロ> < 部> < E> < E> E| = のへの IETF'92 1/1