
ExaO: Traffic Optimization for ExaScale
Science Applications

Justas	Balcas2,	Greg	Bernstein3,	Haizhou Du4,	Azher Mughal1,
Harvey	Newman1,	Qiao	Xiang5,	Y.	Richard	Yang5, Jingxuan Zhang4

1	California	Institute	of	Technology,	2 CERN,	3 Grotto	Networking,	
4 Tongji University,	5 Yale	University
March 31st, 2017,	IETF98,	Chicago

Next-Gen	Integrated Systems	for	Exascale Science

• Vision:	resource	in	worldwide-distributed	environments	should	be	
deployed	flexibly	to	meet	the	demands	of	exascale science	
applications.

• Goal:
– Production deployments of	a	new	class	of	intelligent,	software-
defined	global	systems	for	data-intensive	science	programs	
involving	a	worldwide	ensemble	of	sites	and	networks.

– A	game-changer	for next-generation science data flow	
orchestration	that	shapes	the	future	architecture	and	operational	
modes	of	exascale computing	facilities.

• Members:	worldwide	multi-organizational	collaboration	between
Caltech, CERN, Tongji University and Yale University.

Next-Gen	Integrated Systems	for	Exascale Science

• Timeline:	
– Pre-production	deployment	in	2017.
– Production	deployment	in	~2018-19.
– Worldwide	deployment	of	such	systems	in	~2020-24.

Figure	source:	cern.ch

LHC:	Large	Hadron	Collider

The Compact	Muon	Solenoid Computing Model

Calibration
CERN Analysis Facility

200Hz -400 Hz
RAW:~1.7-1.1 MB/evt

Tie-1

Tie-2

Tie-0Large raw datasets from LHC
at the Tier-0 site

RECO and AOD datasets
are distributed to Tier-1 sites

RECO, AOD and simulation
datasets are transferred among
Tier-1~3 sites for analysis.

RAW Data: tens of PB per year
RECO and AOD: multiple times of
RAW data depending on analysis
requirements

Problem	Settings

• A	multi-domain	data	center	
network

• Heterogeneous	resource	
/system	provision

• Various	jobs
– Exascale dataset	transfers
– MapReduce	analytics
– MPI	analytics
– etc.

Figure	source:	cern.ch

Takeaway	from	Version	00

• Use	ALTO	topology	services	(path-vector	and	routing	state	
abstraction)	to	provide	on-demand	fine-grained	network	
information	from	different	sites/domains.

• Use	such	information	to	orchestrate	dataset	transfer	scheduling.
• Prototype	demo	at SC’16.
• Currently	under	production	development.

Update	in	Version	01

• Dataset	transfer	is	only	one	application	in	CMS.
• ALTO	has	the	potential	to	improve the performance of analytic	
applications.
– In	CMS	DC	networks,	network	resource	is	not	always	the	
bottleneck.

• ExaO:	a	multi-resource	orchestrator	for	CMS	applications.

Impact	on	ALTO	Working	Group

• ExaO is	a	representative	ALTO	application	in	data	center	networks,	
which	is	a	major	use	case	of	ALTO	listed	in	the	WG	Charter.	

• We	expect	the	success	of	ExaO to	provide	key	insights	and	
experience	in	deploying	ALTO	services	and	developing	ALTO	
applications.

Overview

• Deploy ALTO clients and servers at sites and networks to retrieve
endpoint properties and topology information.

• Expand	the	capability of abstract	network	element	(ane)	to	provide
an abstract view of computing, storage	and networking resources.

• Use	such	views for deep	site	orchestration	among	virtualized	
clusters,	storage	subsystems	and	subnets	to	successfully	co-
schedule	CPU,	storage	and	networks.

ExaO Architecture

Job
Parser

Multi-Resource
Orchestrator

Job
(Analytic/Transfer)

Resource
Information

Query&Response
Orchestration

Decisions

Data Center 1
Domain 1

Data Center N
Domain M

. . .

Resource
Abstraction

Agent

Resource
Abstraction

Agent

Task
Execution

Agents

Task
Execution

Agents

Resource
Information

Query&Response Orchestration
Decisions

Resource Abstraction Agent

1. Orchestrator sends input dataset
name and job information to
resource locator.

2. Locator talks to resource
management system to get
endpoint addresses of available
resources for	the	job	and sends to
ALTO client.

3. ALTO client issues queries to ALTO
server.
• EPS query to get properties of
resource nodes.

• PV-based query to get properties of
ane connecting resource nodes.

Resource
Locator

ALTO
Client

ALTO
Server

ANE
Aggregator

Resource
Orchestrator

1

2

3 4

5

6

Resource Abstraction Agent

4. ALTO server executes the query
and send the response to ALTO
client.

5. ALTO client sends the information	
of	resource nodes and ane to ANE
aggregator.

6. ANE aggregator encodes the
received information into a single
ane and sends back to the
orchestrator.

Resource
Locator

ALTO
Client

ALTO
Server

ANE
Aggregator

Resource
Orchestrator

1

2

3 4

5

6

ANE Aggregator: Provide a One-Big-ANE View

• Motivation: existing resource node abstractions, e.g., HTCondor
and YARN, only provide coarse-grained resource information, e.g., #
of cores and size of memory.

• Basic idea:
– Abstract the set of resource nodes and the connecting network
available to the job into a single ane.

– The output ane provides an abstract view of computing,	storage	
and	networking	resources.

– Each	property	of	each	resource	is	encoded into a	property	of ane.
– Properties	from	different	resources are merged to reduce
information overhead and privacy	exposure.

{
 "ane:slc" : {
 "dtbw": "90",
 "delay": "70"
 }
}

{
 "storage:s" : {
 "iobw": "90",
 "skdelay": "30"
 }
}

{
 "ne:l" : {
 "bw": "100",
 "delay": "40"
 }
}

{
 "compute:c" : {
 "membw": "120"
 }
}

ANE Aggregator: An Example

• ane.dtbw =	min{s.iobw,	c.membw,	l.bw}	
• ane.delay = s.skdelay+l.delay
• Property merging is motivated by ALTO-PV and ALTO-RSA and is
crucial for privacy preserving.

Design Issue: Why ANE Instead of PID?

• The abstraction requested by job is data-oriented and highly
dynamic.

• PID is a static abstraction decided only by sites.
• ANE is a dynamic abstraction decided by both sites and
applications.
– Sites: policy, regulation, etc.
– Applications: dataset name, job properties, preferred resource,
etc.

Resource Abstraction Agent: An Example

• Job	J	needs	dataset	X	as	input.
• Data	center	A	and	B	eachh has	a	
copy	of	X.

• Resource	locator	in	data center
A finds	J would	be	placed	on a
different node from X's location.
Both nodes are in the same rack.

X

Data Center A

• Response
{
"meta"	:	{

"dependent-vtags"	:	[...]
},
"endpoint-properties":	{

"ipv4:10.0.0.1"	:	{	
"iobw":	"150",
"skdelay": "30"

}
}

}

Data Center A: EPS Query of Storage Node
• Request

{				
"endpoints":	["ipv4:10.0.0.1"],
"properties":	["iobw",	"skdelay"]

}

• Response
{
"meta"	:	{

"dependent-vtags"	:	[...]
},
"endpoint-properties":	{

"ipv4:10.0.0.5"	:	{	
"membw":	"200"

}
}

}

Data Center A: EPS Query of Computing Node
• Request

{				
"endpoints":	["ipv4:10.0.0.5"],
"properties":	["membw"]

}

• Response
{
"meta"	:	{

"vtag":	[...
"query-id":"query_0"],

"dependent-vtags":	[...],
"cost-type":	{
"cost-mode":	"path-vector",								
"cost-metric":	"ane"						

}
},
"endpoint-cost-map":	{

"ipv4:10.0.0.1"	:	{	
"ipv4:10.0.0.5":		["ane:l1"]

}
}

}

Data Center A: PV-based ECS Query
• Request

{				
"cost-type":	{						
"cost-mode":	"path-vector",
"cost-metric":	"ane"

},
"endpoints":	{
"srcs":["ipv4:10.0.0.1"],
"dsts":["ipv4:10.0.0.5"]

}
}

• Response
{
"meta"	:	{

"dependent-vtags":	[...]
},
"property-map":	{

"ane:l1":	{	"bw":	"100",
"delay":	"40"}

}
}

Data Center A: PV-based ANE	Property	Query
• Request

{				
"query-id":	"query_0",															
"entities":	["ane:l1"],				
"properties":	["bw",	"delay"]

}

Data	Center	A:	ANE	Aggregator
{
"ipv4:10.0.0.1"	:	{	

"iobw":	"150",
"skdelay": "30"

}
}

{
"ipv4:10.0.0.5"	:	{	

"membw":	"200"
}

}

{
"ane:l1"	:	{	

"bw":	"100",
"delay":	"40"

}
}

{
"ane:a-j-x"	:	{	

"dtbw":	"100",
"delay":	"70"

}
}

X

Data Center A

Data	Center	B:	ALTO	Query	+	ANE	Aggregator

{
"ipv4:10.0.0.1"	:	{

"membw":	"200",	
"iobw":	"150",
"skdelay": "20"

}
}

{
"ane:b-j-x"	:	{	

"dtbw":	"150",
"delay":	"20"

}
}

• Resource	locator	in	data	center	B	finds	J would be	placed on the
same node where X is stored.

X

Data Center B

J should be placed at data	center	B because it
provides a better data transfer bandwidth and
delay.

Design	Issue:	Aggregator	Inside/Outside	ALTO

• ANE	property	aggregation	is	motivated	by	ALTO-RSA.
• How	different	resources	are	further	encoded	into	ane is	dynamic	
and	application-specific.

• ANE	aggregator	as	an	ALTO	service?	
– Pro:	enrich	ALTO's	control	capability	on	privacy	leakage.
– Con:	ALTO	is	supposed	to	be	agnostic	of	applications.

• Current	design
– Resource	locator	only	passes	endpoint	address	to	ALTO	client.
– ANE	aggregator	works	as	an	independent	module	instead	of	an	
ALTO	service.

– This	design	is	modular.

Make and Enforce Resource Orchestration Decisions

• Decisions include
– where to place analytic processes, and
– where to transfer/store intermediate/final results.

• Under certain cases, decisions	also	include	copy	a hot dataset	to
another location before placing analytic processes.

• Decision enforcers are implemented on top of current resource
management systems in each site.

• ALTO provides fine-grained resource	information to improve the
performance of these two components.

Summary

• ExaO expands	the	capability of abstract	network	element	(ane)	to	
provide an abstract view of computing, storage	and networking
resources,	which	supports	the	efficient	resource	orchestration	of	
data-intensive	applications.

• We	are	also	exploring	the	feasibility	and	benefit	of	applying	cost-
calendar	and	flow	cost	service	in	supporting	next generation science
data flow orchestration.

• Milestones
– Pre-production deployment of ExaO by IETF 100.
– Production	deployment	by	IETF	102-103.

Backup Slides

CMS Science Network

• Geographically distributed
• Multi-domain

– Each domain has its own policy.
– Resource information is private.

• Heterogeneous

Heterogeneity

• Heterogeneous resources
– CPU: AMD, Intel (various specs…)
– Storage: Tape, SATA hard-drive, SSD, etc.
– Networking: 1/10/40/100Gbps

• Heterogeneous systems
– File systems: HDFS in US sites, dCache/NFS in European sites, EOS/CephFS at CERN,
etc.

– Schedulers: even Hadoop provides different scheduling policies

• Heterogeneous jobs
– Dataset transfers
– MapReduce analytic
– MPI analytic

Example 2: File System Becomes Bottleneck

• A MapReduce job J needs dataset X as input
• X has a copy in site A using HDFS and another copy in site B using
NFS

• J should run at site A since HDFS provides a better data throughput,
which is a key factor for MapReduce job latency.

Example	3:	Copy	Data	First?

• Two jobs J1 and J2 need a dataset X as input.
• X only has one copy at site A and A has abundant resources.
• Scheduling Option 1: executing J1 and J2 sequentially.
• Scheduling Option 2: assign the nodes storing X to J1, and assign
nearby nodes to J2.

• Scheduling Option 3: make an additional copy of X to a set of idle
nodes in A. J1 and J2 can then run at the same time.

• Which option is better depends on
– How long would each job run?
– How large is X? (In other words, how long does it take to make another
copy)

