Variant 1

- No DNS, 1RTT
- Plaintext SNI
 - Client -> PHDH, Client Random, Ciphersuites, Type A Extensions
 - Server <- PHDH, [PHCCS], Ciphersuite, Cert, Signed Randoms+DHParams, <CertRequest>, Type A & B Extensions
 - Client -> [PHCCS], <ClientCert>, DHParams, <SupplementalData>, Type B Extensions, <CertificateVerify>, [CCS] HTTP
 - Server <- [CCS], HTTP
- Failure Scenario:
 - Server does not support your PHDH: (2-RTT) Server jumps to Server message of Variant 3

Variant 2

- DANISH w/ B-Record, 1RTT
 - Client -> PHDH, KeyID, [PHCSS], Client Random, Ciphersuites, Type A Extensions
 - Server <- [PHCCS], Ciphersuite, Cert, Signed Randoms+DHParams, <CertRequest>, Type A & B Extensions
 - Client -> <ClientCert>, DHParams, <SupplementalData>, Type B Extensions, <CertificateVerify>, [CCS] HTTP
 - Server <- [CCS], HTTP
- Failure Scenario:
 - Server does not recognize KeyID: (2-RTT) Server jumps to Server message of Variant 3

Variant 3

- In-Bound eSNI, 2-RTT
 - Client -> Huh?
 - Server <- PHDH, KeyID
 - (This key is generic, KeyID so you can use it for later)
 - Client -> PHDH, KeyID, [PHCSS], Client Random, Ciphersuites, Type A Extensions
 - Server <- [PHCCS], Ciphersuite, Cert, Signed Randoms+DHParams, <CertRequest>, Type A & B Extensions
 - Client -> <ClientCert>, DHParams, <SupplementalData>, Type B Extensions, <CertificateVerify>, [CCS] HTTP
 - Server <- [CCS], HTTP
- Limitations
 - NIST vs Non-NIST Problem: This is not a problem if Danish is available, but we're in this situation so we assume it's not.
 - Solved by subsetting IP addresses for defaults

Remove Variant 3?

- Can't rid of the V3/2-RTT scenario, because the failure modes of V1 and V2 require it.
 - Unless the failure modes of V1 and V2 use an entirely new TLS connection, which means TCP roundtrip, which we're unwilling to do
- If we get rid of 'Huh' we have 2 (3) choices
 - Tell implementors what to put as fake data in V1 (doesn't belong in spec)
 - Tell implementors 'be creative' (hah)
 - Abandon the idea of eSNI w/o DNS data, but we'll do (b) anyway
 - The Huh? message makes is simpler for implementors to do

Load Balancers

Client	Load Balancer	Server		
		strip, pass on	I	
This is bad.				
			1	
		do not modify	I	
	or	-		
	KeyID bec	come SNI-equivalent(get	back bitstring	matching)

This is good. The SNI-Equivalent is a Security Consideration.

Suggestions

- Servers MUST accept Variant 1, 2, or 3
- Clients SHOULD make Danish Request
 - If they receive a response, they MUST use Variant 2
 - If they do not, they MAY choose between Varient
 1 & 3

Advantages of eSNI

- Advantages of doing Variant 2 (B-Records) vs Not:
 - Type A Extensions are protected
 - SNI, SRP, and others
- w/ DNSSEC protects Type A & Type B extensions against Active MITM
- Number of Client PHDH's goes from N to 1

Extensions

- Type A: Client offers, server accepts
 - Not Protected against Active or Passive MITM in Variant 1
 - Protected against Passive MITM in 2 & 3, Active MITM w/ DNSSEC
- Type B: Server offers, client accepts
 - Protected against Passive MITM in 1, 2 & 3, Active MITM w/ DNSSEC

Classifying Extensions

• Type A

- SNI
- signature_algorithms
- trusted ca indication
- server_authz
- openpgp
- ECC Extensions
- SRP (Username in the clear! Security Considerations: Don't use except in Variants 2&3)
- signature_algorithms
- padding

- Type B
 - client certificate urls
 - truncated hmac
 - OCSP Stapling & Multi OCSP
 - user mapping
 - client_authz
 - use_srtp
 - heartbleed
 - Cert Transparency

No Type B?

- If we try to get rid of Type B extensions, all extension/negotiation offers will be in cleartext.
- If unacknowledged SupplementalData (from the Client) makes sense, that can be protected though.