Privacy-Oriented Virtual Network Embedding

Leonardo Richter Bays

Rodrigo Ruas Oliveira Luciana Salete Buriol Marinho Pilla Barcellos Luciano Paschoal Gaspary

May 2015

Overview

Introduction

Proposed Solution

Evaluation

Conclusions

Ongoing Work

Network Virtualization

substrates

Enables the creation of virtual topologies on top of physical

- Has been embraced by academic researchers and the Industry
- Key concerns: efficient resource mapping and privacy

Privacy

- Recent discovery of pervasive electronic surveillance has highlighted privacy concerns
- These concerns are even more exacerbated in network virtualization
- Security mechanisms must be considered in order to maintain a desired level of privacy

Related Work

- Different methods have been used to solve the embedding problem:
 - Optimization Models [Chowdhury et al., 2011; Alkmim et al., 2013]
 - Relaxations [Chowdhury et al., 2011; Alkmim et al., 2013]
 - Heuristic approaches [Yu et al., 2008; Cheng et al., 2011]
- We are not aware of previous attempts to reconcile efficient resource mapping and the satisfaction of security requirements

Objectives

- · Reconciling:
 - Efficient usage of physical resources
 - Fulfillment of different levels of confidentiality:
 - · End-to-end cryptography
 - Point-to-point cryptography
 - Non-overlapping networks
- Considering precise costs of security mechanisms

Proposed Optimization Model

- Based on Integer Linear Programming
- Inputs:
 - o Physical and virtual topologies
 - Routers: throughput, cryptographic protocol support
 - o Links: bandwidth
 - Locations
 - Costs related to cryptographic operations
 - Conflicting VNs
 - Previously embedded VNs

Proposed Optimization Model

Objective Function: Minimize overall bandwidth consumption:

$$\min \sum_{(i,j) \in L^P} \sum_{r \in N^V, (k,l) \in L^V} B^V_{r,k,l} W^L_r A^L_{i,j,r,k,l}$$

Constraints:

- Fulfill capacity requirements
- Ensure proper router and link mapping
- · Ensure desired level of confidentiality
- Fulfill location requirements
- Maintain previous mappings

- Based on Simulated Annealing
- Same inputs and constraints as the optimization model
- Aims at minimizing overall bandwidth consumption

- Generates an initial mapping and iteratively moves virtual routers attempting to improve the solution
- · Allows the generation of unfeasible solutions
 - Such solutions are penalized in order to encourage feasible ones
- Runs until the best found solution is close enough to optimality or a maximum number of iterations has been reached

Algorithm Proposed Heuristic Algorithm

1:

2: 3:

4:

5: 6:

7:

8:

9:

10: 11:

12:

13:

14:

15:

16:

Algorithm Proposed Heuristic Algorithm

1: $s \leftarrow generateInitialSolution$ 2: $c \leftarrow evaluateSolution(s)$ 3: $s^{best} \leftarrow s$; $c^{best} \leftarrow c$ 4:
5: 6:
7: 8: 9: 10: 11: 12: 13:

14: 15: 16:

INSTITUTO DE INFORMÁTICA UFRGS

Algorithm Proposed Heuristic Algorithm

```
1: s ← generateInitialSolution
2: c \leftarrow evaluateSolution(s)
3: s^{best} \leftarrow s: c^{best} \leftarrow c
4: k \leftarrow 0
5: while k < k^{max} and c > c^{max} do
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
```


16: end while

Algorithm Proposed Heuristic Algorithm

```
1: s ← generateInitialSolution
2: c \leftarrow evaluateSolution(s)
3: s^{best} \leftarrow s: c^{best} \leftarrow c
4: k \leftarrow 0
5: while k < k^{max} and c > c^{max} do
6:
        s' \leftarrow generateNeighbor(s)
7:
      c' \leftarrow evaluateSolution(s')
8:
9:
10:
11:
12:
13:
14:
15:
16: end while
```


Algorithm Proposed Heuristic Algorithm

```
1: s ← generateInitialSolution
2: c \leftarrow evaluateSolution(s)
3: s^{best} \leftarrow s: c^{best} \leftarrow c
4: k \leftarrow 0
5: while k < k^{max} and c > c^{max} do
6:
      s' \leftarrow generateNeighbor(s)
7: c' \leftarrow evaluateSolution(s')
8:
     t \leftarrow temperature(k, k^{max})
9:
        if probability (c, c', t) > random[0, 1) then
10:
            s \leftarrow s' : c \leftarrow c'
11:
         end if
12:
13:
14:
15:
16: end while
```


Algorithm Proposed Heuristic Algorithm

```
1: s ← generateInitialSolution
2: c \leftarrow evaluateSolution(s)
3: s^{best} \leftarrow s: c^{best} \leftarrow c
4: k \leftarrow 0
5: while k < k^{max} and c > c^{max} do
6:
     s' \leftarrow generateNeighbor(s)
7: c' \leftarrow evaluateSolution(s')
8:
    t \leftarrow temperature(k, k^{max})
9:
        if probability (c, c', t) > random[0, 1) then
10:
             s \leftarrow s' : c \leftarrow c'
11:
         end if
12:
         if c < c^{best} and isFeasible(s) then
13:
             s^{best} \leftarrow s \cdot c^{best} \leftarrow c
14:
       end if
15:
         k \leftarrow k + 1
16: end while
```


Evaluation – Fixed Parameters

- General parameters:
 - o 250 time slots
 - On average, 5 requests arrive per slot (Poisson)
 - Average duration of 5 slots (exponential)
- Heuristic algorithm parameters:
 - Maximum number of iterations: 5,000
 - Maximum overhead factor: 3
 - Penalty factor: 100

Evaluation – Fixed Parameters

- Physical network:
 - Routers: 10 Gbps throughput
 - Distributed among 16 locations
 - 95% support cryptographic protocols
 - Links: 1–10 Gbps
- Virtual networks:
 - Two routers with location constraints
 - 35% of VNs do not require cryptography
 - 35% of VNs require end-to-end cryptography
 - 30% of VNs require point-to-point cryptography
 - 5% of VNs conflict with a previously embedded VN

Evaluation – Variable Parameters

- Network sizes:
 - Physical network of size 100, VN sizes ranging from 2 to 5
 - Physical network of size 500, VN sizes ranging from 2 to 10
- Cryptographic Algorithms:
 - AES-128
 - o AES-256

Results

Figure: Time needed to find the accepted solution.

Results

Figure: Acceptance rate in all completed experiments.

Results

Figure: Average bandwidth overhead needed to embed requests of different kinds.

Conclusions

- Optimization model produces adequate results in a timely manner for networks of limited size
- Heuristic algorithm scales to larger networks without a significant increase in solution time
- If desired, the heuristic algorithm may lead to more precise results through parameterization

Ongoing Work

- Further improvements to the heuristic algorithm
 - First-improvement-based local search
 - Multiple moves per temperature change
 - Logarithmic cooling schedule
- Analysis of the impact of topological factors on the VN embedding process
- SDN integration case study

Privacy-Oriented Virtual Network Embedding

Leonardo Richter Bays

Rodrigo Ruas Oliveira Luciana Salete Buriol Marinho Pilla Barcellos Luciano Paschoal Gaspary

lrbays@inf.ufrgs.br
http://inf.ufrgs.br/~lrbays

References

- Gustavo P. Alkmim, Daniel M. Batista, and Nelson L. S. Fonseca. Mapping virtual networks onto substrate networks. *Journal of Internet Services and Applications*, 3(4), 2013. ISSN 1869-0238. doi: 10.1186/1869-0238-4-3.
- Xiang Cheng, Sen Su, Zhongbao Zhang, Hanchi Wang, Fangchun Yang, Yan Luo, and Jie Wang. Virtual network embedding through topology-aware node ranking. SIGCOMM Computer Communication Review, 41(2), 2011. ISSN 0146-4833. doi: 10.1145/1971162.1971168.
- M. Chowdhury, M. R. Rahman, and R. Boutaba. Vineyard: Virtual network embedding algorithms with coordinated node and link mapping. *IEEE/ACM Transactions on Networking*, PP(99), 2011. ISSN 1063-6692. doi: 10.1109/TNET.2011.2159308.
- Minlan Yu, Yung Yi, Jennifer Rexford, and Mung Chiang. Rethinking virtual network embedding: substrate support for path splitting and migration. *SIGCOMM Computer Communication Review*, 38(2), 2008. ISSN 0146-4833. doi: 10.1145/1355734.1355737.

Constraints

Constraints C1 and C3: Fulfill capacity requirements:

$$\sum_{r \in N^V, j \in R^V} T_{r,j}^V W_{r,j}^R A_{i,r,j}^R \le T_i^P$$
 $\forall i \in R^P$ (C1)

$$\sum_{r \in N^{V}, (k,l) \in L^{V}} B^{V}_{r,k,l} W^{L}_{r} A^{L}_{i,j,r,k,l} \le B^{P}_{i,j}$$
 $\forall (i,j) \in L^{P}$ (C3)

Constraints

Constraints C2, C5, and C6: Ensure proper router and link mapping:

$$\sum_{i \in R^V} A^R_{i,r,j} \le 1 \qquad \forall i \in R^P, r \in N^V$$
 (C2)

$$\sum_{i \in R^P} A^R_{i,r,j} = 1 \qquad \forall r \in N^V, j \in R^V$$
 (C5)

$$\sum_{j \in R^{P}} A_{i,j,r,k,l}^{L} - \sum_{j \in R^{P}} A_{j,i,r,k,l}^{L} = A_{i,r,k}^{R} - A_{i,r,l}^{R} \qquad \forall r \in N^{V}, (k,l) \in L^{V}, i \in R^{P}$$

(C6)

Constraints

Constraints C4, C7, and C8: Ensure desired level of security:

$$K_{ri}^{V}A_{iri}^{R} \leq K_{i}^{P}$$
 $\forall i \in R^{P}, r \in N^{V}, j \in R^{V}$ (C4)

$$\sum_{q \in N^{V}, k \in R^{V}} A_{i,q,k}^{R} + \sum_{r \in N^{V}, l \in R^{V}} A_{i,r,l}^{R} \le 1 \qquad \forall q, r \in X, i \in R^{P}$$
 (C7)

$$\left\lceil \frac{\sum_{q \in N^{V}, (k,l) \in L^{V}} A_{i,j,q,k,l}^{L}}{|L^{P}|} \right\rceil + \left\lceil \frac{\sum_{r \in N^{V}, (o,\rho) \in L^{V}} A_{i,j,r,o,\rho}^{L}}{|L^{P}|} \right\rceil \leq 1 \qquad \forall q, r \in X, (i,j) \in L^{P}$$
(C8)

Constraints C9, C10, and C11: Fulfill location requirements and maintain previous mappings:

$$jA_{i,r,k}^R = IA_{i,r,k}^R$$

$$\forall (i,j) \in \mathcal{S}^P, r \in \mathcal{N}^V, (k,l) \in \mathcal{S}^V$$
 (C9)

$$A_{i,r,i}^R = E_{i,r,i}^R$$

$$\forall (i,r,j) \in E^R \text{ (C10)}$$

$$A_{i,j,r,k,l}^L = E_{i,j,r,k,l}^L$$

$$\forall (i,j,r,k,l) \in E^L$$
 (C11)

Constraint C8: Linearization:

$$Y_{q,r,i,j} \ge \frac{\sum_{q \in N^V, (k,l) \in L^V} A^L_{i,j,q,k,l}}{|L^P|}$$

$$Z_{q,r,i,j} \ge \frac{\sum_{r \in N^{V},(o,p) \in L^{V}} A^{L}_{i,j,r,o,p}}{|L^{P}|}$$

$$Y_{a,r,i,i} + Z_{a,r,i,i} \leq 1$$

$$\forall q, r \in X, (i, j) \in L^P$$
 (C8.1)

$$\forall q, r \in X, (i, j) \in L^P$$
 (C8.2)

$$\forall q, r \in X, (i, j) \in L^P$$
 (C8.3)

Heuristic Algorithm

- Evaluation Function:
 - If all constraints are satisfied:

$$\sum_{(i,j) \in L^P} \sum_{r \in N^V, (k,l) \in L^V} B^V_{r,k,l} W^L_r A^L_{i,j,r,k,l}$$

If any constraints are not satisfied:

$$\gamma \kappa \sum_{(i,j) \in L^P} \sum_{r \in N^V, (k,l) \in L^V} B^V_{r,k,l} W^L_r A^L_{i,j,r,k,l}$$

 γ – severity of the applied penalty

κ – number of unsatisfied constraints

Heuristic Algorithm

· Stop criteria:

- Maximum number of iterations has been reached; or
- Bandwidth consumption of the best found solution is sufficiently close to optimality:

$$e \le \beta \sum_{r \in N^V, (k,l) \in L^V} B^V_{r,k,l} W^L_r$$

 β – maximum bandwidth overhead

• Probability of moving to a neighbor solution:

- o If it is better: 1.0
- o If it is worse:

$$exp(\frac{e/enew-1}{temperature})$$

temperature =
$$1 - \frac{k}{kmax}$$

Dijkstra's Algorithm

Weight of a link (i, j):

$$1 + \sum_{r \in N^V, (k,l) \in L^V} E^L_{i,j,r,k,l}$$

