idnits 2.17.1 draft-ietf-lisp-lcaf-04.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack a both a reference to RFC 2119 and the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords. RFC 2119 keyword, line 189: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 229: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 609: '... See [LISP-MRSIG] for details. The J-bit MUST not be set when the...' Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Using lowercase 'not' together with uppercase 'MUST', 'SHALL', 'SHOULD', or 'RECOMMENDED' is not an accepted usage according to RFC 2119. Please use uppercase 'NOT' together with RFC 2119 keywords (if that is what you mean). Found 'MUST not' in this paragraph: J-bit: this is the Join-Request bit and is used when this LCAF type is present in the destination EID-prefix field of a Map-Request. See [LISP-MRSIG] for details. The J-bit MUST not be set when the L-bit is also set in the same LCAF block. A receiver should not take any specific Join or Leave action when both bits are set. -- The document date (January 27, 2014) is 3741 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 1700 (Obsoleted by RFC 3232) ** Obsolete normative reference: RFC 4627 (Obsoleted by RFC 7158, RFC 7159) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) == Outdated reference: A later version (-09) exists of draft-ietf-lisp-ddt-01 == Outdated reference: A later version (-06) exists of draft-farinacci-lisp-mr-signaling-03 == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-03 == Outdated reference: A later version (-08) exists of draft-coras-lisp-re-03 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-03 Summary: 4 errors (**), 0 flaws (~~), 7 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft lispers.net 4 Intended status: Experimental D. Meyer 5 Expires: July 31, 2014 Brocade 6 J. Snijders 7 Hibernia Networks 8 January 27, 2014 10 LISP Canonical Address Format (LCAF) 11 draft-ietf-lisp-lcaf-04 13 Abstract 15 This draft defines a canonical address format encoding used in LISP 16 control messages and in the encoding of lookup keys for the LISP 17 Mapping Database System. 19 Status of this Memo 21 This Internet-Draft is submitted in full conformance with the 22 provisions of BCP 78 and BCP 79. 24 Internet-Drafts are working documents of the Internet Engineering 25 Task Force (IETF). Note that other groups may also distribute 26 working documents as Internet-Drafts. The list of current Internet- 27 Drafts is at http://datatracker.ietf.org/drafts/current/. 29 Internet-Drafts are draft documents valid for a maximum of six months 30 and may be updated, replaced, or obsoleted by other documents at any 31 time. It is inappropriate to use Internet-Drafts as reference 32 material or to cite them other than as "work in progress." 34 This Internet-Draft will expire on July 31, 2014. 36 Copyright Notice 38 Copyright (c) 2014 IETF Trust and the persons identified as the 39 document authors. All rights reserved. 41 This document is subject to BCP 78 and the IETF Trust's Legal 42 Provisions Relating to IETF Documents 43 (http://trustee.ietf.org/license-info) in effect on the date of 44 publication of this document. Please review these documents 45 carefully, as they describe your rights and restrictions with respect 46 to this document. Code Components extracted from this document must 47 include Simplified BSD License text as described in Section 4.e of 48 the Trust Legal Provisions and are provided without warranty as 49 described in the Simplified BSD License. 51 Table of Contents 53 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 54 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 55 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 5 56 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 57 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 58 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 8 59 4.3. Convey Application Specific Data . . . . . . . . . . . . . 9 60 4.4. Assigning Geo Coordinates to Locator Addresses . . . . . . 10 61 4.5. Generic Database Mapping Lookups . . . . . . . . . . . . . 12 62 4.6. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 13 63 4.7. PETR Admission Control Functionality . . . . . . . . . . . 15 64 4.8. Multicast Group Membership Information . . . . . . . . . . 16 65 4.9. Traffic Engineering using Re-encapsulating Tunnels . . . . 18 66 4.10. Storing Security Data in the Mapping Database . . . . . . 19 67 4.11. Source/Destination 2-Tuple Lookups . . . . . . . . . . . . 20 68 4.12. Replication List Entries for Multicast Forwarding . . . . 21 69 4.13. Data Model Encoding . . . . . . . . . . . . . . . . . . . 22 70 4.14. Encoding Key/Value Address Pairs . . . . . . . . . . . . . 23 71 4.15. Applications for AFI List Type . . . . . . . . . . . . . . 23 72 4.15.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . . 23 73 4.15.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 25 74 4.15.3. ASCII Names in the Mapping Database . . . . . . . . . 25 75 4.15.4. Using Recursive LISP Canonical Address Encodings . . 26 76 4.15.5. Compatibility Mode Use Case . . . . . . . . . . . . . 27 77 5. Security Considerations . . . . . . . . . . . . . . . . . . . 28 78 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 29 79 7. References . . . . . . . . . . . . . . . . . . . . . . . . . . 30 80 7.1. Normative References . . . . . . . . . . . . . . . . . . . 30 81 7.2. Informative References . . . . . . . . . . . . . . . . . . 30 82 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . . 32 83 Appendix B. Document Change Log . . . . . . . . . . . . . . . . . 33 84 B.1. Changes to draft-ietf-lisp-lcaf-04.txt . . . . . . . . . . 33 85 B.2. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . . 33 86 B.3. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . . 33 87 B.4. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . . 33 88 B.5. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . . 33 89 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 35 91 1. Introduction 93 The LISP architecture and protocols [RFC6830] introduces two new 94 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 95 (RLOCs) which are intended to replace most use of IP addresses on the 96 Internet. To provide flexibility for current and future 97 applications, these values can be encoded in LISP control messages 98 using a general syntax that includes Address Family Identifier (AFI), 99 length, and value fields. 101 Currently defined AFIs include IPv4 and IPv6 addresses, which are 102 formatted according to code-points assigned in [AFI] as follows: 104 IPv4 Encoded Address: 106 0 1 2 3 107 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 108 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 109 | AFI = 1 | IPv4 Address ... | 110 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 111 | ... IPv4 Address | 112 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 114 IPv6 Encoded Address: 116 0 1 2 3 117 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 119 | AFI = 2 | IPv6 Address ... | 120 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 121 | ... IPv6 Address ... | 122 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 123 | ... IPv6 Address ... | 124 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 125 | ... IPv6 Address ... | 126 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 127 | ... IPv6 Address | 128 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 130 This document describes the currently-defined AFIs the LISP protocol 131 uses along with their encodings and introduces the LISP Canonical 132 Address Format (LCAF) that can be used to define the LISP-specific 133 encodings for arbitrary AFI values. 135 2. Definition of Terms 137 Address Family Identifier (AFI): a term used to describe an address 138 encoding in a packet. An address family currently defined for 139 IPv4 or IPv6 addresses. See [AFI] and [RFC1700] for details. The 140 reserved AFI value of 0 is used in this specification to indicate 141 an unspecified encoded address where the the length of the address 142 is 0 bytes following the 16-bit AFI value of 0. 144 Unspecified Address Format: 146 0 1 2 3 147 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 148 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 149 | AFI = 0 | | 150 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 152 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 153 used in the source and destination address fields of the first 154 (most inner) LISP header of a packet. The host obtains a 155 destination EID the same way it obtains a destination address 156 today, for example through a DNS lookup or SIP exchange. The 157 source EID is obtained via existing mechanisms used to set a 158 host's "local" IP address. An EID is allocated to a host from an 159 EID-prefix block associated with the site where the host is 160 located. An EID can be used by a host to refer to other hosts. 162 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 163 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 164 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 165 numbered from topologically aggregatable blocks that are assigned 166 to a site at each point to which it attaches to the global 167 Internet; where the topology is defined by the connectivity of 168 provider networks, RLOCs can be thought of as PA addresses. 169 Multiple RLOCs can be assigned to the same ETR device or to 170 multiple ETR devices at a site. 172 3. LISP Canonical Address Format Encodings 174 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 175 and protocols. This specification defines the encoding format of the 176 LISP Canonical Address (LCA). 178 The first 4 bytes of an LISP Canonical Address are followed by a 179 variable length of fields: 181 0 1 2 3 182 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 183 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 184 | AFI = 16387 | Rsvd1 | Flags | 185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 186 | Type | Rsvd2 | Length | 187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 189 Rsvd1: this 8-bit field is reserved for future use and MUST be 190 transmitted as 0 and ignored on receipt. 192 Flags: this 8-bit field is for future definition and use. For now, 193 set to zero on transmission and ignored on receipt. 195 Type: this 8-bit field is specific to the LISP Canonical Address 196 formatted encodings, values are: 198 Type 0: Null Body Type 200 Type 1: AFI List Type 202 Type 2: Instance ID Type 204 Type 3: AS Number Type 206 Type 4: Application Data Type 208 Type 5: Geo Coordinates Type 210 Type 6: Opaque Key Type 212 Type 7: NAT-Traversal Type 214 Type 8: Nonce Locator Type 216 Type 9: Multicast Info Type 217 Type 10: Explicit Locator Path Type 219 Type 11: Security Key Type 221 Type 12: Source/Dest Key Type 223 Type 13: Replication List Entry Type 225 Type 14: JSON Data Model Type 227 Type 15: Key/Value Address Pair Type 229 Rsvd2: this 8-bit field is reserved for future use and MUST be 230 transmitted as 0 and ignored on receipt. 232 Length: this 16-bit field is in units of bytes and covers all of the 233 LISP Canonical Address payload, starting and including the byte 234 after the Length field. So any LCAF encoded address will have a 235 minimum length of 8 bytes when the Length field is 0. The 8 bytes 236 include the AFI, Flags, Type, Reserved, and Length fields. When 237 the AFI is not next to encoded address in a control message, then 238 the encoded address will have a minimum length of 6 bytes when the 239 Length field is 0. The 6 bytes include the Flags, Type, Reserved, 240 and Length fields. 242 4. LISP Canonical Address Applications 244 4.1. Segmentation using LISP 246 When multiple organizations inside of a LISP site are using private 247 addresses [RFC1918] as EID-prefixes, their address spaces must remain 248 segregated due to possible address duplication. An Instance ID in 249 the address encoding can aid in making the entire AFI based address 250 unique. 252 Another use for the Instance ID LISP Canonical Address Format is when 253 creating multiple segmented VPNs inside of a LISP site where keeping 254 EID-prefix based subnets is desirable. 256 Instance ID LISP Canonical Address Format: 258 0 1 2 3 259 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 260 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 261 | AFI = 16387 | Rsvd1 | Flags | 262 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 263 | Type = 2 | IID mask-len | 4 + n | 264 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 265 | Instance ID | 266 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 267 | AFI = x | Address ... | 268 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 270 IID mask-len: if the AFI is set to 0, then this format is not 271 encoding an extended EID-prefix but rather an instance-ID range 272 where the 'IID mask-len' indicates the number of high-order bits 273 used in the Instance ID field for the range. 275 Length value n: length in bytes of the AFI address that follows the 276 Instance ID field including the AFI field itself. 278 Instance ID: the low-order 24-bits that can go into a LISP data 279 header when the I-bit is set. See [RFC6830] for details. 281 AFI = x: x can be any AFI value from [AFI]. 283 This LISP Canonical Address Type can be used to encode either EID or 284 RLOC addresses. 286 4.2. Carrying AS Numbers in the Mapping Database 288 When an AS number is stored in the LISP Mapping Database System for 289 either policy or documentation reasons, it can be encoded in a LISP 290 Canonical Address. 292 AS Number LISP Canonical Address Format: 294 0 1 2 3 295 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 296 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 297 | AFI = 16387 | Rsvd1 | Flags | 298 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 299 | Type = 3 | Rsvd2 | 4 + n | 300 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 301 | AS Number | 302 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 303 | AFI = x | Address ... | 304 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 306 Length value n: length in bytes of the AFI address that follows the 307 AS Number field including the AFI field itself. 309 AS Number: the 32-bit AS number of the autonomous system that has 310 been assigned either the EID or RLOC that follows. 312 AFI = x: x can be any AFI value from [AFI]. 314 The AS Number Canonical Address Type can be used to encode either EID 315 or RLOC addresses. The former is used to describe the LISP-ALT AS 316 number the EID-prefix for the site is being carried for. The latter 317 is used to describe the AS that is carrying RLOC based prefixes in 318 the underlying routing system. 320 4.3. Convey Application Specific Data 322 When a locator-set needs to be conveyed based on the type of 323 application or the Per-Hop Behavior (PHB) of a packet, the 324 Application Data Type can be used. 326 Application Data LISP Canonical Address Format: 328 0 1 2 3 329 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 330 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 331 | AFI = 16387 | Rsvd1 | Flags | 332 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 333 | Type = 4 | Rsvd2 | 8 + n | 334 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 335 | IP TOS, IPv6 TC, or Flow Label | Protocol | 336 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 337 | Local Port (lower-range) | Local Port (upper-range) | 338 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 339 | Remote Port (lower-range) | Remote Port (upper-range) | 340 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 341 | AFI = x | Address ... | 342 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 344 Length value n: length in bytes of the AFI address that follows the 345 8-byte Application Data fields including the AFI field itself. 347 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 348 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 349 Label used in an IPv6 header. 351 Local Port/Remote Port Ranges: these fields are from the TCP, UDP, 352 or SCTP transport header. A range can be specified by using a 353 lower value and an upper value. When a single port is encoded, 354 the lower and upper value fields are the same. 356 AFI = x: x can be any AFI value from [AFI]. 358 The Application Data Canonical Address Type is used for an EID 359 encoding when an ITR wants a locator-set for a specific application. 360 When used for an RLOC encoding, the ETR is supplying a locator-set 361 for each specific application is has been configured to advertise. 363 4.4. Assigning Geo Coordinates to Locator Addresses 365 If an ETR desires to send a Map-Reply describing the Geo Coordinates 366 for each locator in its locator-set, it can use the Geo Coordinate 367 Type to convey physical location information. 369 Coordinates are specified using the WGS-84 (World Geodetic System) 370 reference coordinate system [WGS-84]. 372 Geo Coordinate LISP Canonical Address Format: 374 0 1 2 3 375 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 376 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 377 | AFI = 16387 | Rsvd1 | Flags | 378 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 379 | Type = 5 | Rsvd2 | 12 + n | 380 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 381 |N| Latitude Degrees | Minutes | Seconds | 382 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 383 |E| Longitude Degrees | Minutes | Seconds | 384 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 385 | Altitude | 386 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 387 | AFI = x | Address ... | 388 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 390 Length value n: length in bytes of the AFI address that follows the 391 8-byte Longitude and Latitude fields including the AFI field 392 itself. 394 N: When set to 1 means North, otherwise South. 396 Latitude Degrees: Valid values range from 0 to 90 degrees above or 397 below the equator (northern or southern hemisphere, respectively). 399 Latitude Minutes: Valid values range from 0 to 59. 401 Latitude Seconds: Valid values range from 0 to 59. 403 E: When set to 1 means East, otherwise West. 405 Longitude Degrees: Value values are from 0 to 180 degrees right or 406 left of the Prime Meridian. 408 Longitude Minutes: Valid values range from 0 to 59. 410 Longitude Seconds: Valid values range from 0 to 59. 412 Altitude: Height relative to sea level in meters. This is a signed 413 integer meaning that the altitude could be below sea level. A 414 value of 0x7fffffff indicates no Altitude value is encoded. 416 AFI = x: x can be any AFI value from [AFI]. 418 The Geo Coordinates Canonical Address Type can be used to encode 419 either EID or RLOC addresses. When used for EID encodings, you can 420 determine the physical location of an EID along with the topological 421 location by observing the locator-set. 423 4.5. Generic Database Mapping Lookups 425 When the LISP Mapping Database system holds information accessed by a 426 generic formatted key (where the key is not the usual IPv4 or IPv6 427 address), an opaque key may be desirable. 429 Opaque Key LISP Canonical Address Format: 431 0 1 2 3 432 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 433 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 434 | AFI = 16387 | Rsvd1 | Flags | 435 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 436 | Type = 6 | Rsvd2 | n | 437 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 438 | Key Field Num | Key Wildcard Fields | Key . . . | 439 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 440 | . . . Key | 441 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 443 Length value n: length in bytes of the type's payload. The value n 444 is the number of bytes that follow this Length field. 446 Key Field Num: the number of fields (minus 1) the key can be broken 447 up into. The width of the fields are fixed length. So for a key 448 size of 8 bytes, with a Key Field Num of 4 allows 4 fields of 2 449 bytes in length. Valid values for this field range from 0 to 15 450 supporting a maximum of 16 field separations. 452 Key Wildcard Fields: describes which fields in the key are not used 453 as part of the key lookup. This wildcard encoding is a bitfield. 454 Each bit is a don't-care bit for a corresponding field in the key. 455 Bit 0 (the low-order bit) in this bitfield corresponds the first 456 field, right-justified in the key, bit 1 the second field, and so 457 on. When a bit is set in the bitfield it is a don't-care bit and 458 should not be considered as part of the database lookup. When the 459 entire 16-bits is set to 0, then all bits of the key are used for 460 the database lookup. 462 Key: the variable length key used to do a LISP Database Mapping 463 lookup. The length of the key is the value n (shown above) minus 464 3. 466 4.6. NAT Traversal Scenarios 468 When a LISP system is conveying global address and mapped port 469 information when traversing through a NAT device, the NAT-Traversal 470 LCAF Type is used. See [LISP-NATT] for details. 472 NAT-Traversal Canonical Address Format: 474 0 1 2 3 475 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 476 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 477 | AFI = 16387 | Rsvd1 | Flags | 478 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 479 | Type = 7 | Rsvd2 | 4 + n | 480 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 481 | MS UDP Port Number | ETR UDP Port Number | 482 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 483 | AFI = x | Global ETR RLOC Address ... | 484 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 485 | AFI = x | MS RLOC Address ... | 486 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 487 | AFI = x | Private ETR RLOC Address ... | 488 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 489 | AFI = x | RTR RLOC Address 1 ... | 490 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 491 | AFI = x | RTR RLOC Address k ... | 492 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 494 Length value n: length in bytes of the AFI addresses that follows 495 the UDP Port Number field including the AFI fields themselves. 497 MS UDP Port Number: this is the UDP port number of the Map-Server 498 and is set to 4342. 500 ETR UDP Port Number: this is the port number returned to a LISP 501 system which was copied from the source port from a packet that 502 has flowed through a NAT device. 504 AFI = x: x can be any AFI value from [AFI]. 506 Global ETR RLOC Address: this is an address known to be globally 507 unique built by NAT-traversal functionality in a LISP router. 509 MS RLOC Address: this is the address of the Map-Server used in the 510 destination RLOC of a packet that has flowed through a NAT device. 512 Private ETR RLOC Address: this is an address known to be a private 513 address inserted in this LCAF format by a LISP router that resides 514 on the private side of a NAT device. 516 RTR RLOC Address: this is an encapsulation address used by an ITR or 517 PITR which resides behind a NAT device. This address is known to 518 have state in a NAT device so packets can flow from it to the LISP 519 ETR behind the NAT. There can be one or more NTR addresses 520 supplied in these set of fields. The number of NTRs encoded is 521 determined by the LCAF length field. When there are no NTRs 522 supplied, the NTR fields can be omitted and reflected by the LCAF 523 length field or an AFI of 0 can be used to indicate zero NTRs 524 encoded. 526 4.7. PETR Admission Control Functionality 528 When a public PETR device wants to verify who is encapsulating to it, 529 it can check for a specific nonce value in the LISP encapsulated 530 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF 531 format is used in a Map-Register or Map-Reply locator-record. 533 Nonce Locator Canonical Address Format: 535 0 1 2 3 536 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 537 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 538 | AFI = 16387 | Rsvd1 | Flags | 539 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 540 | Type = 8 | Rsvd2 | 4 + n | 541 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 542 | Reserved | Nonce | 543 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 544 | AFI = x | Address ... | 545 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 547 Length value n: length in bytes of the AFI address that follows the 548 Nonce field including the AFI field itself. 550 Reserved: must be set to zero and ignore on receipt. 552 Nonce: this is a nonce value returned by an ETR in a Map-Reply 553 locator-record to be used by an ITR or PITR when encapsulating to 554 the locator address encoded in the AFI field of this LCAF type. 556 AFI = x: x can be any AFI value from [AFI]. 558 4.8. Multicast Group Membership Information 560 Multicast group information can be published in the mapping database 561 so a lookup on an EID based group address can return a replication 562 list of group addresses or a unicast addresses for single replication 563 or multiple head-end replications. The intent of this type of 564 unicast replication is to deliver packets to multiple ETRs at 565 receiver LISP multicast sites. The locator-set encoding for this EID 566 record type can be a list of ETRs when they each register with "Merge 567 Semantics". The encoding can be a typical AFI encoded locator 568 address. When an RTR list is being registered (with multiple levels 569 according to [LISP-RE]), the Replication List Entry LCAF type is used 570 for locator encoding. 572 This LCAF encoding can be used to send broadcast packets to all 573 members of a subnet when each EIDs are away from their home subnet 574 location. 576 Multicast Info Canonical Address Format: 578 0 1 2 3 579 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 580 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 581 | AFI = 16387 | Rsvd1 | Flags | 582 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 583 | Type = 9 | Rsvd2 |R|L|J| 8 + n | 584 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 585 | Instance-ID | 586 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 587 | Reserved | Source MaskLen| Group MaskLen | 588 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 589 | AFI = x | Source/Subnet Address ... | 590 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 591 | AFI = x | Group Address ... | 592 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 594 Length value n: length in bytes of fields that follow. 596 Reserved: must be set to zero and ignore on receipt. 598 R-bit: this is the RP-bit that represents PIM (S,G,RP-bit) multicast 599 state. This bit can be set for Joins (when the J-bit is set) or 600 for Leaves (when the L-bit is set). See [LISP-MRSIG] for more 601 usage details. 603 L-bit: this is the Leave-Request bit and is used when this LCAF type 604 is present in the destination EID-prefix field of a Map-Request. 605 See [LISP-MRSIG] for details. 607 J-bit: this is the Join-Request bit and is used when this LCAF type 608 is present in the destination EID-prefix field of a Map-Request. 609 See [LISP-MRSIG] for details. The J-bit MUST not be set when the 610 L-bit is also set in the same LCAF block. A receiver should not 611 take any specific Join or Leave action when both bits are set. 613 Instance ID: the low-order 24-bits that can go into a LISP data 614 header when the I-bit is set. See [RFC6830] for details. The use 615 of the Instance-ID in this LCAF type is to associate a multicast 616 forwarding entry for a given VPN. The instance-ID describes the 617 VPN and is registered to the mapping database system as a 3-tuple 618 of (Instance-ID, S-prefix, G-prefix). 620 Source MaskLen: the mask length of the source prefix that follows. 622 Group MaskLen: the mask length of the group prefix that follows. 624 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 625 its own encoding of a multicast address, this field must be either 626 a group address or a broadcast address. 628 4.9. Traffic Engineering using Re-encapsulating Tunnels 630 For a given EID lookup into the mapping database, this LCAF format 631 can be returned to provide a list of locators in an explicit re- 632 encapsulation path. See [LISP-TE] for details. 634 Explicit Locator Path (ELP) Canonical Address Format: 636 0 1 2 3 637 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 638 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 639 | AFI = 16387 | Rsvd1 | Flags | 640 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 641 | Type = 10 | Rsvd2 | n | 642 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 643 | Rsvd3 |L|P|S| AFI = x | 644 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 645 | Reencap Hop 1 ... | 646 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 647 | Rsvd3 |L|P|S| AFI = x | 648 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 649 | Reencap Hop k ... | 650 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 652 Length value n: length in bytes of fields that follow. 654 Lookup bit (L): this is the Lookup bit used to indicate to the user 655 of the ELP to not use this address for encapsulation but to look 656 it up in the mapping database system to obtain an encapsulating 657 RLOC address. 659 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 660 Reencap Hop allows RLOC-probe messages to be sent to it. When the 661 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 662 Hop is an anycast address then multiple physical Reencap Hops are 663 using the same RLOC address. In this case, RLOC-probes are not 664 needed because when the closest RLOC address is not reachable 665 another RLOC address can reachable. 667 Strict bit (S): this the strict bit which means the associated 668 Rencap Hop is required to be used. If this bit is 0, the 669 reencapsulator can skip this Reencap Hop and go to the next one in 670 the list. 672 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 673 its own encoding of a multicast address, this field must be either 674 a group address or a broadcast address. 676 4.10. Storing Security Data in the Mapping Database 678 When a locator in a locator-set has a security key associated with 679 it, this LCAF format will be used to encode key material. See 680 [LISP-DDT] for details. 682 Security Key Canonical Address Format: 684 0 1 2 3 685 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 686 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 687 | AFI = 16387 | Rsvd1 | Flags | 688 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 689 | Type = 11 | Rsvd2 | 6 + n | 690 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 691 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 692 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 693 | Key Length | Key Material ... | 694 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 695 | ... Key Material | 696 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 697 | AFI = x | Locator Address ... | 698 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 700 Length value n: length in bytes of fields that start with the Key 701 Material field. 703 Key Count: the Key Count field declares the number of Key sections 704 included in this LCAF. 706 Key Algorithm: the Algorithm field identifies the key's 707 cryptographic algorithm and specifies the format of the Public Key 708 field. 710 R bit: this is the revoke bit and, if set, it specifies that this 711 Key is being Revoked. 713 Key Length: this field determines the length in bytes of the Key 714 Material field. 716 Key Material: the Key Material field stores the key material. The 717 format of the key material stored depends on the Key Algorithm 718 field. 720 AFI = x: x can be any AFI value from [AFI].This is the locator 721 address that owns the encoded security key. 723 4.11. Source/Destination 2-Tuple Lookups 725 When both a source and destination address of a flow needs 726 consideration for different locator-sets, this 2-tuple key is used in 727 EID fields in LISP control messages. When the Source/Dest key is 728 registered to the mapping database, it can be encoded as a source- 729 prefix and destination-prefix. When the Source/Dest is used as a key 730 for a mapping database lookup the source and destination come from a 731 data packet. 733 Source/Dest Key Canonical Address Format: 735 0 1 2 3 736 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 737 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 738 | AFI = 16387 | Rsvd1 | Flags | 739 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 740 | Type = 12 | Rsvd2 | 4 + n | 741 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 742 | Reserved | Source-ML | Dest-ML | 743 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 744 | AFI = x | Source-Prefix ... | 745 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 746 | AFI = x | Destination-Prefix ... | 747 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 749 Length value n: length in bytes of fields that follow. 751 Reserved: must be set to zero and ignore on receipt. 753 Source-ML: the mask length of the source prefix that follows. 755 Dest-ML: the mask length of the destination prefix that follows. 757 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 758 its own encoding of a multicast address, this field must be either 759 a group address or a broadcast address. 761 Refer to [LISP-TE] for usage details. 763 4.12. Replication List Entries for Multicast Forwarding 765 The Replication List Entry LCAF type is an encoding for a locator 766 being used for unicast replication according to the specification in 767 [LISP-RE]. This locator encoding is pointed to by a Multicast Info 768 LCAF Type and is registered by Re-encapsulating Tunnel Routers (RTRs) 769 that are participating in an overlay distribution tree. Each RTR 770 will register its locator address and its configured level in the 771 distribution tree. 773 Replication List Entry Address Format: 775 0 1 2 3 776 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 777 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 778 | AFI = 16387 | Rsvd1 | Flags | 779 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 780 | Type = 13 | Rsvd2 | 4 + n | 781 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 782 | Rsvd3 | Rsvd4 | Level Value | 783 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 784 | AFI = x | RTR/ETR #1 ... | 785 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 786 | Rsvd3 | Rsvd4 | Level Value | 787 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 788 | AFI = x | RTR/ETR #n ... | 789 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 791 Length value n: length in bytes of fields that follow. 793 Rsvd{1,2,3,4}: must be set to zero and ignore on receipt. 795 Level Value: this value is associated with the level within the 796 overlay distribution tree hierarchy where the RTR resides. The 797 level numbers are ordered from lowest value being close to the ITR 798 (meaning that ITRs replicate to level-0 RTRs) and higher levels 799 are further downstream on the distribution tree closer to ETRs of 800 multicast receiver sites. 802 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 803 own encoding of either a unicast or multicast locator address. 804 All RTR/ETR entries for the same level should be combined together 805 by a Map-Server to avoid searching through the entire multi-level 806 list of locator entries in a Map-Reply message. 808 4.13. Data Model Encoding 810 This type allows a JSON data model to be encoded either as an EID or 811 RLOC. 813 JSON Data Model Type Address Format: 815 0 1 2 3 816 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 817 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 818 | AFI = 16387 | Rsvd1 | Flags | 819 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 820 | Type = 14 | Rsvd2 |B| n | 821 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 822 | JSON binary or text encoding ... | 823 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 824 | AFI = x | Optional Address ... | 825 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 827 Length value n: length in bytes of fields that follow. 829 Rsvd{1,2}: must be set to zero and ignore on receipt. 831 B bit: indicates that the JSON field is binary encoded according to 832 [JSON-BINARY] when the bit is set to 1. Otherwise the encoding is 833 based on text encoding according to [RFC4627]. 835 JSON field: a variable length field that contains either binary or 836 text encodings. 838 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 839 own encoding of either a unicast or multicast locator address. 840 All RTR/ETR entries for the same level should be combined together 841 by a Map-Server to avoid searching through the entire multi-level 842 list of locator entries in a Map-Reply message. 844 4.14. Encoding Key/Value Address Pairs 846 The Key/Value pair is for example useful for attaching attributes to 847 other elements of LISP packets, such as EIDs or RLOCs. When 848 attaching attributes to EIDs or RLOCs, it's necessary to distinguish 849 between the element that should be used as EID or RLOC, and hence as 850 key for lookups, and additional attributes. This is especially the 851 case when the difference cannot be determined from the types of the 852 elements, such as when two IP addresses are being used. 854 Key/Value Pair Address Format: 856 0 1 2 3 857 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 858 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 859 | AFI = 16387 | Rsvd1 | Flags | 860 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 861 | Type = 15 | Rsvd2 | n | 862 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 863 | AFI = x | Address as Key ... | 864 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 865 | AFI = x | Address as Value ... | 866 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 868 Length value n: length in bytes of fields that follow. 870 Rsvd{1,2}: must be set to zero and ignore on receipt. 872 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 873 own encoding of either a unicast or multicast locator address. 874 All RTR/ETR entries for the same level should be combined together 875 by a Map-Server to avoid searching through the entire multi-level 876 list of locator entries in a Map-Reply message. 878 Address as Key: this AFI encoded address will be attached with the 879 attributes encoded in "Address as Value" which follows this field. 881 Address as Value: this AFI encoded address will be the attribute 882 address that goes along with "Address as Key" which precedes this 883 field. 885 4.15. Applications for AFI List Type 887 4.15.1. Binding IPv4 and IPv6 Addresses 889 When header translation between IPv4 and IPv6 is desirable a LISP 890 Canonical Address can use the AFI List Type to carry multiple AFIs in 891 one LCAF AFI. 893 Address Binding LISP Canonical Address Format: 895 0 1 2 3 896 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 897 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 898 | AFI = 16387 | Rsvd1 | Flags | 899 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 900 | Type = 1 | Rsvd2 | 2 + 4 + 2 + 16 | 901 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 902 | AFI = 1 | IPv4 Address ... | 903 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 904 | ... IPv4 Address | AFI = 2 | 905 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 906 | IPv6 Address ... | 907 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 908 | ... IPv6 Address ... | 909 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 910 | ... IPv6 Address ... | 911 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 912 | ... IPv6 Address | 913 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 915 Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI 916 encoded addresses are used. 918 This type of address format can be included in a Map-Request when the 919 address is being used as an EID, but the Mapping Database System 920 lookup destination can use only the IPv4 address. This is so a 921 Mapping Database Service Transport System, such as LISP-ALT 922 [RFC6836], can use the Map-Request destination address to route the 923 control message to the desired LISP site. 925 4.15.2. Layer-2 VPNs 927 When MAC addresses are stored in the LISP Mapping Database System, 928 the AFI List Type can be used to carry AFI 6. 930 MAC Address LISP Canonical Address Format: 932 0 1 2 3 933 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 934 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 935 | AFI = 16387 | Rsvd1 | Flags | 936 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 937 | Type = 1 | Rsvd2 | 2 + 6 | 938 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 939 | AFI = 6 | Layer-2 MAC Address ... | 940 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 941 | ... Layer-2 MAC Address | 942 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 944 Length: length in bytes is fixed at 8 when MAC address AFI encoded 945 addresses are used. 947 This address format can be used to connect layer-2 domains together 948 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 949 In this use-case, a MAC address is being used as an EID, and the 950 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 951 even another MAC address being used as an RLOC. 953 4.15.3. ASCII Names in the Mapping Database 955 If DNS names or URIs are stored in the LISP Mapping Database System, 956 the AFI List Type can be used to carry an ASCII string where it is 957 delimited by length 'n' of the LCAF Length encoding. 959 ASCII LISP Canonical Address Format: 961 0 1 2 3 962 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 963 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 964 | AFI = 16387 | Rsvd1 | Flags | 965 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 966 | Type = 1 | Rsvd2 | 2 + n | 967 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 968 | AFI = 17 | DNS Name or URI ... | 969 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 971 Length value n: length in bytes AFI=17 field and the null-terminated 972 ASCII string (the last byte of 0 is included). 974 4.15.4. Using Recursive LISP Canonical Address Encodings 976 When any combination of above is desirable, the AFI List Type value 977 can be used to carry within the LCAF AFI another LCAF AFI. 979 Recursive LISP Canonical Address Format: 981 0 1 2 3 982 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 983 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 984 | AFI = 16387 | Rsvd1 | Flags | 985 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 986 | Type = 1 | Rsvd2 | 4 + 8 + 2 + 4 | 987 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 988 | AFI = 16387 | Rsvd1 | Flags | 989 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 990 | Type = 4 | Rsvd2 | 12 | 991 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 992 | IP TOS, IPv6 QQS or Flow Label | Protocol | 993 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 994 | Local Port | Remote Port | 995 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 996 | AFI = 1 | IPv4 Address ... | 997 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 998 | ... IPv4 Address | 999 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1001 Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is 1002 included. 1004 This format could be used by a Mapping Database Transport System, 1005 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 1006 an EID and placed in the Map-Request destination address by the 1007 sending LISP system. The ALT system can deliver the Map-Request to 1008 the LISP destination site independent of the Application Data Type 1009 AFI payload values. When this AFI is processed by the destination 1010 LISP site, it can return different locator-sets based on the type of 1011 application or level of service that is being requested. 1013 4.15.5. Compatibility Mode Use Case 1015 A LISP system should use the AFI List Type format when sending to 1016 LISP systems that do not support a particular LCAF Type used to 1017 encode locators. This allows the receiving system to be able to 1018 parse a locator address for encapsulation purposes. The list of AFIs 1019 in an AFI List LCAF Type has no semantic ordering and a receiver 1020 should parse each AFI element no matter what the ordering. 1022 Compatibility Mode Address Format: 1024 0 1 2 3 1025 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1026 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1027 | AFI = 16387 | Rsvd1 | Flags | 1028 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1029 | Type = 1 | Rsvd2 | 22 + 6 | 1030 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1031 | AFI = 16387 | Rsvd1 | Flags | 1032 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1033 | Type = 5 | Rsvd2 | 12 + 2 | 1034 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1035 |N| Latitude Degrees | Minutes | Seconds | 1036 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1037 |E| Longitude Degrees | Minutes | Seconds | 1038 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1039 | Altitude | 1040 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1041 | AFI = 0 | AFI = 1 | 1042 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1043 | IPv4 Address | 1044 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1046 If a system does not recognized the Geo Coordinate LCAF Type that is 1047 accompanying a locator address, an encoder can include the Geo 1048 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 1049 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 1050 the list is encoded with a valid AFI value to identify the locator 1051 address. 1053 A LISP system is required to support the AFI List LCAF Type to use 1054 this procedure. It would skip over 10 bytes of the Geo Coordinate 1055 LCAF Type to get to the locator address encoding (an IPv4 locator 1056 address). A LISP system that does support the Geo Coordinate LCAF 1057 Type can support parsing the locator address within the Geo 1058 Coordinate LCAF encoding or in the locator encoding that follows in 1059 the AFI List LCAF. 1061 5. Security Considerations 1063 There are no security considerations for this specification. The 1064 security considerations are documented for the protocols that use 1065 LISP Canonical Addressing. Refer to the those relevant 1066 specifications. 1068 6. IANA Considerations 1070 The Address Family AFI definitions from [AFI] only allocate code- 1071 points for the AFI value itself. The length of the address or entity 1072 that follows is not defined and is implied based on conventional 1073 experience. Where the LISP protocol uses LISP Canonical Addresses 1074 specifically, the address length definitions will be in this 1075 specification and take precedent over any other specification. 1077 An IANA Registry for LCAF Type values will be created. The values 1078 that are considered for use by the main LISP specification [RFC6830] 1079 will be in the IANA Registry. Other Type values used for 1080 experimentation will be defined and described in this document. 1082 7. References 1084 7.1. Normative References 1086 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700, 1087 October 1994. 1089 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and 1090 E. Lear, "Address Allocation for Private Internets", 1091 BCP 5, RFC 1918, February 1996. 1093 [RFC4627] Crockford, D., "The application/json Media Type for 1094 JavaScript Object Notation (JSON)", RFC 4627, July 2006. 1096 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 1097 Locator/ID Separation Protocol (LISP)", RFC 6830, 1098 January 2013. 1100 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 1101 "Locator/ID Separation Protocol Alternative Logical 1102 Topology (LISP+ALT)", RFC 6836, January 2013. 1104 7.2. Informative References 1106 [AFI] IANA, "Address Family Identifier (AFIs)", ADDRESS FAMILY 1107 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 1109 [JSON-BINARY] 1110 "Universal Binary JSON Specification", 1111 URL http://ubjson.org. 1113 [LISP-DDT] 1114 Fuller, V., Lewis, D., and V. Ermagan, "LISP Delegated 1115 Database Tree", draft-ietf-lisp-ddt-01.txt (work in 1116 progress). 1118 [LISP-MRSIG] 1119 Farinacci, D. and M. Napierala, "LISP Control-Plane 1120 Multicast Signaling", 1121 draft-farinacci-lisp-mr-signaling-03.txt (work in 1122 progress). 1124 [LISP-NATT] 1125 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1126 F., and C. White, "NAT traversal for LISP", 1127 draft-ermagan-lisp-nat-traversal-03.txt (work in 1128 progress). 1130 [LISP-RE] Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1131 Maino, F., and D. Farinacci, "LISP Replication 1132 Engineering", draft-coras-lisp-re-03.txt (work in 1133 progress). 1135 [LISP-TE] Farinacci, D., Lahiri, P., and M. Kowal, "LISP Traffic 1136 Engineering Use-Cases", draft-farinacci-lisp-te-03.txt 1137 (work in progress). 1139 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1140 System 1984", NIMA TR8350.2, January 2000, . 1144 Appendix A. Acknowledgments 1146 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1147 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1148 their technical and editorial commentary. 1150 The authors would like to thank Victor Moreno for discussions that 1151 lead to the definition of the Multicast Info LCAF type. 1153 The authors would like to thank Parantap Lahiri and Michael Kowal for 1154 discussions that lead to the definition of the Explicit Locator Path 1155 (ELP) LCAF type. 1157 The authors would like to thank Fabio Maino and Vina Ermagan for 1158 discussions that lead to the definition of the Security Key LCAF 1159 type. 1161 The authors would like to thank Albert Cabellos-Aparicio and Florin 1162 Coras for discussions that lead to the definition of the Replication 1163 List Entry LCAF type. 1165 Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for 1166 suggesting new LCAF types. 1168 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1169 AFI value from IANA. 1171 Appendix B. Document Change Log 1173 B.1. Changes to draft-ietf-lisp-lcaf-04.txt 1175 o Submitted January 2014. 1177 o Agreement among ELP implementors to have the AFI 16-bit field 1178 adjacent to the address. This will make the encoding consistent 1179 with all other LCAF type address encodings. 1181 B.2. Changes to draft-ietf-lisp-lcaf-03.txt 1183 o Submitted September 2013. 1185 o Updated references and author's affilations. 1187 o Added Instance-ID to the Multicast Info Type so there is relative 1188 ease in parsing (S,G) entries within a VPN. 1190 o Add port range encodings to the Application Data LCAF Type. 1192 o Add a new JSON LCAF Type. 1194 o Add Address Key/Value LCAF Type to allow attributes to be attached 1195 to an address. 1197 B.3. Changes to draft-ietf-lisp-lcaf-02.txt 1199 o Submitted March 2013. 1201 o Added new LCAF Type "Replication List Entry" to support LISP 1202 replication engineering use-cases. 1204 o Changed references to new LISP RFCs. 1206 B.4. Changes to draft-ietf-lisp-lcaf-01.txt 1208 o Submitted January 2013. 1210 o Change longitude range from 0-90 to 0-180 in section 4.4. 1212 o Added reference to WGS-84 in section 4.4. 1214 B.5. Changes to draft-ietf-lisp-lcaf-00.txt 1216 o Posted first working group draft August 2012. 1218 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1220 Authors' Addresses 1222 Dino Farinacci 1223 lispers.net 1224 San Jose, CA 1225 USA 1227 Email: farinacci@gmail.com 1229 Dave Meyer 1230 Brocade 1231 San Jose, CA 1232 USA 1234 Email: dmm@1-4-5.net 1236 Job Snijders 1237 Hibernia Networks 1238 Tupolevlaan 103a 1239 Schiphol-Rijk, 1119 PA 1240 NL 1242 Email: job.snijders@hibernianetworks.com