idnits 2.17.1 draft-ietf-lisp-lcaf-07.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack a both a reference to RFC 2119 and the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords. RFC 2119 keyword, line 193: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 235: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 623: '... See [LISP-MRSIG] for details. The J-bit MUST not be set when the...' Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Using lowercase 'not' together with uppercase 'MUST', 'SHALL', 'SHOULD', or 'RECOMMENDED' is not an accepted usage according to RFC 2119. Please use uppercase 'NOT' together with RFC 2119 keywords (if that is what you mean). Found 'MUST not' in this paragraph: J-bit: this is the Join-Request bit and is used when this LCAF type is present in the destination EID-prefix field of a Map-Request. See [LISP-MRSIG] for details. The J-bit MUST not be set when the L-bit is also set in the same LCAF block. A receiver should not take any specific Join or Leave action when both bits are set. -- The document date (December 1, 2014) is 3431 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 1700 (Obsoleted by RFC 3232) ** Obsolete normative reference: RFC 4627 (Obsoleted by RFC 7158, RFC 7159) ** Obsolete normative reference: RFC 6830 (Obsoleted by RFC 9300, RFC 9301) == Outdated reference: A later version (-04) exists of draft-quinn-vxlan-gpe-03 == Outdated reference: A later version (-03) exists of draft-herbert-gue-02 == Outdated reference: A later version (-09) exists of draft-ietf-lisp-ddt-01 == Outdated reference: A later version (-06) exists of draft-farinacci-lisp-mr-signaling-03 == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-03 == Outdated reference: A later version (-08) exists of draft-coras-lisp-re-03 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-03 == Outdated reference: A later version (-08) exists of draft-sridharan-virtualization-nvgre-06 Summary: 4 errors (**), 0 flaws (~~), 10 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft lispers.net 4 Intended status: Experimental D. Meyer 5 Expires: June 4, 2015 Brocade 6 J. Snijders 7 NTT 8 December 1, 2014 10 LISP Canonical Address Format (LCAF) 11 draft-ietf-lisp-lcaf-07 13 Abstract 15 This draft defines a canonical address format encoding used in LISP 16 control messages and in the encoding of lookup keys for the LISP 17 Mapping Database System. 19 Status of This Memo 21 This Internet-Draft is submitted in full conformance with the 22 provisions of BCP 78 and BCP 79. 24 Internet-Drafts are working documents of the Internet Engineering 25 Task Force (IETF). Note that other groups may also distribute 26 working documents as Internet-Drafts. The list of current Internet- 27 Drafts is at http://datatracker.ietf.org/drafts/current/. 29 Internet-Drafts are draft documents valid for a maximum of six months 30 and may be updated, replaced, or obsoleted by other documents at any 31 time. It is inappropriate to use Internet-Drafts as reference 32 material or to cite them other than as "work in progress." 34 This Internet-Draft will expire on June 4, 2015. 36 Copyright Notice 38 Copyright (c) 2014 IETF Trust and the persons identified as the 39 document authors. All rights reserved. 41 This document is subject to BCP 78 and the IETF Trust's Legal 42 Provisions Relating to IETF Documents 43 (http://trustee.ietf.org/license-info) in effect on the date of 44 publication of this document. Please review these documents 45 carefully, as they describe your rights and restrictions with respect 46 to this document. Code Components extracted from this document must 47 include Simplified BSD License text as described in Section 4.e of 48 the Trust Legal Provisions and are provided without warranty as 49 described in the Simplified BSD License. 51 Table of Contents 53 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 54 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 55 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 4 56 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 57 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 58 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 8 59 4.3. Convey Application Specific Data . . . . . . . . . . . . 9 60 4.4. Assigning Geo Coordinates to Locator Addresses . . . . . 10 61 4.5. Generic Database Mapping Lookups . . . . . . . . . . . . 12 62 4.6. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 13 63 4.7. PETR Admission Control Functionality . . . . . . . . . . 15 64 4.8. Multicast Group Membership Information . . . . . . . . . 16 65 4.9. Traffic Engineering using Re-encapsulating Tunnels . . . 18 66 4.10. Storing Security Data in the Mapping Database . . . . . . 19 67 4.11. Source/Destination 2-Tuple Lookups . . . . . . . . . . . 20 68 4.12. Replication List Entries for Multicast Forwarding . . . . 21 69 4.13. Data Model Encoding . . . . . . . . . . . . . . . . . . . 22 70 4.14. Encoding Key/Value Address Pairs . . . . . . . . . . . . 23 71 4.15. Multiple Data-Planes . . . . . . . . . . . . . . . . . . 24 72 4.16. Applications for AFI List Type . . . . . . . . . . . . . 26 73 4.16.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . 26 74 4.16.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 27 75 4.16.3. ASCII Names in the Mapping Database . . . . . . . . 28 76 4.16.4. Using Recursive LISP Canonical Address Encodings . . 29 77 4.16.5. Compatibility Mode Use Case . . . . . . . . . . . . 30 78 5. Security Considerations . . . . . . . . . . . . . . . . . . . 31 79 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 31 80 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 31 81 7.1. Normative References . . . . . . . . . . . . . . . . . . 31 82 7.2. Informative References . . . . . . . . . . . . . . . . . 32 83 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 33 84 Appendix B. Document Change Log . . . . . . . . . . . . . . . . 33 85 B.1. Changes to draft-ietf-lisp-lcaf-07.txt . . . . . . . . . 34 86 B.2. Changes to draft-ietf-lisp-lcaf-06.txt . . . . . . . . . 34 87 B.3. Changes to draft-ietf-lisp-lcaf-05.txt . . . . . . . . . 34 88 B.4. Changes to draft-ietf-lisp-lcaf-04.txt . . . . . . . . . 34 89 B.5. Changes to draft-ietf-lisp-lcaf-03.txt . . . . . . . . . 34 90 B.6. Changes to draft-ietf-lisp-lcaf-02.txt . . . . . . . . . 35 91 B.7. Changes to draft-ietf-lisp-lcaf-01.txt . . . . . . . . . 35 92 B.8. Changes to draft-ietf-lisp-lcaf-00.txt . . . . . . . . . 35 93 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 35 95 1. Introduction 97 The LISP architecture and protocols [RFC6830] introduces two new 98 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 99 (RLOCs) which are intended to replace most use of IP addresses on the 100 Internet. To provide flexibility for current and future 101 applications, these values can be encoded in LISP control messages 102 using a general syntax that includes Address Family Identifier (AFI), 103 length, and value fields. 105 Currently defined AFIs include IPv4 and IPv6 addresses, which are 106 formatted according to code-points assigned in [AFI] as follows: 108 IPv4 Encoded Address: 110 0 1 2 3 111 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 112 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 113 | AFI = 1 | IPv4 Address ... | 114 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 115 | ... IPv4 Address | 116 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 118 IPv6 Encoded Address: 120 0 1 2 3 121 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 122 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 123 | AFI = 2 | IPv6 Address ... | 124 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 125 | ... IPv6 Address ... | 126 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 127 | ... IPv6 Address ... | 128 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 129 | ... IPv6 Address ... | 130 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 131 | ... IPv6 Address | 132 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 134 This document describes the currently-defined AFIs the LISP protocol 135 uses along with their encodings and introduces the LISP Canonical 136 Address Format (LCAF) that can be used to define the LISP-specific 137 encodings for arbitrary AFI values. 139 2. Definition of Terms 141 Address Family Identifier (AFI): a term used to describe an address 142 encoding in a packet. An address family currently defined for 143 IPv4 or IPv6 addresses. See [AFI] and [RFC1700] for details. The 144 reserved AFI value of 0 is used in this specification to indicate 145 an unspecified encoded address where the the length of the address 146 is 0 bytes following the 16-bit AFI value of 0. 148 Unspecified Address Format: 150 0 1 2 3 151 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 152 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 153 | AFI = 0 | | 154 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 156 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 157 used in the source and destination address fields of the first 158 (most inner) LISP header of a packet. The host obtains a 159 destination EID the same way it obtains a destination address 160 today, for example through a DNS lookup or SIP exchange. The 161 source EID is obtained via existing mechanisms used to set a 162 host's "local" IP address. An EID is allocated to a host from an 163 EID-prefix block associated with the site where the host is 164 located. An EID can be used by a host to refer to other hosts. 166 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 167 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 168 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 169 numbered from topologically aggregatable blocks that are assigned 170 to a site at each point to which it attaches to the global 171 Internet; where the topology is defined by the connectivity of 172 provider networks, RLOCs can be thought of as PA addresses. 173 Multiple RLOCs can be assigned to the same ETR device or to 174 multiple ETR devices at a site. 176 3. LISP Canonical Address Format Encodings 178 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 179 and protocols. This specification defines the encoding format of the 180 LISP Canonical Address (LCA). 182 The first 4 bytes of an LISP Canonical Address are followed by a 183 variable length of fields: 185 0 1 2 3 186 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 188 | AFI = 16387 | Rsvd1 | Flags | 189 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 190 | Type | Rsvd2 | Length | 191 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 193 Rsvd1: this 8-bit field is reserved for future use and MUST be 194 transmitted as 0 and ignored on receipt. 196 Flags: this 8-bit field is for future definition and use. For now, 197 set to zero on transmission and ignored on receipt. 199 Type: this 8-bit field is specific to the LISP Canonical Address 200 formatted encodings, values are: 202 Type 0: Null Body Type 204 Type 1: AFI List Type 206 Type 2: Instance ID Type 208 Type 3: AS Number Type 210 Type 4: Application Data Type 212 Type 5: Geo Coordinates Type 214 Type 6: Opaque Key Type 216 Type 7: NAT-Traversal Type 218 Type 8: Nonce Locator Type 220 Type 9: Multicast Info Type 222 Type 10: Explicit Locator Path Type 224 Type 11: Security Key Type 226 Type 12: Source/Dest Key Type 228 Type 13: Replication List Entry Type 229 Type 14: JSON Data Model Type 231 Type 15: Key/Value Address Pair Type 233 Type 16: Encapsulation Format Type 235 Rsvd2: this 8-bit field is reserved for future use and MUST be 236 transmitted as 0 and ignored on receipt. 238 Length: this 16-bit field is in units of bytes and covers all of the 239 LISP Canonical Address payload, starting and including the byte 240 after the Length field. So any LCAF encoded address will have a 241 minimum length of 8 bytes when the Length field is 0. The 8 bytes 242 include the AFI, Flags, Type, Reserved, and Length fields. When 243 the AFI is not next to encoded address in a control message, then 244 the encoded address will have a minimum length of 6 bytes when the 245 Length field is 0. The 6 bytes include the Flags, Type, Reserved, 246 and Length fields. 248 [RFC6830] states RLOC records are sorted when encoded in control 249 messages so the locator-set has consistent order across all xTRs for 250 a given EID. The sort order is based on sort-key {afi, RLOC- 251 address}. When an RLOC is LCAF encoded, the sort-key is {afi, LCAF- 252 Type, payload}. Therefore, when a locator-set has a mix of AFI 253 records and LCAF records, all LCAF records will appear after all the 254 AFI records. 256 4. LISP Canonical Address Applications 258 4.1. Segmentation using LISP 260 When multiple organizations inside of a LISP site are using private 261 addresses [RFC1918] as EID-prefixes, their address spaces must remain 262 segregated due to possible address duplication. An Instance ID in 263 the address encoding can aid in making the entire AFI based address 264 unique. 266 Another use for the Instance ID LISP Canonical Address Format is when 267 creating multiple segmented VPNs inside of a LISP site where keeping 268 EID-prefix based subnets is desirable. 270 Instance ID LISP Canonical Address Format: 272 0 1 2 3 273 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 274 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 275 | AFI = 16387 | Rsvd1 | Flags | 276 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 277 | Type = 2 | IID mask-len | 4 + n | 278 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 279 | Instance ID | 280 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 281 | AFI = x | Address ... | 282 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 284 IID mask-len: if the AFI is set to 0, then this format is not 285 encoding an extended EID-prefix but rather an instance-ID range 286 where the 'IID mask-len' indicates the number of high-order bits 287 used in the Instance ID field for the range. 289 Length value n: length in bytes of the AFI address that follows the 290 Instance ID field including the AFI field itself. 292 Instance ID: the low-order 24-bits that can go into a LISP data 293 header when the I-bit is set. See [RFC6830] for details. 295 AFI = x: x can be any AFI value from [AFI]. 297 This LISP Canonical Address Type can be used to encode either EID or 298 RLOC addresses. 300 4.2. Carrying AS Numbers in the Mapping Database 302 When an AS number is stored in the LISP Mapping Database System for 303 either policy or documentation reasons, it can be encoded in a LISP 304 Canonical Address. 306 AS Number LISP Canonical Address Format: 308 0 1 2 3 309 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 310 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 311 | AFI = 16387 | Rsvd1 | Flags | 312 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 313 |n Type = 3 | Rsvd2 | 4 + n | 314 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 315 | AS Number | 316 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 317 | AFI = x | Address ... | 318 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 320 Length value n: length in bytes of the AFI address that follows the 321 AS Number field including the AFI field itself. 323 AS Number: the 32-bit AS number of the autonomous system that has 324 been assigned either the EID or RLOC that follows. 326 AFI = x: x can be any AFI value from [AFI]. 328 The AS Number Canonical Address Type can be used to encode either EID 329 or RLOC addresses. The former is used to describe the LISP-ALT AS 330 number the EID-prefix for the site is being carried for. The latter 331 is used to describe the AS that is carrying RLOC based prefixes in 332 the underlying routing system. 334 4.3. Convey Application Specific Data 336 When a locator-set needs to be conveyed based on the type of 337 application or the Per-Hop Behavior (PHB) of a packet, the 338 Application Data Type can be used. 340 Application Data LISP Canonical Address Format: 342 0 1 2 3 343 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 344 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 345 | AFI = 16387 | Rsvd1 | Flags | 346 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 347 | Type = 4 | Rsvd2 | 8 + n | 348 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 349 | IP TOS, IPv6 TC, or Flow Label | Protocol | 350 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 351 | Local Port (lower-range) | Local Port (upper-range) | 352 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 353 | Remote Port (lower-range) | Remote Port (upper-range) | 354 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 355 | AFI = x | Address ... | 356 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 358 Length value n: length in bytes of the AFI address that follows the 359 8-byte Application Data fields including the AFI field itself. 361 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 362 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 363 Label used in an IPv6 header. 365 Local Port/Remote Port Ranges: these fields are from the TCP, UDP, 366 or SCTP transport header. A range can be specified by using a 367 lower value and an upper value. When a single port is encoded, 368 the lower and upper value fields are the same. 370 AFI = x: x can be any AFI value from [AFI]. 372 The Application Data Canonical Address Type is used for an EID 373 encoding when an ITR wants a locator-set for a specific application. 374 When used for an RLOC encoding, the ETR is supplying a locator-set 375 for each specific application is has been configured to advertise. 377 4.4. Assigning Geo Coordinates to Locator Addresses 379 If an ETR desires to send a Map-Reply describing the Geo Coordinates 380 for each locator in its locator-set, it can use the Geo Coordinate 381 Type to convey physical location information. 383 Coordinates are specified using the WGS-84 (World Geodetic System) 384 reference coordinate system [WGS-84]. 386 Geo Coordinate LISP Canonical Address Format: 388 0 1 2 3 389 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 390 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 391 | AFI = 16387 | Rsvd1 | Flags | 392 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 393 | Type = 5 | Rsvd2 | 12 + n | 394 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 395 |N| Latitude Degrees | Minutes | Seconds | 396 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 397 |E| Longitude Degrees | Minutes | Seconds | 398 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 399 | Altitude | 400 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 401 | AFI = x | Address ... | 402 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 404 Length value n: length in bytes of the AFI address that follows the 405 8-byte Longitude and Latitude fields including the AFI field 406 itself. 408 N: When set to 1 means North, otherwise South. 410 Latitude Degrees: Valid values range from 0 to 90 degrees above or 411 below the equator (northern or southern hemisphere, respectively). 413 Latitude Minutes: Valid values range from 0 to 59. 415 Latitude Seconds: Valid values range from 0 to 59. 417 E: When set to 1 means East, otherwise West. 419 Longitude Degrees: Value values are from 0 to 180 degrees right or 420 left of the Prime Meridian. 422 Longitude Minutes: Valid values range from 0 to 59. 424 Longitude Seconds: Valid values range from 0 to 59. 426 Altitude: Height relative to sea level in meters. This is a signed 427 integer meaning that the altitude could be below sea level. A 428 value of 0x7fffffff indicates no Altitude value is encoded. 430 AFI = x: x can be any AFI value from [AFI]. 432 The Geo Coordinates Canonical Address Type can be used to encode 433 either EID or RLOC addresses. When used for EID encodings, you can 434 determine the physical location of an EID along with the topological 435 location by observing the locator-set. 437 4.5. Generic Database Mapping Lookups 439 When the LISP Mapping Database system holds information accessed by a 440 generic formatted key (where the key is not the usual IPv4 or IPv6 441 address), an opaque key may be desirable. 443 Opaque Key LISP Canonical Address Format: 445 0 1 2 3 446 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 447 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 448 | AFI = 16387 | Rsvd1 | Flags | 449 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 450 | Type = 6 | Rsvd2 | n | 451 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 452 | Key Field Num | Key Wildcard Fields | Key . . . | 453 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 454 | . . . Key | 455 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 457 Length value n: length in bytes of the type's payload. The value n 458 is the number of bytes that follow this Length field. 460 Key Field Num: the number of fields (minus 1) the key can be broken 461 up into. The width of the fields are fixed length. So for a key 462 size of 8 bytes, with a Key Field Num of 4 allows 4 fields of 2 463 bytes in length. Valid values for this field range from 0 to 15 464 supporting a maximum of 16 field separations. 466 Key Wildcard Fields: describes which fields in the key are not used 467 as part of the key lookup. This wildcard encoding is a bitfield. 468 Each bit is a don't-care bit for a corresponding field in the key. 469 Bit 0 (the low-order bit) in this bitfield corresponds the first 470 field, right-justified in the key, bit 1 the second field, and so 471 on. When a bit is set in the bitfield it is a don't-care bit and 472 should not be considered as part of the database lookup. When the 473 entire 16-bits is set to 0, then all bits of the key are used for 474 the database lookup. 476 Key: the variable length key used to do a LISP Database Mapping 477 lookup. The length of the key is the value n (shown above) minus 478 3. 480 4.6. NAT Traversal Scenarios 482 When a LISP system is conveying global address and mapped port 483 information when traversing through a NAT device, the NAT-Traversal 484 LCAF Type is used. See [LISP-NATT] for details. 486 NAT-Traversal Canonical Address Format: 488 0 1 2 3 489 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 490 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 491 | AFI = 16387 | Rsvd1 | Flags | 492 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 493 | Type = 7 | Rsvd2 | 4 + n | 494 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 495 | MS UDP Port Number | ETR UDP Port Number | 496 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 497 | AFI = x | Global ETR RLOC Address ... | 498 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 499 | AFI = x | MS RLOC Address ... | 500 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 501 | AFI = x | Private ETR RLOC Address ... | 502 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 503 | AFI = x | RTR RLOC Address 1 ... | 504 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 505 | AFI = x | RTR RLOC Address k ... | 506 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 508 Length value n: length in bytes of the AFI addresses that follows 509 the UDP Port Number field including the AFI fields themselves. 511 MS UDP Port Number: this is the UDP port number of the Map-Server 512 and is set to 4342. 514 ETR UDP Port Number: this is the port number returned to a LISP 515 system which was copied from the source port from a packet that 516 has flowed through a NAT device. 518 AFI = x: x can be any AFI value from [AFI]. 520 Global ETR RLOC Address: this is an address known to be globally 521 unique built by NAT-traversal functionality in a LISP router. 523 MS RLOC Address: this is the address of the Map-Server used in the 524 destination RLOC of a packet that has flowed through a NAT device. 526 Private ETR RLOC Address: this is an address known to be a private 527 address inserted in this LCAF format by a LISP router that resides 528 on the private side of a NAT device. 530 RTR RLOC Address: this is an encapsulation address used by an ITR or 531 PITR which resides behind a NAT device. This address is known to 532 have state in a NAT device so packets can flow from it to the LISP 533 ETR behind the NAT. There can be one or more NTR addresses 534 supplied in these set of fields. The number of NTRs encoded is 535 determined by the LCAF length field. When there are no NTRs 536 supplied, the NTR fields can be omitted and reflected by the LCAF 537 length field or an AFI of 0 can be used to indicate zero NTRs 538 encoded. 540 4.7. PETR Admission Control Functionality 542 When a public PETR device wants to verify who is encapsulating to it, 543 it can check for a specific nonce value in the LISP encapsulated 544 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF 545 format is used in a Map-Register or Map-Reply locator-record. 547 Nonce Locator Canonical Address Format: 549 0 1 2 3 550 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 551 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 552 | AFI = 16387 | Rsvd1 | Flags | 553 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 554 | Type = 8 | Rsvd2 | 4 + n | 555 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 556 | Reserved | Nonce | 557 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 558 | AFI = x | Address ... | 559 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 561 Length value n: length in bytes of the AFI address that follows the 562 Nonce field including the AFI field itself. 564 Reserved: must be set to zero and ignore on receipt. 566 Nonce: this is a nonce value returned by an ETR in a Map-Reply 567 locator-record to be used by an ITR or PITR when encapsulating to 568 the locator address encoded in the AFI field of this LCAF type. 570 AFI = x: x can be any AFI value from [AFI]. 572 4.8. Multicast Group Membership Information 574 Multicast group information can be published in the mapping database 575 so a lookup on an EID based group address can return a replication 576 list of group addresses or a unicast addresses for single replication 577 or multiple head-end replications. The intent of this type of 578 unicast replication is to deliver packets to multiple ETRs at 579 receiver LISP multicast sites. The locator-set encoding for this EID 580 record type can be a list of ETRs when they each register with "Merge 581 Semantics". The encoding can be a typical AFI encoded locator 582 address. When an RTR list is being registered (with multiple levels 583 according to [LISP-RE]), the Replication List Entry LCAF type is used 584 for locator encoding. 586 This LCAF encoding can be used to send broadcast packets to all 587 members of a subnet when each EIDs are away from their home subnet 588 location. 590 Multicast Info Canonical Address Format: 592 0 1 2 3 593 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 594 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 595 | AFI = 16387 | Rsvd1 | Flags | 596 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 597 | Type = 9 | Rsvd2 |R|L|J| 8 + n | 598 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 599 | Instance-ID | 600 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 601 | Reserved | Source MaskLen| Group MaskLen | 602 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 603 | AFI = x | Source/Subnet Address ... | 604 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 605 | AFI = x | Group Address ... | 606 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 608 Length value n: length in bytes of fields that follow. 610 Reserved: must be set to zero and ignore on receipt. 612 R-bit: this is the RP-bit that represents PIM (S,G,RP-bit) multicast 613 state. This bit can be set for Joins (when the J-bit is set) or 614 for Leaves (when the L-bit is set). See [LISP-MRSIG] for more 615 usage details. 617 L-bit: this is the Leave-Request bit and is used when this LCAF type 618 is present in the destination EID-prefix field of a Map-Request. 619 See [LISP-MRSIG] for details. 621 J-bit: this is the Join-Request bit and is used when this LCAF type 622 is present in the destination EID-prefix field of a Map-Request. 623 See [LISP-MRSIG] for details. The J-bit MUST not be set when the 624 L-bit is also set in the same LCAF block. A receiver should not 625 take any specific Join or Leave action when both bits are set. 627 Instance ID: the low-order 24-bits that can go into a LISP data 628 header when the I-bit is set. See [RFC6830] for details. The use 629 of the Instance-ID in this LCAF type is to associate a multicast 630 forwarding entry for a given VPN. The instance-ID describes the 631 VPN and is registered to the mapping database system as a 3-tuple 632 of (Instance-ID, S-prefix, G-prefix). 634 Source MaskLen: the mask length of the source prefix that follows. 636 Group MaskLen: the mask length of the group prefix that follows. 638 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 639 its own encoding of a multicast address, this field must be either 640 a group address or a broadcast address. 642 4.9. Traffic Engineering using Re-encapsulating Tunnels 644 For a given EID lookup into the mapping database, this LCAF format 645 can be returned to provide a list of locators in an explicit re- 646 encapsulation path. See [LISP-TE] for details. 648 Explicit Locator Path (ELP) Canonical Address Format: 650 0 1 2 3 651 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 652 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 653 | AFI = 16387 | Rsvd1 | Flags | 654 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 655 | Type = 10 | Rsvd2 | n | 656 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 657 | Rsvd3 |L|P|S| AFI = x | 658 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 659 | Reencap Hop 1 ... | 660 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 661 | Rsvd3 |L|P|S| AFI = x | 662 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 663 | Reencap Hop k ... | 664 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 666 Length value n: length in bytes of fields that follow. 668 Lookup bit (L): this is the Lookup bit used to indicate to the user 669 of the ELP to not use this address for encapsulation but to look 670 it up in the mapping database system to obtain an encapsulating 671 RLOC address. 673 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 674 Reencap Hop allows RLOC-probe messages to be sent to it. When the 675 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 676 Hop is an anycast address then multiple physical Reencap Hops are 677 using the same RLOC address. In this case, RLOC-probes are not 678 needed because when the closest RLOC address is not reachable 679 another RLOC address can reachable. 681 Strict bit (S): this the strict bit which means the associated 682 Rencap Hop is required to be used. If this bit is 0, the 683 reencapsulator can skip this Reencap Hop and go to the next one in 684 the list. 686 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 687 its own encoding of a multicast address, this field must be either 688 a group address or a broadcast address. 690 4.10. Storing Security Data in the Mapping Database 692 When a locator in a locator-set has a security key associated with 693 it, this LCAF format will be used to encode key material. See 694 [LISP-DDT] for details. 696 Security Key Canonical Address Format: 698 0 1 2 3 699 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 700 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 701 | AFI = 16387 | Rsvd1 | Flags | 702 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 703 | Type = 11 | Rsvd2 | 6 + n | 704 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 705 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 706 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 707 | Key Length | Key Material ... | 708 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 709 | ... Key Material | 710 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 711 | AFI = x | Locator Address ... | 712 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 714 Length value n: length in bytes of fields that start with the Key 715 Material field. 717 Key Count: the Key Count field declares the number of Key sections 718 included in this LCAF. 720 Key Algorithm: the Algorithm field identifies the key's 721 cryptographic algorithm and specifies the format of the Public Key 722 field. 724 R bit: this is the revoke bit and, if set, it specifies that this 725 Key is being Revoked. 727 Key Length: this field determines the length in bytes of the Key 728 Material field. 730 Key Material: the Key Material field stores the key material. The 731 format of the key material stored depends on the Key Algorithm 732 field. 734 AFI = x: x can be any AFI value from [AFI].This is the locator 735 address that owns the encoded security key. 737 4.11. Source/Destination 2-Tuple Lookups 739 When both a source and destination address of a flow needs 740 consideration for different locator-sets, this 2-tuple key is used in 741 EID fields in LISP control messages. When the Source/Dest key is 742 registered to the mapping database, it can be encoded as a source- 743 prefix and destination-prefix. When the Source/Dest is used as a key 744 for a mapping database lookup the source and destination come from a 745 data packet. 747 Source/Dest Key Canonical Address Format: 749 0 1 2 3 750 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 751 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 752 | AFI = 16387 | Rsvd1 | Flags | 753 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 754 | Type = 12 | Rsvd2 | 4 + n | 755 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 756 | Reserved | Source-ML | Dest-ML | 757 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 758 | AFI = x | Source-Prefix ... | 759 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 760 | AFI = x | Destination-Prefix ... | 761 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 763 Length value n: length in bytes of fields that follow. 765 Reserved: must be set to zero and ignore on receipt. 767 Source-ML: the mask length of the source prefix that follows. 769 Dest-ML: the mask length of the destination prefix that follows. 771 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 772 its own encoding of a multicast address, this field must be either 773 a group address or a broadcast address. 775 Refer to [LISP-TE] for usage details. 777 4.12. Replication List Entries for Multicast Forwarding 779 The Replication List Entry LCAF type is an encoding for a locator 780 being used for unicast replication according to the specification in 781 [LISP-RE]. This locator encoding is pointed to by a Multicast Info 782 LCAF Type and is registered by Re-encapsulating Tunnel Routers (RTRs) 783 that are participating in an overlay distribution tree. Each RTR 784 will register its locator address and its configured level in the 785 distribution tree. 787 Replication List Entry Address Format: 789 0 1 2 3 790 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 791 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 792 | AFI = 16387 | Rsvd1 | Flags | 793 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 794 | Type = 13 | Rsvd2 | 4 + n | 795 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 796 | Rsvd3 | Rsvd4 | Level Value | 797 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 798 | AFI = x | RTR/ETR #1 ... | 799 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 800 | Rsvd3 | Rsvd4 | Level Value | 801 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 802 | AFI = x | RTR/ETR #n ... | 803 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 805 Length value n: length in bytes of fields that follow. 807 Rsvd{1,2,3,4}: must be set to zero and ignore on receipt. 809 Level Value: this value is associated with the level within the 810 overlay distribution tree hierarchy where the RTR resides. The 811 level numbers are ordered from lowest value being close to the ITR 812 (meaning that ITRs replicate to level-0 RTRs) and higher levels 813 are further downstream on the distribution tree closer to ETRs of 814 multicast receiver sites. 816 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 817 own encoding of either a unicast or multicast locator address. 818 All RTR/ETR entries for the same level should be combined together 819 by a Map-Server to avoid searching through the entire multi-level 820 list of locator entries in a Map-Reply message. 822 4.13. Data Model Encoding 824 This type allows a JSON data model to be encoded either as an EID or 825 RLOC. 827 JSON Data Model Type Address Format: 829 0 1 2 3 830 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 831 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 832 | AFI = 16387 | Rsvd1 | Flags | 833 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 834 | Type = 14 | Rsvd2 |B| n | 835 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 836 | JSON length | JSON binary/text encoding ... | 837 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 838 | AFI = x | Optional Address ... | 839 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 841 Length value n: length in bytes of fields that follow. 843 Rsvd{1,2}: must be set to zero and ignore on receipt. 845 B bit: indicates that the JSON field is binary encoded according to 846 [JSON-BINARY] when the bit is set to 1. Otherwise the encoding is 847 based on text encoding according to [RFC4627]. 849 JSON length: length in octets of the following 'JSON binary/text 850 encoding' field. 852 JSON binary/text encoding field: a variable length field that 853 contains either binary or text encodings. 855 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 856 own encoding of either a unicast or multicast locator address. 857 All RTR/ETR entries for the same level should be combined together 858 by a Map-Server to avoid searching through the entire multi-level 859 list of locator entries in a Map-Reply message. 861 4.14. Encoding Key/Value Address Pairs 863 The Key/Value pair is for example useful for attaching attributes to 864 other elements of LISP packets, such as EIDs or RLOCs. When 865 attaching attributes to EIDs or RLOCs, it's necessary to distinguish 866 between the element that should be used as EID or RLOC, and hence as 867 key for lookups, and additional attributes. This is especially the 868 case when the difference cannot be determined from the types of the 869 elements, such as when two IP addresses are being used. 871 Key/Value Pair Address Format: 873 0 1 2 3 874 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 875 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 876 | AFI = 16387 | Rsvd1 | Flags | 877 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 878 | Type = 15 | Rsvd2 | n | 879 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 880 | AFI = x | Address as Key ... | 881 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 882 | AFI = x | Address as Value ... | 883 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 885 Length value n: length in bytes of fields that follow. 887 Rsvd{1,2}: must be set to zero and ignore on receipt. 889 AFI = x: x can be any AFI value from [AFI]. A specific AFI has its 890 own encoding of either a unicast or multicast locator address. 891 All RTR/ETR entries for the same level should be combined together 892 by a Map-Server to avoid searching through the entire multi-level 893 list of locator entries in a Map-Reply message. 895 Address as Key: this AFI encoded address will be attached with the 896 attributes encoded in "Address as Value" which follows this field. 898 Address as Value: this AFI encoded address will be the attribute 899 address that goes along with "Address as Key" which precedes this 900 field. 902 4.15. Multiple Data-Planes 904 Overlays are becoming popular in many parts of the network which have 905 created an explosion of data-plane encapsulation headers. Since the 906 LISP mapping system can hold many types of address formats, it can 907 represent the encapsulation format supported by an RLOC as well. 908 When an encapsulator receives a Map-Reply with an Encapsulation 909 Format LCAF Type encoded in an RLOC-record, it can select an 910 encapsulation format, that it can support, from any of the 911 encapsulation protocols which have the bit set to 1 in this LCAF 912 type. 914 Encapsulation Format Address Format: 916 0 1 2 3 917 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 918 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 919 | AFI = 16387 | Rsvd1 | Flags | 920 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 921 | Type = 16 | Rsvd2 | 4 + n | 922 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 923 | Reserved-for-Future-Encapsulations |U|G|N|v|V|l|L| 924 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 925 | AFI = x | Address ... | 926 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 928 Rsvd1/Rsvd2: must be set to zero and ignored on receipt. 930 Length value n: length in bytes of the AFI address that follows the 931 next 32-bits including the AFI field itself. 933 Reserved-for-Future-Encapsulations: must be set to zero and ignored 934 on receipt. This field will get bits allocated to future 935 encapsulations, as they are created. 937 L: The RLOCs listed in the AFI encoded addresses in the next longword 938 can accept layer3 LISP encapsulation using destination UDP port 939 4341 [RFC6830]. 941 l: The RLOCs listed in the AFI encoded addresses in the next longword 942 can accept layer2 LISP encapsulation using destination UDP port 943 8472 [L2-LISP]. 945 V: The RLOCs listed in the AFI encoded addresses in the next longword 946 can accept VXLAN encapsulation using destination UDP port 4789 947 [RFC7348]. 949 v: The RLOCs listed in the AFI encoded addresses in the next longword 950 can accept VXLAN-GPE encapsulation using destination UDP port 4790 951 [GPE]. 953 N: The RLOCs listed in the AFI encoded addresses in the next longword 954 can accept NV-GRE encapsulation using IPv4/ IPv6 protocol number 955 47 [NVGRE]. 957 G: The RLOCs listed in the AFI encoded addresses in the next longword 958 can accept GENEVE encapsulation using destination UDP port 6081 959 [GENEVE]. 961 U: The RLOCs listed in the AFI encoded addresses in the next longword 962 can accept GUE encapsulation using destination UDP port TBD [GUE]. 964 4.16. Applications for AFI List Type 966 4.16.1. Binding IPv4 and IPv6 Addresses 968 When header translation between IPv4 and IPv6 is desirable a LISP 969 Canonical Address can use the AFI List Type to carry multiple AFIs in 970 one LCAF AFI. 972 Address Binding LISP Canonical Address Format: 974 0 1 2 3 975 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 976 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 977 | AFI = 16387 | Rsvd1 | Flags | 978 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 979 | Type = 1 | Rsvd2 | 2 + 4 + 2 + 16 | 980 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 981 | AFI = 1 | IPv4 Address ... | 982 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 983 | ... IPv4 Address | AFI = 2 | 984 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 985 | IPv6 Address ... | 986 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 987 | ... IPv6 Address ... | 988 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 989 | ... IPv6 Address ... | 990 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 991 | ... IPv6 Address | 992 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 994 Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI 995 encoded addresses are used. 997 This type of address format can be included in a Map-Request when the 998 address is being used as an EID, but the Mapping Database System 999 lookup destination can use only the IPv4 address. This is so a 1000 Mapping Database Service Transport System, such as LISP-ALT 1001 [RFC6836], can use the Map-Request destination address to route the 1002 control message to the desired LISP site. 1004 4.16.2. Layer-2 VPNs 1006 When MAC addresses are stored in the LISP Mapping Database System, 1007 the AFI List Type can be used to carry AFI 6. 1009 MAC Address LISP Canonical Address Format: 1011 0 1 2 3 1012 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1013 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1014 | AFI = 16387 | Rsvd1 | Flags | 1015 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1016 | Type = 1 | Rsvd2 | 2 + 6 | 1017 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1018 | AFI = 6 | Layer-2 MAC Address ... | 1019 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1020 | ... Layer-2 MAC Address | 1021 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1023 Length: length in bytes is fixed at 8 when MAC address AFI encoded 1024 addresses are used. 1026 This address format can be used to connect layer-2 domains together 1027 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 1028 In this use-case, a MAC address is being used as an EID, and the 1029 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 1030 even another MAC address being used as an RLOC. 1032 4.16.3. ASCII Names in the Mapping Database 1034 If DNS names or URIs are stored in the LISP Mapping Database System, 1035 the AFI List Type can be used to carry an ASCII string where it is 1036 delimited by length 'n' of the LCAF Length encoding. 1038 ASCII LISP Canonical Address Format: 1040 0 1 2 3 1041 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1042 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1043 | AFI = 16387 | Rsvd1 | Flags | 1044 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1045 | Type = 1 | Rsvd2 | 2 + n | 1046 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1047 | AFI = 17 | DNS Name or URI ... | 1048 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1050 Length value n: length in bytes AFI=17 field and the null-terminated 1051 ASCII string (the last byte of 0 is included). 1053 4.16.4. Using Recursive LISP Canonical Address Encodings 1055 When any combination of above is desirable, the AFI List Type value 1056 can be used to carry within the LCAF AFI another LCAF AFI. 1058 Recursive LISP Canonical Address Format: 1060 0 1 2 3 1061 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1062 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1063 | AFI = 16387 | Rsvd1 | Flags | 1064 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1065 | Type = 1 | Rsvd2 | 4 + 8 + 2 + 4 | 1066 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1067 | AFI = 16387 | Rsvd1 | Flags | 1068 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1069 | Type = 4 | Rsvd2 | 12 | 1070 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1071 | IP TOS, IPv6 QQS or Flow Label | Protocol | 1072 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1073 | Local Port | Remote Port | 1074 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1075 | AFI = 1 | IPv4 Address ... | 1076 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1077 | ... IPv4 Address | 1078 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1080 Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is 1081 included. 1083 This format could be used by a Mapping Database Transport System, 1084 such as LISP-ALT [RFC6836], where the AFI=1 IPv4 address is used as 1085 an EID and placed in the Map-Request destination address by the 1086 sending LISP system. The ALT system can deliver the Map-Request to 1087 the LISP destination site independent of the Application Data Type 1088 AFI payload values. When this AFI is processed by the destination 1089 LISP site, it can return different locator-sets based on the type of 1090 application or level of service that is being requested. 1092 4.16.5. Compatibility Mode Use Case 1094 A LISP system should use the AFI List Type format when sending to 1095 LISP systems that do not support a particular LCAF Type used to 1096 encode locators. This allows the receiving system to be able to 1097 parse a locator address for encapsulation purposes. The list of AFIs 1098 in an AFI List LCAF Type has no semantic ordering and a receiver 1099 should parse each AFI element no matter what the ordering. 1101 Compatibility Mode Address Format: 1103 0 1 2 3 1104 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1105 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1106 | AFI = 16387 | Rsvd1 | Flags | 1107 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1108 | Type = 1 | Rsvd2 | 22 + 6 | 1109 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1110 | AFI = 16387 | Rsvd1 | Flags | 1111 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1112 | Type = 5 | Rsvd2 | 12 + 2 | 1113 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1114 |N| Latitude Degrees | Minutes | Seconds | 1115 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1116 |E| Longitude Degrees | Minutes | Seconds | 1117 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1118 | Altitude | 1119 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1120 | AFI = 0 | AFI = 1 | 1121 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1122 | IPv4 Address | 1123 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1125 If a system does not recognized the Geo Coordinate LCAF Type that is 1126 accompanying a locator address, an encoder can include the Geo 1127 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 1128 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 1129 the list is encoded with a valid AFI value to identify the locator 1130 address. 1132 A LISP system is required to support the AFI List LCAF Type to use 1133 this procedure. It would skip over 10 bytes of the Geo Coordinate 1134 LCAF Type to get to the locator address encoding (an IPv4 locator 1135 address). A LISP system that does support the Geo Coordinate LCAF 1136 Type can support parsing the locator address within the Geo 1137 Coordinate LCAF encoding or in the locator encoding that follows in 1138 the AFI List LCAF. 1140 5. Security Considerations 1142 There are no security considerations for this specification. The 1143 security considerations are documented for the protocols that use 1144 LISP Canonical Addressing. Refer to the those relevant 1145 specifications. 1147 6. IANA Considerations 1149 The Address Family AFI definitions from [AFI] only allocate code- 1150 points for the AFI value itself. The length of the address or entity 1151 that follows is not defined and is implied based on conventional 1152 experience. Where the LISP protocol uses LISP Canonical Addresses 1153 specifically, the address length definitions will be in this 1154 specification and take precedent over any other specification. 1156 An IANA Registry for LCAF Type values will be created. The values 1157 that are considered for use by the main LISP specification [RFC6830] 1158 will be in the IANA Registry. Other Type values used for 1159 experimentation will be defined and described in this document. 1161 7. References 1163 7.1. Normative References 1165 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700, 1166 October 1994. 1168 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and 1169 E. Lear, "Address Allocation for Private Internets", BCP 1170 5, RFC 1918, February 1996. 1172 [RFC4627] Crockford, D., "The application/json Media Type for 1173 JavaScript Object Notation (JSON)", RFC 4627, July 2006. 1175 [RFC6830] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The 1176 Locator/ID Separation Protocol (LISP)", RFC 6830, January 1177 2013. 1179 [RFC6836] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, 1180 "Locator/ID Separation Protocol Alternative Logical 1181 Topology (LISP+ALT)", RFC 6836, January 2013. 1183 [RFC7348] Mahalingam, M., Dutt, D., Duda, K., Agarwal, P., Kreeger, 1184 L., Sridhar, T., Bursell, M., and C. Wright, "Virtual 1185 eXtensible Local Area Network (VXLAN): A Framework for 1186 Overlaying Virtualized Layer 2 Networks over Layer 3 1187 Networks", RFC 7348, August 2014. 1189 7.2. Informative References 1191 [AFI] IANA, , "Address Family Identifier (AFIs)", ADDRESS FAMILY 1192 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 1194 [GENEVE] Gross, J., Sridhar, T., Garg, P., Wright, C., Ganga, I., 1195 Agarwal, P., Duda, K., Dutt, D., and J. Hudson, "Geneve: 1196 Generic Network Virtualization Encapsulation", draft- 1197 gross-geneve-02 (work in progress), . 1199 [GPE] Quinn, P., Agarwal, P., Fernando, R., Kreeger, L., 1200 Kreeger, L., Lewis, D., Maino, F., Smith, M., Yadav, N., 1201 Yong, L., Xu, X., Elzur, U., and P. Garg, "Generic 1202 Protocol Extension for VXLAN", draft-quinn-vxlan-gpe- 1203 03.txt (work in progress), . 1205 [GUE] Herbert, T. and L. Yong, "Generic UDP Encapsulation", 1206 draft-herbert-gue-02.txt (work in progress), . 1208 [JSON-BINARY] 1209 "Universal Binary JSON Specification", URL 1210 http://ubjson.org, . 1212 [L2-LISP] Smith, M., Dutt, D., Farinacci, D., and F. Maino, "Layer 2 1213 (L2) LISP Encapsulation Format", draft-smith-lisp- 1214 layer2-03.txt (work in progress), . 1216 [LISP-DDT] 1217 Fuller, V., Lewis, D., and V. Ermagan, "LISP Delegated 1218 Database Tree", draft-ietf-lisp-ddt-01.txt (work in 1219 progress), . 1221 [LISP-MRSIG] 1222 Farinacci, D. and M. Napierala, "LISP Control-Plane 1223 Multicast Signaling", draft-farinacci-lisp-mr-signaling- 1224 03.txt (work in progress), . 1226 [LISP-NATT] 1227 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 1228 F., and C. White, "NAT traversal for LISP", draft-ermagan- 1229 lisp-nat-traversal-03.txt (work in progress), . 1231 [LISP-RE] Coras, F., Cabellos-Aparicio, A., Domingo-Pascual, J., 1232 Maino, F., and D. Farinacci, "LISP Replication 1233 Engineering", draft-coras-lisp-re-03.txt (work in 1234 progress), . 1236 [LISP-TE] Farinacci, D., Lahiri, P., and M. Kowal, "LISP Traffic 1237 Engineering Use-Cases", draft-farinacci-lisp-te-03.txt 1238 (work in progress), . 1240 [NVGRE] Sridharan, M., Greenberg, A., Wang, Y., Garg, P., 1241 Venkataramiah, N., Duda, K., Ganga, I., Lin, G., Pearson, 1242 M., Thaler, P., and C. Tumuluri, "NVGRE: Network 1243 Virtualization using Generic Routing Encapsulation", 1244 draft-sridharan-virtualization-nvgre-06.txt (work in 1245 progress), . 1247 [WGS-84] Geodesy and Geophysics Department, DoD., "World Geodetic 1248 System 1984", NIMA TR8350.2, January 2000, . 1251 Appendix A. Acknowledgments 1253 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 1254 Skriver, Luigi Iannone, Isidor Kouvelas, and Sander Steffann for 1255 their technical and editorial commentary. 1257 The authors would like to thank Victor Moreno for discussions that 1258 lead to the definition of the Multicast Info LCAF type. 1260 The authors would like to thank Parantap Lahiri and Michael Kowal for 1261 discussions that lead to the definition of the Explicit Locator Path 1262 (ELP) LCAF type. 1264 The authors would like to thank Fabio Maino and Vina Ermagan for 1265 discussions that lead to the definition of the Security Key LCAF 1266 type. 1268 The authors would like to thank Albert Cabellos-Aparicio and Florin 1269 Coras for discussions that lead to the definition of the Replication 1270 List Entry LCAF type. 1272 Thanks goes to Michiel Blokzijl and Alberto Rodriguez-Natal for 1273 suggesting new LCAF types. 1275 Thanks also goes to Terry Manderson for assistance obtaining a LISP 1276 AFI value from IANA. 1278 Appendix B. Document Change Log 1279 B.1. Changes to draft-ietf-lisp-lcaf-07.txt 1281 o Submitted December 2014. 1283 o Add a new LCAF Type called "Encapsulation Format" so decapsulating 1284 xTRs can inform encapsulating xTRs what data-plane encapsulations 1285 they support. 1287 B.2. Changes to draft-ietf-lisp-lcaf-06.txt 1289 o Submitted October 2014. 1291 o Make it clear how sorted RLOC records are done when LCAFs are used 1292 as the RLOC record. 1294 B.3. Changes to draft-ietf-lisp-lcaf-05.txt 1296 o Submitted May 2014. 1298 o Add a length field of the JSON payload that can be used for either 1299 binary or text encoding of JSON data. 1301 B.4. Changes to draft-ietf-lisp-lcaf-04.txt 1303 o Submitted January 2014. 1305 o Agreement among ELP implementors to have the AFI 16-bit field 1306 adjacent to the address. This will make the encoding consistent 1307 with all other LCAF type address encodings. 1309 B.5. Changes to draft-ietf-lisp-lcaf-03.txt 1311 o Submitted September 2013. 1313 o Updated references and author's affilations. 1315 o Added Instance-ID to the Multicast Info Type so there is relative 1316 ease in parsing (S,G) entries within a VPN. 1318 o Add port range encodings to the Application Data LCAF Type. 1320 o Add a new JSON LCAF Type. 1322 o Add Address Key/Value LCAF Type to allow attributes to be attached 1323 to an address. 1325 B.6. Changes to draft-ietf-lisp-lcaf-02.txt 1327 o Submitted March 2013. 1329 o Added new LCAF Type "Replication List Entry" to support LISP 1330 replication engineering use-cases. 1332 o Changed references to new LISP RFCs. 1334 B.7. Changes to draft-ietf-lisp-lcaf-01.txt 1336 o Submitted January 2013. 1338 o Change longitude range from 0-90 to 0-180 in section 4.4. 1340 o Added reference to WGS-84 in section 4.4. 1342 B.8. Changes to draft-ietf-lisp-lcaf-00.txt 1344 o Posted first working group draft August 2012. 1346 o This draft was renamed from draft-farinacci-lisp-lcaf-10.txt. 1348 Authors' Addresses 1350 Dino Farinacci 1351 lispers.net 1352 San Jose, CA 1353 USA 1355 Email: farinacci@gmail.com 1357 Dave Meyer 1358 Brocade 1359 San Jose, CA 1360 USA 1362 Email: dmm@1-4-5.net 1364 Job Snijders 1365 NTT 1366 Tupolevlaan 103a 1367 Schiphol-Rijk 1119 PA 1368 NL 1370 Email: job@ntt.net