CCAMP Working Group Zheyu Fan Internet-Draft Huawei Intended status: Standards Track Expires: September 10, 2017 March 10, 2017 GMPLS Routing Extension for Optical Transport Networks with Beyond 100G in G.709 Edition 5 draft-fan-ccamp-gmpls-g709v5-ospf-ext-00.txt Abstract The International Telecommunication Union Telecommunication Standardization Sector (ITU-T) has extended the Recommendation G.709 to support beyond 100G (B100G) features. Corresponding Open Shortest Path First - Traffic Engineering (OSPF-TE) routing protocol extensions are included in this document. Status of this Memo This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet- Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. This Internet-Draft will expire on September 10, 2017. Copyright Notice Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved. Fan Expires September 2017 [Page 1] draft-fan-ccamp-gmpls-g709v5-ospf-ext-00.txt March, 2017 This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License. Table of Contents 1. Introduction ................................................ 2 2. Terminology ................................................. 2 3. OSPF-TE Extensions for B100G ................................ 3 4. ISCD Format Extensions for B100G ............................ 3 4.1. Switching Capability Specific Information .............. 3 4.2. Supporting of OTUCn sub rates (OTUCn-M) ................ 6 5. Security Considerations ..................................... 7 6. IANA considerations ......................................... 7 7. References .................................................. 7 7.1. Normative References ................................... 7 7.2. Informative References ................................. 8 Authors' Addresses ............................................. 8 1. Introduction G.709 [G.709-2016] defines the interfaces to Optical Transport Network (OTN) and includes new features to support beyond 100G (B100G). In order to advertise this information in routing, this document extends the encoding specific to OTN technology for use in GMPLS OSPF-TE as defined in [RFC7138]. Routing information for Optical Channel (OCh) layer is beyond the scope of this document. Please refer to [RFC6163] and [RFC6566] for further information. 2. Terminology The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119]. Fan Expires September 2017 [Page 2] draft-fan-ccamp-gmpls-g709v5-ospf-ext-00.txt March, 2017 3. OSPF-TE Extensions for B100G As discussed in [GMPLSv5-fwk], OSPF-TE must be extended to be able to advertise the 5G Tributary Slot Granularity, the multiplexing capabilities of ODUCn connection requests, and the support information of OTUCn sub rates (OTUCn-M). 4. ISCD Format Extensions for B100G As defined in [RFC4203], the ISCD describes the Switching Capability of an interface. [RFC7138] defines a new Switching Capability value for OTN. 4.1. Switching Capability Specific Information [RFC7138] defines Bandwidth sub-TLVs for the technology-specific part of the OTN-TDM ISCD and considers two types of Bandwidth sub- TLVs, unreserved bandwidth for fixed containers (Type 1) and unreserved bandwidth for flexible containers (Type 2). In order to support B100G features in OTN, a new signal type value for ODUCn is defined in [GMPLSv5-signal]. ODUCn can represent different fixed bit rates for different values of n. Like ODUk signals, an ODUCn signal occupies fixed bandwidth which does not change over time. Type 1 Bandwidth sub-TLV can be extended to advertise the value of n for ODUCn signal type. As discussed in [GMPLSv5-fwk], OTUCn-M link carries ODUCn signal as OTUCn does, e.g. OTUC3-50 link supporting 250 Gbps bandwidth carries an ODUC3 signal and OTUC3 link supporting 300 Gbps bandwidth also carries an ODUC3 signal. In order to distinguish the ODUCn signals in OTUCn-M link from that in OTUCn link, Type 1 Bandwidth sub-TLV must be able to advertise the number of available Tributary Slots for ODUCn signal type. As only ODUCn signal type is with 5-Gbps TS granularity, Signal Type being ODUCn can indicate that the TS granularity is 5 Gbps and extra definition for TS granularity is not needed. This document extends the Type 1 Bandwidth sub-TLV to advertise the value of n, the number of available Tributary Slots, and the Tributary Slot Granularity for ODUCn signal type. The format of extended Bandwidth sub-TLV for Type 1 containers is depicted in the following figure: Fan Expires September 2017 [Page 3] draft-fan-ccamp-gmpls-g709v5-ospf-ext-00.txt March, 2017 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Signal Type | Num of stages |T|S| TSG | Res | Priority | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Stage#1 | ... | Stage#N | Padding ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved ODUCn at Prio 0 | ...... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unreserved ODUCn at Prio 7 | Unreserved Padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | n | Reserved | Num of TS | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 1: extended Bandwidth sub-TLV for Type 1 containers TSG (3 bits): Tributary Slot Granularity. TSG MUST be set to 0 (Ignored) when Signal Type is ODUCn. Stage (8 bits): in extreme case (e.g. ODU0->ODU1->ODU2->ODU3->ODU4- >ODUC1), the number of stages can be 5, thus stage fields can occupy two rows. n (8 bits): the number of client data entities for ODUCn. When Signal Type is not ODUCn, n MUST be set to 0 and ignored on receipt. Reserved (8 bits): this field is reserved and MUST be set to 0 and ignored on receipt. Num of TS (16 bits): the number of 5-Gbps TS that ODUCn can occupy to support OTUCn-M link. If a particular value of M is not indicated in OTUCn-M link, the signal contains 20*n 5-Gbps TS. When Signal Type is not ODUCn, this field MUST be set to 0 and ignored on receipt. Note that the above three fields (n, Reserved, and Num of TS fields) are useful only when Signal Type is ODUCn. When Signal Type is not ODUCn, these three fields MUST be omitted. The values of rest fields are the same as defined in Section 4.1.3 of [RFC7138]. The following example shows the multiplexing to ODUCn. In this example, an OTUC1 component link is considered with multiplexing hierarchy ODU0->ODU1->ODU2->ODU3->ODU4->ODUC1 and with supported Fan Expires September 2017 [Page 4] draft-fan-ccamp-gmpls-g709v5-ospf-ext-00.txt March, 2017 priorities 0 and 2. The T and S fields are not relevant to this example and filled with Xs. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sig type=ODUCn| #stages = 0 |X|X|TSG=0|0 0 0|1|0|1|0|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODUCn at Prio 0 = 1 | Unres ODUCn at Prio 2 = 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | n = 1 |0 0 0 0 0 0 0 0| Num of TS = 20 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sig type=ODU4 | #stages = 1 |X|X|TSG=3|0 0 0|1|0|1|0|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODUCn | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU4 at Prio 0 = 1 | Unres ODU4 at Prio 2 = 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sig type=ODU3 | #stages = 2 |X|X|TSG=1|0 0 0|1|0|1|0|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU4 | Stage#2=ODUCn | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU3 at Prio 0 = 2 | Unres ODU3 at Prio 2 = 2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sig type=ODU2 | #stages = 3 |X|X|TSG=1|0 0 0|1|0|1|0|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU3 | Stage#2=ODU4 | Stage#3=ODUCn | Padding | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU2 at Prio 0 = 10 | Unres ODU2 at Prio 2 = 10 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sig type=ODU1 | #stages = 4 |X|X|TSG=1|0 0 0|1|0|1|0|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU2 | Stage#2=ODU3 | Stage#3=ODU4 | Stage#4=ODUCn | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU1 at Prio 0 = 4 | Unres ODU1 at Prio 2 = 4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 16 | Fan Expires September 2017 [Page 5] draft-fan-ccamp-gmpls-g709v5-ospf-ext-00.txt March, 2017 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sig type=ODU0 | #stages = 5 |X|X|TSG=0|0 0 0|1|0|1|0|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#1=ODU1 | Stage#2=ODU2 | Stage#3=ODU3 | Stage#4=ODU4 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Stage#5=ODUCn | Padding (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODU0 at Prio 0 = 2 | Unres ODU0 at Prio 2 = 2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 2: Multiplexing to ODUC1 4.2. Supporting of OTUCn sub rates (OTUCn-M) The OTUCn-M frame is a type of OTUCn frame which contains n instances of OTUC, ODUC and OPUC overhead and M 5-Gbit/s OPUCn tributary slots. If a particular value of M is not indicated, the frame contains 20*n tributary slots. For path computation, OTUCn-M link can provide a bandwidth which is not an integral multiple of the bandwidth of OTUC1. The MAX LSP Bandwidth field and SCSI field for ODUCn signal in ISCD shall be configured as the capacity of OTUCn-M can provide. The following example illustrates the MAX LSP Bandwidth fields of the ISCD for OTUCn-M link and the Bandwidth sub-TLV for ODUCn signal. In this example, an OTUC2-30 link is considered with supported priorities 0 and 2. The T and S fields are not relevant to this example and filled with Xs. 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 0 = 150 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 1 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 2 = 150 Gbps | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 3 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 4 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Fan Expires September 2017 [Page 6] draft-fan-ccamp-gmpls-g709v5-ospf-ext-00.txt March, 2017 | MAX LSP Bandwidth at priority 5 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 6 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | MAX LSP Bandwidth at priority 7 = 0 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Switching Capability Specific Information | | (variable length) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 3: ISCD for ODUC2 in OTUC2-30 link +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 (Unres-fix) | Length = 12 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sig type=ODUCn| #stages = 0 |X|X|TSG=0|0 0 0|1|0|1|0|0|0|0|0| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Unres ODUCn at Prio 0 = 1 | Unres ODUCn at Prio 2 = 1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | n = 2 | Reserved | Num of TS = 30 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 4: ODUC2 in OTUC2-30 link 5. Security Considerations This document does not introduce any new security considerations to the existing OSPF-TE protocols. Refer to [RFC7138] for further details of the specific security measures. Additionally, [RFC5920] provides an overview of security vulnerabilities and protection mechanisms for the GMPLS control plane. 6. IANA considerations TBD. 7. References 7.1. Normative References [G.709-2016] ITU-T, "Interface for the Optical Transport Network (OTN)", G.709/Y.1331 Recommendation, June 2016. Fan Expires September 2017 [Page 7] draft-fan-ccamp-gmpls-g709v5-ospf-ext-00.txt March, 2017 [RFC2119] S. Bradner, "Key words for use in RFCs to indicate requirements levels", RFC 2119, March 1997. [RFC4203] K. Kompella, Y. Rekhter, 'OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)', RFC4203, October 2005. [RFC5920] L. Fang, 'Security Framework for MPLS and GMPLS Networks', RFC5920, July 2010. [RFC6163] Y. Lee, G. Bernstein, W. Imajuku, 'Framework for GMPLS and Path Computation Element (PCE) Control of Wavelength Switched Optical Networks (WSONs)', RFC6163, April 2011. [RFC6566] Y. Lee, G. Bernstein, D. Li, G. Martinelli, 'A Framework for the Control of Wavelength Switched Optical Networks (WSONs) with Impairments', RFC6566, March 2012. [RFC7138] D. Ceccarelli, F. Zhang, S. Belotti, R. Rao, J. Drake, 'Traffic Engineering Extensions to OSPF for GMPLS Control of Evolving G.709 Optical Transport Networks', RFC7138, March 2014. [GMPLSv5-fwk] H. Zheng, I. Busi, Z. Ali, S. Belotti, D. Ceccarelli, D. King, 'Framework for GMPLS Control of Optical Transport Networks in G.709 Edition 5', Work in Progress, March 2017. [GMPLSv5-signal] H. Zheng, I. Busi, Z. Ali, D. Ceccarelli, D. King, 'GMPLS Signaling Extension for Optical Transport Networks with Beyond 100G in G.709 Edition 5', Work in Progress, March 2017. 7.2. Informative References Authors' Addresses Zheyu Fan Huawei Technologies Email: fanzheyu2@huawei.com Fan Expires September 2017 [Page 8]