IDMR Working Group Keith McCloghrie INTERNET-DRAFT Dino Farinacci Expires January 1999 cisco Systems Dave Thaler Microsoft 28 July 1998 Protocol Independent Multicast MIB Status of this Memo This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as ``work in progress.'' Copyright Notice Copyright (C) The Internet Society (1998). All Rights Reserved. 1. Introduction This memo defines an experimental portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes managed objects used for managing the Protocol Independent Multicast (PIM) protocol [16,17,18,19]. This MIB module is applicable to IP multicast routers which implement PIM. Draft PIM MIB July 1998 2. Revision History A record of changes which will be removed before publication. 28 July 1998 (1) added sparseDense as a legal value for pimInterfaceMode for backwards compatability with PIMv1 routers which can do both modes on the same interface. (2) filled in Security Considerations, added copyright, updated SNMP boilerplate, and updated references 20 November 1997 (1) undeprecated pimInterfaceMode since ipMRouteInterfaceProtocol was changed to read-only. (2) added pimRPSetComponent as an index to the RP-Set Table. 25 March (1) deprecated pimInterfaceMode, which is obsoleted by ipMRouteInterfaceProtocol in the IP Multicast MIB. (2) deprecated pimNeighborMode (to retain support for PIM version 1). (3) moved pimCandidateBSRPreference to the PIM Interface Table and renamed it pimInterfaceCBSRPreference. (4) moved pimBSRAddress, pimBSRExpiryTime, and pimCandidateRPHoldTime to the new PIM Component Table, to manage border routers connected to multiple PIM-SM domains. (5) renamed pimMessageInterval to pimJoinPruneInterval and pimInterfaceQueryInterval to pimInterfaceHelloInterval. (6) added pimInterfaceJoinPruneInterval. (7) added pimRPSetComponent as an INDEX in the PIM RP-Set Table 9 June: (1) added pimRPSetTable and pimCandidateRPTable. Expires January 1999 [Page 2] Draft PIM MIB July 1998 (2) deprecated pimRPTable (to retain support for PIM version 1). (3) removed pimGroupTable. (4) added pimBSRAddress, pimBSRExpiryTime, pimCandidateBSRPreference and pimCandidateRPHoldTime. 4 November: (1) changed the PIM Group table to hold information common to all RPs of a group. (2) added the PIM RP table with each entry specific to an RP of a group. (3) added pimNeighborMode (4) modified the pimGroupTable to be indexed by pimGroupAddress and pimGroupRP, in order to allow for multiple RPs per group. 15 July - initial version. 3. The SNMP Network Management Framework The SNMP Management Framework presently consists of five major components: o An overall architecture, described in RFC 2271 [1]. o Mechanisms for describing and naming objects and events for the purpose of management. The first version of this Structure of Management Information (SMI) is called SMIv1 and described in RFC 1155 [2], RFC 1212 [3] and RFC 1215 [4]. The second version, called SMIv2, is described in RFC 1902 [5], RFC 1903 [6] and RFC 1904 [7]. o Message protocols for transferring management information. The first version of the SNMP message protocol is called SNMPv1 and described in RFC 1157 [8]. A second version of the SNMP message protocol, which is not an Internet standards track protocol, is called SNMPv2c and described in RFC 1901 [9] and RFC 1906 [10]. The third version of the message protocol is called SNMPv3 and described in RFC 1906 [10], RFC 2272 [11] and RFC 2274 [12]. Expires January 1999 [Page 3] Draft PIM MIB July 1998 o Protocol operations for accessing management information. The first set of protocol operations and associated PDU formats is described in RFC 1157 [8]. A second set of protocol operations and associated PDU formats is described in RFC 1905 [13]. o A set of fundamental applications described in RFC 2273 [14] and the view-based access control mechanism described in RFC 2275 [15]. Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the mechanisms defined in the SMI. This memo specifies a MIB module that is compliant to the SMIv2. A MIB conforming to the SMIv1 can be produced through the appropriate translations. The resulting translated MIB must be semantically equivalent, except where objects or events are omitted because no translation is possible (use of Counter64). Some machine readable information in SMIv2 will be converted into textual descriptions in SMIv1 during the translation process. However, this loss of machine readable information is not considered to change the semantics of the MIB. 3.1. Object Definitions Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. Objects in the MIB are defined using the subset of Abstract Syntax Notation One (ASN.1) defined in the SMI. In particular, each object type is named by an OBJECT IDENTIFIER, an administratively assigned name. The object type together with an object instance serves to uniquely identify a specific instantiation of the object. For human convenience, we often use a textual string, termed the descriptor, to refer to the object type. 4. Overview This MIB module contains one scalar and six tables. The tables are: (1) the PIM Interface Table which contains one row for each of the router's PIM interfaces; (2) the PIM Neighbor Table which contains one row for each of the router's PIM neighbors; and Expires January 1999 [Page 4] Draft PIM MIB July 1998 (3) the PIM RP-Set Table which contains the PIM (version 2) information for sets of candidate Rendezvous Points (RPs) for IP multicast group addresses with particular address prefixes. (4) the PIM Candidate-RP Table which contains the IP multicast groups for which the local router is to advertise itself as a Candidate- RP. If this table is empty, then the local router advertises itself as a Candidate-RP for all groups. (5) the (deprecated) PIM RP Table which contains the PIM (version 1) information for IP multicast groups which is common to all RPs of a group; (6) the PIM Component Table which contains one row for each of the PIM domains to which the router is connected. Expires January 1999 [Page 5] Draft PIM MIB July 1998 5. Definitions PIM-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, experimental, Integer32, IpAddress, TimeTicks FROM SNMPv2-SMI RowStatus FROM SNMPv2-TC MODULE-COMPLIANCE, OBJECT-GROUP FROM SNMPv2-CONF; pimMIB MODULE-IDENTITY LAST-UPDATED "9807281630Z" ORGANIZATION "IETF IDMR Working Group." CONTACT-INFO " Keith McCloghrie Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 US Phone: +1 408 526 5260 EMail: kzm@cisco.com" DESCRIPTION "The MIB module for management of PIM routers." ::= { experimental 61 } pimMIBObjects OBJECT IDENTIFIER ::= { pimMIB 1 } pim OBJECT IDENTIFIER ::= { pimMIBObjects 1 } pimJoinPruneInterval OBJECT-TYPE SYNTAX Integer32 UNITS "seconds" MAX-ACCESS read-write STATUS current DESCRIPTION "The default interval at which periodic PIM-SM Join/Prune messages are to be sent." ::= { pim 1 } Expires January 1999 [Page 6] Draft PIM MIB July 1998 -- The PIM Interface Table pimInterfaceTable OBJECT-TYPE SYNTAX SEQUENCE OF PimInterfaceEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The (conceptual) table listing the router's PIM interfaces. IGMP and PIM are enabled on all interfaces listed in this table." ::= { pim 2 } pimInterfaceEntry OBJECT-TYPE SYNTAX PimInterfaceEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry (conceptual row) in the pimInterfaceTable." INDEX { pimInterfaceIfIndex } ::= { pimInterfaceTable 1 } PimInterfaceEntry ::= SEQUENCE { pimInterfaceIfIndex Integer32, pimInterfaceAddress IpAddress, pimInterfaceNetMask IpAddress, pimInterfaceMode INTEGER, pimInterfaceDR IpAddress, pimInterfaceHelloInterval Integer32, pimInterfaceStatus RowStatus, pimInterfaceJoinPruneInterval Integer32, pimInterfaceCBSRPreference Integer32 } pimInterfaceIfIndex OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS not-accessible STATUS current DESCRIPTION "The ifIndex value of this PIM interface." ::= { pimInterfaceEntry 1 } pimInterfaceAddress OBJECT-TYPE SYNTAX IpAddress MAX-ACCESS read-only STATUS current Expires January 1999 [Page 7] Draft PIM MIB July 1998 DESCRIPTION "The IP address of the PIM interface." ::= { pimInterfaceEntry 2 } pimInterfaceNetMask OBJECT-TYPE SYNTAX IpAddress MAX-ACCESS read-only STATUS current DESCRIPTION "The network mask for the IP address of the PIM interface." ::= { pimInterfaceEntry 3 } pimInterfaceMode OBJECT-TYPE SYNTAX INTEGER { dense(1), sparse(2), sparseDense(3) } MAX-ACCESS read-create STATUS current DESCRIPTION "The configured mode of this PIM interface. A value of sparseDense is only valid for PIMv1." DEFVAL { dense } ::= { pimInterfaceEntry 4 } pimInterfaceDR OBJECT-TYPE SYNTAX IpAddress MAX-ACCESS read-only STATUS current DESCRIPTION "The Designated Router on this PIM interface. For point- to-point interfaces, this object has the value 0.0.0.0." ::= { pimInterfaceEntry 5 } pimInterfaceHelloInterval OBJECT-TYPE SYNTAX Integer32 UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "The frequency at which PIM Hello messages are transmitted on this interface." DEFVAL { 30 } ::= { pimInterfaceEntry 6 } pimInterfaceStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create Expires January 1999 [Page 8] Draft PIM MIB July 1998 STATUS current DESCRIPTION "The status of this entry. Creating the entry enables PIM on the interface; destroying the entry disables PIM on the interface." ::= { pimInterfaceEntry 7 } pimInterfaceJoinPruneInterval OBJECT-TYPE SYNTAX Integer32 UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "The frequency at which PIM Join/Prune messages are transmitted on this PIM interface. The default value of this object is the pimJoinPruneInterval." ::= { pimInterfaceEntry 8 } pimInterfaceCBSRPreference OBJECT-TYPE SYNTAX Integer32 (-1..255) MAX-ACCESS read-create STATUS current DESCRIPTION "The preference value for the local interface as a candidate bootstrap router. The value of -1 is used to indicate that the local interface is not a candidate BSR interface." DEFVAL { 0 } ::= { pimInterfaceEntry 9 } -- The PIM Neighbor Table pimNeighborTable OBJECT-TYPE SYNTAX SEQUENCE OF PimNeighborEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The (conceptual) table listing the router's PIM neighbors." ::= { pim 3 } pimNeighborEntry OBJECT-TYPE SYNTAX PimNeighborEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION Expires January 1999 [Page 9] Draft PIM MIB July 1998 "An entry (conceptual row) in the pimNeighborTable." INDEX { pimNeighborAddress } ::= { pimNeighborTable 1 } PimNeighborEntry ::= SEQUENCE { pimNeighborAddress IpAddress, pimNeighborIfIndex Integer32, pimNeighborUpTime TimeTicks, pimNeighborExpiryTime TimeTicks, pimNeighborMode INTEGER } pimNeighborAddress OBJECT-TYPE SYNTAX IpAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The IP address of the PIM neighbor for which this entry contains information." ::= { pimNeighborEntry 1 } pimNeighborIfIndex OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS read-only STATUS current DESCRIPTION "The value of ifIndex for the interface used to reach this PIM neighbor." ::= { pimNeighborEntry 2 } pimNeighborUpTime OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The time since this PIM neighbor (last) became a neighbor of the local router." ::= { pimNeighborEntry 3 } pimNeighborExpiryTime OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The minimum time remaining before this PIM neighbor will be Expires January 1999 [Page 10] Draft PIM MIB July 1998 aged out." ::= { pimNeighborEntry 4 } pimNeighborMode OBJECT-TYPE SYNTAX INTEGER { dense(1), sparse(2) } MAX-ACCESS read-only STATUS deprecated DESCRIPTION "The active PIM mode of this neighbor. This object is deprecated for PIMv2 routers since all neighbors on the interface must be either dense or sparse as determined by the protocol running on the interface." ::= { pimNeighborEntry 5 } -- The PIM RP Table pimRPTable OBJECT-TYPE SYNTAX SEQUENCE OF PimRPEntry MAX-ACCESS not-accessible STATUS deprecated DESCRIPTION "The (conceptual) table listing PIM version 1 information for the Rendezvous Points (RPs) for IP multicast groups. This table is deprecated since its function is replaced by the pimRPSetTable for PIM version 2." ::= { pim 5 } pimRPEntry OBJECT-TYPE SYNTAX PimRPEntry MAX-ACCESS not-accessible STATUS deprecated DESCRIPTION "An entry (conceptual row) in the pimRPTable. There is one entry per RP address for each IP multicast group." INDEX { pimRPGroupAddress, pimRPAddress } ::= { pimRPTable 1 } Expires January 1999 [Page 11] Draft PIM MIB July 1998 PimRPEntry ::= SEQUENCE { pimRPGroupAddress IpAddress, pimRPAddress IpAddress, pimRPState INTEGER, pimRPStateTimer TimeTicks, pimRPLastChange TimeTicks, pimRPRowStatus RowStatus } pimRPGroupAddress OBJECT-TYPE SYNTAX IpAddress MAX-ACCESS not-accessible STATUS deprecated DESCRIPTION "The IP multicast group address for which this entry contains information about an RP." ::= { pimRPEntry 1 } pimRPAddress OBJECT-TYPE SYNTAX IpAddress MAX-ACCESS not-accessible STATUS deprecated DESCRIPTION "The IP multicast group address for which this entry contains PIM version 1 information about an RP." ::= { pimRPEntry 2 } pimRPState OBJECT-TYPE SYNTAX INTEGER { up(1), down(2) } MAX-ACCESS read-only STATUS deprecated DESCRIPTION "The state of the RP." ::= { pimRPEntry 3 } pimRPStateTimer OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS deprecated DESCRIPTION "The minimum time remaining before the next state change. When pimRPState is up, this is the minimum time which must expire until it can be declared down. When pimRPState is down, this is the time until it will be declared up (in order to retry)." Expires January 1999 [Page 12] Draft PIM MIB July 1998 ::= { pimRPEntry 4 } pimRPLastChange OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS deprecated DESCRIPTION "The value of sysUpTime at the time when the corresponding instance of pimRPState last changed its value." ::= { pimRPEntry 5 } pimRPRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS deprecated DESCRIPTION "The status of this row, by which new entries may be created, or old entries deleted from this table." ::= { pimRPEntry 6 } -- The PIM RP-Set Table pimRPSetTable OBJECT-TYPE SYNTAX SEQUENCE OF PimRPSetEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The (conceptual) table listing PIM information for candidate Rendezvous Points (RPs) for IP multicast groups. When the local router is the BSR, this information is obtained from received Candidate-RP-Advertisements. When the local router is not the BSR, this information is obtained from received RP-Set messages." ::= { pim 6 } pimRPSetEntry OBJECT-TYPE SYNTAX PimRPSetEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry (conceptual row) in the pimRPSetTable." INDEX { pimRPSetComponent, pimRPSetGroupAddress, pimRPSetGroupMask, pimRPSetAddress } ::= { pimRPSetTable 1 } Expires January 1999 [Page 13] Draft PIM MIB July 1998 PimRPSetEntry ::= SEQUENCE { pimRPSetGroupAddress IpAddress, pimRPSetGroupMask IpAddress, pimRPSetAddress IpAddress, pimRPSetHoldTime Integer32, pimRPSetExpiryTime TimeTicks, pimRPSetComponent Integer32 } pimRPSetGroupAddress OBJECT-TYPE SYNTAX IpAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The IP multicast group address which, when combined with pimRPSetGroupMask, gives the group prefix for which this entry contains information about the Candidate-RP." ::= { pimRPSetEntry 1 } pimRPSetGroupMask OBJECT-TYPE SYNTAX IpAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The multicast group address mask which, when combined with pimRPSetGroupAddress, gives the group prefix for which this entry contains information about the Candidate-RP." ::= { pimRPSetEntry 2 } pimRPSetAddress OBJECT-TYPE SYNTAX IpAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The IP address of the Candidate-RP." ::= { pimRPSetEntry 3 } pimRPSetHoldTime OBJECT-TYPE SYNTAX Integer32 (0..255) UNITS "seconds" MAX-ACCESS read-only STATUS current DESCRIPTION "The holdtime of a Candidate-RP. If the local router is not the BSR, this value is 0." Expires January 1999 [Page 14] Draft PIM MIB July 1998 ::= { pimRPSetEntry 4 } pimRPSetExpiryTime OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The minimum time remaining before the Candidate-RP will be declared down. If the local router is not the BSR, this value is 0." ::= { pimRPSetEntry 5 } pimRPSetComponent OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS not-accessible STATUS current DESCRIPTION "A number uniquely identifying the component. Each protocol instance connected to a separate domain should have a different index value." ::= { pimRPSetEntry 6 } -- The PIM Candidate-RP Table pimCandidateRPTable OBJECT-TYPE SYNTAX SEQUENCE OF PimCandidateRPEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The (conceptual) table listing the IP multicast groups for which the local router is to advertise itself as a Candidate-RP when the value of pimCandidateRPHoldTime is non-zero. If this table is empty, then the local router will advertise itself as a Candidate-RP for all groups (providing the value of pimCandidateRPHoldTime is non- zero)." ::= { pim 11 } pimCandidateRPEntry OBJECT-TYPE SYNTAX PimCandidateRPEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry (conceptual row) in the pimCandidateRPTable." Expires January 1999 [Page 15] Draft PIM MIB July 1998 INDEX { pimCandidateRPGroupAddress, pimCandidateRPGroupMask } ::= { pimCandidateRPTable 1 } PimCandidateRPEntry ::= SEQUENCE { pimCandidateRPGroupAddress IpAddress, pimCandidateRPGroupMask IpAddress, pimCandidateRPAddress IpAddress, pimCandidateRPRowStatus RowStatus } pimCandidateRPGroupAddress OBJECT-TYPE SYNTAX IpAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The IP multicast group address which, when combined with pimCandidateRPGroupMask, identifies a group prefix for which the local router will advertise itself as a Candidate-RP." ::= { pimCandidateRPEntry 1 } pimCandidateRPGroupMask OBJECT-TYPE SYNTAX IpAddress MAX-ACCESS not-accessible STATUS current DESCRIPTION "The multicast group address mask which, when combined with pimCandidateRPGroupMask, identifies a group prefix for which the local router will advertise itself as a Candidate-RP." ::= { pimCandidateRPEntry 2 } pimCandidateRPAddress OBJECT-TYPE SYNTAX IpAddress MAX-ACCESS read-create STATUS current DESCRIPTION "The (unicast) address of the interface which will be advertised as a Candidate-RP." ::= { pimCandidateRPEntry 3 } pimCandidateRPRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION Expires January 1999 [Page 16] Draft PIM MIB July 1998 "The status of this row, by which new entries may be created, or old entries deleted from this table." ::= { pimCandidateRPEntry 4 } -- The PIM Component Table pimComponentTable OBJECT-TYPE SYNTAX SEQUENCE OF PimComponentEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The (conceptual) table containing objects specific to a PIM domain. One row exists for each domain to which the router is connected." ::= { pim 12 } pimComponentEntry OBJECT-TYPE SYNTAX PimComponentEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry (conceptual row) in the pimComponentTable." INDEX { pimComponentIndex } ::= { pimComponentTable 1 } PimComponentEntry ::= SEQUENCE { pimComponentIndex Integer32, pimComponentBSRAddress IpAddress, pimComponentBSRExpiryTime TimeTicks, pimComponentCRPHoldTime Integer32, pimComponentStatus RowStatus } pimComponentIndex OBJECT-TYPE SYNTAX Integer32 MAX-ACCESS not-accessible STATUS current DESCRIPTION "A number uniquely identifying the component. Each protocol instance connected to a separate domain should have a different index value." ::= { pimComponentEntry 1 } pimComponentBSRAddress OBJECT-TYPE SYNTAX IpAddress Expires January 1999 [Page 17] Draft PIM MIB July 1998 MAX-ACCESS read-only STATUS current DESCRIPTION "The IP address of the bootstrap router (BSR) for the local PIM region." ::= { pimComponentEntry 2 } pimComponentBSRExpiryTime OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The minimum time remaining before the bootstrap router in the local domain will be declared down. For candidate BSRs, this is the time until the component sends an RP-Set message. For other routers, this is the time until it may accept an RP-Set message from a lower candidate BSR." ::= { pimComponentEntry 3 } pimComponentCRPHoldTime OBJECT-TYPE SYNTAX Integer32 (0..255) UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "The holdtime of the component when it is a candidate RP in the local domain. The value of 0 is used to indicate that the local system is not a Candidate-RP." DEFVAL { 0 } ::= { pimComponentEntry 4 } pimComponentStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this entry. Creating the entry creates another protocol instance; destroying the entry disables a protocol instance." ::= { pimComponentEntry 5 } Expires January 1999 [Page 18] Draft PIM MIB July 1998 -- conformance information pimMIBConformance OBJECT IDENTIFIER ::= { pimMIB 2 } pimMIBCompliances OBJECT IDENTIFIER ::= { pimMIBConformance 1 } pimMIBGroups OBJECT IDENTIFIER ::= { pimMIBConformance 2 } -- compliance statements pimV1MIBCompliance MODULE-COMPLIANCE STATUS deprecated DESCRIPTION "The compliance statement for routers running PIMv1 and implementing the PIM MIB." MODULE -- this module MANDATORY-GROUPS { pimV1MIBGroup } ::= { pimMIBCompliances 1 } pimSparseV2MIBCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for routers running PIM Sparse Mode and implementing the PIM MIB." MODULE -- this module MANDATORY-GROUPS { pimV2MIBGroup } OBJECT pimInterfaceStatus MIN-ACCESS read-only DESCRIPTION "Write access is not required." ::= { pimMIBCompliances 2 } pimDenseV2MIBCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The compliance statement for routers running PIM Dense Mode and implementing the PIM MIB." MODULE -- this module MANDATORY-GROUPS { pimDenseV2MIBGroup } OBJECT pimInterfaceStatus MIN-ACCESS read-only DESCRIPTION Expires January 1999 [Page 19] Draft PIM MIB July 1998 "Write access is not required." ::= { pimMIBCompliances 3 } -- units of conformance pimV2MIBGroup OBJECT-GROUP OBJECTS { pimJoinPruneInterval, pimNeighborIfIndex, pimNeighborUpTime, pimNeighborExpiryTime, pimInterfaceAddress, pimInterfaceNetMask, pimInterfaceDR, pimInterfaceHelloInterval, pimInterfaceStatus, pimInterfaceJoinPruneInterval, pimInterfaceCBSRPreference, pimInterfaceMode, pimRPSetHoldTime, pimRPSetExpiryTime, pimComponentBSRAddress, pimComponentBSRExpiryTime, pimComponentCRPHoldTime, pimComponentStatus } STATUS current DESCRIPTION "A collection of objects to support management of PIM Sparse Mode (version 2) routers." ::= { pimMIBGroups 2 } pimDenseV2MIBGroup OBJECT-GROUP OBJECTS { pimNeighborIfIndex, pimNeighborUpTime, pimNeighborExpiryTime, pimInterfaceAddress, pimInterfaceNetMask, pimInterfaceDR, pimInterfaceHelloInterval, pimInterfaceStatus, pimInterfaceMode } STATUS current DESCRIPTION "A collection of objects to support management of PIM Dense Mode (version 2) routers." ::= { pimMIBGroups 5 } pimV2CandidateRPMIBGroup OBJECT-GROUP OBJECTS { pimCandidateRPAddress, pimCandidateRPRowStatus } STATUS current DESCRIPTION "A collection of objects to support configuration of which groups a router is to advertise itself as a Candidate-RP." Expires January 1999 [Page 20] Draft PIM MIB July 1998 ::= { pimMIBGroups 3 } pimV1MIBGroup OBJECT-GROUP OBJECTS { pimJoinPruneInterval, pimNeighborIfIndex, pimNeighborUpTime, pimNeighborExpiryTime, pimNeighborMode, pimInterfaceAddress, pimInterfaceNetMask, pimInterfaceMode, pimInterfaceDR, pimInterfaceHelloInterval, pimRPState, pimRPStateTimer, pimRPLastChange, pimRPRowStatus } STATUS deprecated DESCRIPTION "A collection of objects to support management of PIM (version 1) routers." ::= { pimMIBGroups 4 } END Expires January 1999 [Page 21] Draft PIM MIB July 1998 6. Security Considerations This MIB contains readable objects whose values provide information related to multicast routing, including information on the network topology. There are also a number of objects that have a MAX-ACCESS clause of read-write and/or read-create, which allow an administrator to configure PIM in the router. While unauthorized access to the readable objects is relatively innocuous, unauthorized access to the write-able objects could cause a denial of service. Hence, the support for SET operations in a non- secure environment without proper protection can have a negative effect on network operations. SNMPv1 by itself is such an insecure environment. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and SET (change/create/delete) the objects in this MIB. It is recommended that the implementers consider the security features as provided by the SNMPv3 framework. Specifically, the use of the User-based Security Model RFC 2274 [12] and the View-based Access Control Model RFC 2275 [15] is recommended. It is then a customer/user responsibility to ensure that the SNMP entity giving access to this MIB, is properly configured to give access to those objects only to those principals (users) that have legitimate rights to access them. 7. Acknowledgements This MIB module has been updated based on feedback from the IETF's Inter-Domain Multicast Routing (IDMR) Working Group. 8. Authors' Addresses Keith McCloghrie cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 Phone: +1 408 526 5260 Expires January 1999 [Page 22] Draft PIM MIB July 1998 EMail: kzm@cisco.com Dino Farinacci cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 Phone: +1 408 526 4696 EMail: dino@cisco.com Dave Thaler Microsoft Corporation One Microsoft Way Redmond, WA 48105-6399 Phone: +1 425 703 8835 EMail: dthaler@microsoft.com 9. References [1] Harrington, D., Presuhn, R., and B. Wijnen, "An Architecture for Describing SNMP Management Frameworks", RFC 2271, Cabletron Systems, Inc., BMC Software, Inc., IBM T. J. Watson Research, January 1998. [2] Rose, M., and K. McCloghrie, "Structure and Identification of Management Information for TCP/IP-based Internets", RFC 1155, Performance Systems International, Hughes LAN Systems, May 1990. [3] Rose, M., and K. McCloghrie, "Concise MIB Definitions", RFC 1212, Performance Systems International, Hughes LAN Systems, March 1991. [4] M. Rose, "A Convention for Defining Traps for use with the SNMP", RFC 1215, Performance Systems International, March 1991. [5] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Structure of Management Information for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1902, SNMP Research,Inc., Cisco Systems, Inc., Dover Beach Consulting, Inc., International Network Services, January 1996. [6] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Textual Conventions for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1903, SNMP Research, Inc., Cisco Systems, Inc., Dover Beach Consulting, Inc., International Network Services, Expires January 1999 [Page 23] Draft PIM MIB July 1998 January 1996. [7] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Conformance Statements for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1904, SNMP Research, Inc., Cisco Systems, Inc., Dover Beach Consulting, Inc., International Network Services, January 1996. [8] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple Network Management Protocol", RFC 1157, SNMP Research, Performance Systems International, Performance Systems International, MIT Laboratory for Computer Science, May 1990. [9] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Introduction to Community-based SNMPv2", RFC 1901, SNMP Research, Inc., Cisco Systems, Inc., Dover Beach Consulting, Inc., International Network Services, January 1996. [10] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Transport Mappings for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1906, SNMP Research, Inc., Cisco Systems, Inc., Dover Beach Consulting, Inc., International Network Services, January 1996. [11] Case, J., Harrington D., Presuhn R., and B. Wijnen, "Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)", RFC 2272, SNMP Research, Inc., Cabletron Systems, Inc., BMC Software, Inc., IBM T. J. Watson Research, January 1998. [12] Blumenthal, U., and B. Wijnen, "User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)", RFC 2274, IBM T. J. Watson Research, January 1998. [13] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Protocol Operations for Version 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1905, SNMP Research, Inc., Cisco Systems, Inc., Dover Beach Consulting, Inc., International Network Services, January 1996. [14] Levi, D., Meyer, P., and B. Stewart, "MPv3 Applications", RFC 2273, SNMP Research, Inc., Secure Computing Corporation, Cisco Systems, January 1998. [15] Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based Access Control Model (VACM) for the Simple Network Management Protocol Expires January 1999 [Page 24] Draft PIM MIB July 1998 (SNMP)", RFC 2275, IBM T. J. Watson Research, BMC Software, Inc., Cisco Systems, Inc., January 1998. [16] Deering, S., Estrin, D., Farinacci, D., Jacobson, V., Liu, G., and L. Wei, "Protocol Independent Multicast (PIM): Motivation and Architecture", January 1995. [17] Deering, S., Estrin, D., Farinacci, D., Jacobson, V., Liu, G., and L. Wei, "Protocol Independent Multicast (PIM): Protocol Specification", January 1995. [18] Estrin, D., Farinacci, D., Helmy, A., Thaler, D., Deering, S., Handley, M., Jacobson, V., Liu, C., Sharma, P., and L. Wei, "Protocol Independent Multicast - Sparse Mode (PIM-SM): Protocol Specification", RFC 2362, June 1998. [19] Deering, S., Estrin, D., Farinacci, D., Jacobson, V., Helmy, A., and L. Wei, "Protocol Independent Multicast Version 2, Dense Mode Specification". May 1997. 10. Full Copyright Statement Copyright (C) The Internet Society (1998). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implmentation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT Expires January 1999 [Page 25] Draft PIM MIB July 1998 INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE." Table of Contents 1 Introduction .................................................... 1 2 Revision History ................................................ 2 3 The SNMP Network Management Framework ........................... 3 3.1 Object Definitions ............................................ 4 4 Overview ........................................................ 4 5 Definitions ..................................................... 6 6 Security Considerations ......................................... 22 7 Acknowledgements ................................................ 22 8 Authors' Addresses .............................................. 22 9 References ...................................................... 23 10 Full Copyright Statement ....................................... 25 Expires January 1999 [Page 26]