TEAS Working Group I. Busi Internet-Draft Huawei Obsoletes: 8776 (if approved) A. Guo Intended status: Standards Track Futurewei Technologies Expires: 11 September 2023 X. Liu IBM Corporation T. Saad Cisco Systems Inc. R. Gandhi Cisco Systems, Inc. V. P. Beeram Juniper Networks I. Bryskin Individual 10 March 2023 Common YANG Data Types for Traffic Engineering draft-ietf-teas-rfc8776-update-02 Abstract This document defines a collection of common data types and groupings in YANG data modeling language. These derived common types and groupings are intended to be imported by modules that model Traffic Engineering (TE) configuration and state capabilities. This document obsoletes RFC 8776. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on 11 September 2023. Busi, et al. Expires 11 September 2023 [Page 1] Internet-Draft TE Common YANG Types March 2023 Copyright Notice Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/ license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1. Requirements Notation . . . . . . . . . . . . . . . . . . 3 1.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. Prefixes in Data Node Names . . . . . . . . . . . . . . . 3 2. Acronyms and Abbreviations . . . . . . . . . . . . . . . . . 4 3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1. TE Types Module Contents . . . . . . . . . . . . . . . . 5 3.1.1. Path Computation Errors . . . . . . . . . . . . . . . 11 3.1.2. Protocol Origin . . . . . . . . . . . . . . . . . . . 11 3.2. Packet TE Types Module Contents . . . . . . . . . . . . . 11 4. TE Types YANG Module . . . . . . . . . . . . . . . . . . . . 13 5. Packet TE Types YANG Module . . . . . . . . . . . . . . . . . 95 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 108 7. Security Considerations . . . . . . . . . . . . . . . . . . . 109 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.1. Normative References . . . . . . . . . . . . . . . . . . 109 8.2. Informative References . . . . . . . . . . . . . . . . . 112 Appendix A. Changes from RFC 8776 . . . . . . . . . . . . . . . 119 A.1. TE Types YANG Diffs . . . . . . . . . . . . . . . . . . . 119 A.2. Packet TE Types YANG Diffs . . . . . . . . . . . . . . . 132 Appendix B. Option Considered for updating RFC8776 . . . . . . . 136 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 137 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 137 1. Introduction YANG [RFC6020] [RFC7950] is a data modeling language used to model configuration data, state data, Remote Procedure Calls, and notifications for network management protocols such as the Network Configuration Protocol (NETCONF) [RFC6241]. The YANG language supports a small set of built-in data types and provides mechanisms to derive other types from the built-in types. Busi, et al. Expires 11 September 2023 [Page 2] Internet-Draft TE Common YANG Types March 2023 This document introduces a collection of common data types derived from the built-in YANG data types. The derived types and groupings are designed to be the common types applicable for modeling Traffic Engineering (TE) features in model(s) defined outside of this document. This document adds few additional common data types, identities, and groupings to both the "ietf-te-types" and the "ietf-te-packet-types" YANG models and obsoletes [RFC8776]. For further details, see the revision statements of the YANG modules in Sections X and Y or the summary in Appendix A. CHANGE NOTE: These definitions have been developed in [I-D.ietf-teas-yang-te], [I-D.ietf-teas-yang-path-computation] and [I-D.ietf-teas-yang-l3-te-topo] and are quite mature: [I-D.ietf-teas-yang-te] and [I-D.ietf-teas-yang-path-computation] in particular are in WG Last Call and some definitions have been moved to this document as part of WG LC comments resolution. RFC Editor: remove the CHANGE NOTE above and this note 1.1. Requirements Notation The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 1.2. Terminology The terminology for describing YANG data models is found in [RFC7950]. 1.3. Prefixes in Data Node Names In this document, names of data nodes and other data model objects are prefixed using the standard prefix associated with the corresponding YANG imported modules, as shown in Table 1. Busi, et al. Expires 11 September 2023 [Page 3] Internet-Draft TE Common YANG Types March 2023 +=================+======================+===========+ | Prefix | YANG module | Reference | +=================+======================+===========+ | yang | ietf-yang-types | [RFC6991] | +-----------------+----------------------+-----------+ | inet | ietf-inet-types | [RFC6991] | +-----------------+----------------------+-----------+ | rt-types | ietf-routing-types | [RFC8294] | +-----------------+----------------------+-----------+ | te-types | ietf-te-types | RFCXXXX | +-----------------+----------------------+-----------+ | te-packet-types | ietf-te-packet-types | RFCXXXX | +-----------------+----------------------+-----------+ Table 1: Prefixes and corresponding YANG modules RFC Editor: Please replace XXXX with the RFC number assigned to this document. 2. Acronyms and Abbreviations GMPLS: Generalized Multiprotocol Label Switching LSP: Label Switched Path LSR: Label Switching Router LER: Label Edge Router MPLS: Multiprotocol Label Switching RSVP: Resource Reservation Protocol TE: Traffic Engineering Busi, et al. Expires 11 September 2023 [Page 4] Internet-Draft TE Common YANG Types March 2023 DS-TE: Differentiated Services Traffic Engineering SRLG: Shared Risk Link Group NBMA: Non-Broadcast Multi-Access APS: Automatic Protection Switching SD: Signal Degrade SF: Signal Fail WTR: Wait-to-Restore PM: Performance Metrics 3. Overview This document defines two YANG modules for common TE types: "ietf-te- types" for TE generic types and "ietf-te-packet-types" for packet- specific types. Other technology-specific TE types are outside the scope of this document. 3.1. TE Types Module Contents The "ietf-te-types" module (Section 4) contains common TE types that are independent and agnostic of any specific technology or control- plane instance. The "ietf-te-types" module contains the following YANG reusable types and groupings: Busi, et al. Expires 11 September 2023 [Page 5] Internet-Draft TE Common YANG Types March 2023 te-bandwidth: A YANG grouping that defines the generic TE bandwidth. The modeling structure allows augmentation for each technology. For unspecified technologies, the string-encoded "te-bandwidth" type is used. te-label: A YANG grouping that defines the generic TE label. The modeling structure allows augmentation for each technology. For unspecified technologies, "rt-types:generalized-label" is used. performance-metrics-attributes: A YANG grouping that defines one-way and two-way measured Performance Metrics (PM) and indications of anomalies on link(s) or the path as defined in [RFC7471], [RFC8570], and [RFC7823]. performance-metrics-throttle-container: A YANG grouping that defines configurable thresholds for advertisement suppression and measurement intervals. te-ds-class: A type representing the Differentiated Services (DS) Class-Type of traffic as defined in [RFC4124]. te-label-direction: An enumerated type for specifying the forward or reverse direction of a label. te-hop-type: An enumerated type for specifying that a hop is loose or strict. te-global-id: A type representing the identifier that uniquely identifies an operator, which can be either a provider or a client. The definition of this type is taken from [RFC6370] and [RFC5003]. This attribute type is used solely to provide a globally unique context for TE topologies. te-node-id: Busi, et al. Expires 11 September 2023 [Page 6] Internet-Draft TE Common YANG Types March 2023 A type representing the identifier for a node in a TE topology. The identifier is represented as 4 octets in dotted-quad notation. This attribute MAY be mapped to the Router Address TLV described in Section 2.4.1 of [RFC3630], the TE Router ID described in Section 3 of [RFC6827], the Traffic Engineering Router ID TLV described in Section 4.3 of [RFC5305], or the TE Router ID TLV described in Section 3.2.1 of [RFC6119]. The reachability of such a TE node MAY be achieved by a mechanism such as that described in Section 6.2 of [RFC6827]. te-topology-id: A type representing the identifier for a topology. It is optional to have one or more prefixes at the beginning, separated by colons. The prefixes can be "network-types" as defined in the "ietf-network" module in [RFC8345], to help the user better understand the topology before further inquiry is made. te-tp-id: A type representing the identifier of a TE interface Link Termination Point (LTP) on a specific TE node where the TE link connects. This attribute is mapped to a local or remote link identifier [RFC3630] [RFC5305]. te-path-disjointness: A type representing the different resource disjointness options for a TE tunnel path as defined in [RFC4872]. admin-groups: A union type for a TE link's classic or extended administrative groups as defined in [RFC3630], [RFC5305], and [RFC7308]. srlg: A type representing the Shared Risk Link Group (SRLG) as defined in [RFC4203] and [RFC5307]. te-metric: A type representing the TE metric as defined in [RFC3785]. te-recovery-status: An enumerated type for the different statuses of a recovery action as defined in [RFC4427] and [RFC6378]. Busi, et al. Expires 11 September 2023 [Page 7] Internet-Draft TE Common YANG Types March 2023 path-attribute-flags: A base YANG identity for supported LSP path flags as defined in [RFC3209], [RFC4090], [RFC4736], [RFC5712], [RFC4920], [RFC5420], [RFC7570], [RFC4875], [RFC5151], [RFC5150], [RFC6001], [RFC6790], [RFC7260], [RFC8001], [RFC8149], and [RFC8169]. link-protection-type: A base YANG identity for supported link protection types as defined in [RFC4872] and [RFC4427]. restoration-scheme-type: A base YANG identity for supported LSP restoration schemes as defined in [RFC4872]. protection-external-commands: A base YANG identity for supported protection-related external commands used for troubleshooting purposes, as defined in [RFC4427] and [ITU_G.808.1]. CHANGE NOTE: The description and reference of the identity action- exercise, which applies only to APS and it is not defined in RFC4427, has been updated to reference ITU-T G.808.1. RFC Editor: remove the CHANGE NOTE above and this note association-type: A base YANG identity for supported LSP association types as defined in [RFC6780], [RFC4872], [RFC4873], and [RFC8800]. CHANGE NOTE: The association-type-diversity identity, defined in [RFC8800] has been added to the association-type base identity. RFC Editor: remove the CHANGE NOTE above and this note objective-function-type: A base YANG identity for supported path objective functions as defined in [RFC5541]. CHANGE NOTE: The objective-function-type identity has been redefined to be used only for path objective functions and a new svec- objective-function-type identity has been added for the Synchronization VECtor (SVEC) objective functions. Therefore the of- Busi, et al. Expires 11 September 2023 [Page 8] Internet-Draft TE Common YANG Types March 2023 minimize-agg-bandwidth-consumption, of-minimize-load-most-loaded-link and of-minimize-cost-path-set identities, defined in [RFC5541] and derived from the objective-function-type identity, have been obsoleted because not applicable to paths but to Synchronization VECtor (SVEC) objects. RFC Editor: remove the CHANGE NOTE above and this note te-tunnel-type: A base YANG identity for supported TE tunnel types as defined in [RFC3209] and [RFC4875]. lsp-encoding-types: A base YANG identity for supported LSP encoding types as defined in [RFC3471]. lsp-protection-type: A base YANG identity for supported LSP protection types as defined in [RFC4872] and [RFC4873]. switching-capabilities: A base YANG identity for supported interface switching capabilities as defined in [RFC3471]. resource-affinities-type: A base YANG identity for supported attribute filters associated with a tunnel that must be satisfied for a link to be acceptable as defined in [RFC2702] and [RFC3209]. path-metric-type: A base YANG identity for supported path metric types as defined in [RFC3785] and [RFC7471]. explicit-route-hop: A YANG grouping that defines supported explicit routes as defined in [RFC3209] and [RFC3477]. te-link-access-type: An enumerated type for the different TE link access types as defined in [RFC3630]. Busi, et al. Expires 11 September 2023 [Page 9] Internet-Draft TE Common YANG Types March 2023 CHANGE NOTE: The module "ietf-te-types" has been updated to add the following YANG identities, types and groupings. RFC Editor: remove the CHANGE NOTE above and this note bandwidth-scientific-notation: This data type represents the bandwidth, in bit-per-second, using the scientific notation (e.g., 10e3). lsp-provisioning-error-reason: A base YANG identity for reporting LSP provisioning error reasons. No standard LPS provisioning error reasons are defined in this document. path-computation-error-reason: A base YANG identity for reporting path computation error reasons as defined in Section 3.1.1. protocol-origin-type: A base YANG identity for the type of protocol origin as defined in Section 3.1.2. svec-objective-function-type: A base YANG identity for supported SVEC objective functions as defined in [RFC5541] and [RFC8685]. svec-metric-type: A base YANG identity for supported SVEC objective functions as defined in [RFC5541]. encoding-and-switching-type: This is a common grouping to define the LSP encoding and switching types. CHANGE NOTE: The tunnel-admin-state-auto YANG identity, derived from the tunnel-admin-status-type base YANG identity has also been added. No description is provided, since no description for the tunnel- admin-status-type base YANG identity has been provided in RFC8776. Busi, et al. Expires 11 September 2023 [Page 10] Internet-Draft TE Common YANG Types March 2023 CHANGE NOTE: The lsp-restoration-restore-none YANG identity, derived from the lsp-restoration-type base YANG identity has also been added. No description is provided, since no description for the lsp- restoration-type base YANG identity has been provided in RFC8776. RFC Editor: remove the two CHANGE NOTEs above and this note 3.1.1. Path Computation Errors The "ietf-te-types" module contains the YANG reusable identities for reporting path computation error reasons as defined in [RFC5440], [RFC5441], [RFC5520], [RFC5557], [RFC8306], and [RFC8685]. It also defines the following additional YANG reusable identities for reporting also the following path computation error reasons: path-computation-error-no-topology: A YANG identity for reporting path computation error when there is no topology with the provided topology identifier. 3.1.2. Protocol Origin The "ietf-te-types" module contains the YANG reusable identities for the type of protocol origin as defined in [RFC5440] and [RFC9012]. It also defines the following additional YANG reusable identities for the type of protocol origin: protocol-origin-api: A YANG identity to be used when the type of protocol origin is an Application Programmable Interface (API). 3.2. Packet TE Types Module Contents The "ietf-te-packet-types" module (Section 5) covers the common types and groupings that are specific to packet technology. The "ietf-te-packet-types" module contains the following YANG reusable types and groupings: backup-protection-type: A base YANG identity for supported protection types that a backup or bypass tunnel can provide as defined in [RFC4090]. te-class-type: Busi, et al. Expires 11 September 2023 [Page 11] Internet-Draft TE Common YANG Types March 2023 A type that represents the Diffserv-TE Class-Type as defined in [RFC4124]. bc-type: A type that represents Diffserv-TE Bandwidth Constraints (BCs) as defined in [RFC4124]. bc-model-type: A base YANG identity for supported Diffserv-TE Bandwidth Constraints Models as defined in [RFC4125], [RFC4126], and [RFC4127]. te-bandwidth-requested-type: An enumerated type for the different options to request bandwidth for a specific tunnel. performance-metrics-attributes-packet: A YANG grouping that contains the generic performance metrics and additional packet-specific metrics. CHANGE NOTE: The module "ietf-te-packet-types" has been updated to add the following YANG identities and groupings. RFC Editor: remove the CHANGE NOTE above and this note bandwidth-profile-type: A base YANG identity for various bandwidth profiles specified in [MEF_10.3], [RFC2697], [RFC2698] and [RFC4115] that may be used to limit bandwidth utilization of packet flows (e.g., MPLS-TE LSPs). te-packet-path-bandwidth A YANG grouping that defines the path bandwidth information and could be used in any Packet TE model (e.g., MPLS-TE topology model) for the path bandwidth representation (e.g., the bandwidth of an MPLS-TE LSP). All the path and LSP bandwidth related sections in the "ietf-te- types" generic module, Section 4, need to be augmented with this grouping for the usage of Packet TE technologies. The Packet TE path bandwidth can be represented by a bandwidth profile as follow: Busi, et al. Expires 11 September 2023 [Page 12] Internet-Draft TE Common YANG Types March 2023 +--:(packet) +--rw bandwidth-profile-name? string +--rw bandwidth-profile-type? identityref +--rw cir? uint64 +--rw eir? uint64 +--rw cbs? uint64 +--rw ebs? uint64 NOTE: Other formats for the MPLS-TE path bandwidth are defined in [I-D.ietf-teas-yang-te-mpls] and they could be added in a future update of this document. te-packet-link-bandwidth: A YANG grouping that defines the link bandwidth information and could be used in any Packet TE model (e.g., MPLS-TE topology) for link bandwidth representation. All the link bandwidth related sections in the "ietf-te-types" generic module, Section 4, need to be augmented with this grouping for the usage of Packet TE technologies. The Packet TE link bandwidth can be represented by a bandwidth expressed in scientific notation as follow: +--:(packet) +--rw packet-bandwidth? bandwidth-scientific-notation 4. TE Types YANG Module The "ietf-te-types" module imports from the following modules: * "ietf-yang-types" and "ietf-inet-types" as defined in [RFC6991] * "ietf-routing-types" as defined in [RFC8294] In addition to [RFC6991] and [RFC8294], this module references the following documents in defining the types and YANG groupings: [RFC3272], [RFC4090], [RFC4202], [RFC4328], [RFC4561], [RFC4657], [RFC4736], [RFC6004], [RFC6511], [RFC7139], [RFC7308], [RFC7551], [RFC7571], [RFC7579], and [ITU-T_G.709]. CHANGE NOTE: Please focus your review only on the updates to the YANG model: see also Appendix A.1. RFC Editor: remove the CHANGE NOTE above and this note Busi, et al. Expires 11 September 2023 [Page 13] Internet-Draft TE Common YANG Types March 2023 file "ietf-te-types@2023-03-10.yang" module ietf-te-types { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-te-types"; prefix te-types; import ietf-inet-types { prefix inet; reference "RFC 6991: Common YANG Data Types"; } import ietf-yang-types { prefix yang; reference "RFC 6991: Common YANG Data Types"; } import ietf-routing-types { prefix rt-types; reference "RFC 8294: Common YANG Data Types for the Routing Area"; } organization "IETF Traffic Engineering Architecture and Signaling (TEAS) Working Group"; contact "WG Web: WG List: Editor: Tarek Saad Editor: Rakesh Gandhi Editor: Vishnu Pavan Beeram Editor: Xufeng Liu Editor: Igor Bryskin "; description "This YANG module contains a collection of generally useful YANG data type definitions specific to TE. The model fully conforms to the Network Management Datastore Architecture (NMDA). Busi, et al. Expires 11 September 2023 [Page 14] Internet-Draft TE Common YANG Types March 2023 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here. Copyright (c) 2023 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC XXXX (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself for full legal notices."; revision 2023-03-10 { description "Added: - typedef bandwidth-scientific-notation; - base identity lsp-provisioning-error-reason; - identity association-type-diversity; - identity tunnel-admin-state-auto; - identity lsp-restoration-restore-none; - base identity path-computation-error-reason and its derived identities; - base identity protocol-origin-type and its derived identities; - base identity svec-objective-function-type and its derived identities; - base identity svec-metric-type and its derived identities; - grouping encoding-and-switching-type. Updated: - description of the base identity objective-function-type; - description and reference of identity action-exercise. Obsoleted: - identity of-minimize-agg-bandwidth-consumption - identity of-minimize-load-most-loaded-link - identity of-minimize-cost-path-set"; reference "RFC XXXX: Updated Common YANG Data Types for Traffic Engineering"; Busi, et al. Expires 11 September 2023 [Page 15] Internet-Draft TE Common YANG Types March 2023 } // RFC Editor: replace XXXX with actual RFC number, update date // information and remove this note revision 2020-06-10 { description "Latest revision of TE types."; reference "RFC 8776: Common YANG Data Types for Traffic Engineering"; } /** * Typedefs */ typedef admin-group { type yang:hex-string { /* 01:02:03:04 */ length "1..11"; } description "Administrative group / resource class / color representation in 'hex-string' type. The most significant byte in the hex-string is the farthest to the left in the byte sequence. Leading zero bytes in the configured value may be omitted for brevity."; reference "RFC 3630: Traffic Engineering (TE) Extensions to OSPF Version 2 RFC 5305: IS-IS Extensions for Traffic Engineering RFC 7308: Extended Administrative Groups in MPLS Traffic Engineering (MPLS-TE)"; } typedef admin-groups { type union { type admin-group; type extended-admin-group; } description "Derived types for TE administrative groups."; } typedef extended-admin-group { type yang:hex-string; description "Extended administrative group / resource class / color representation in 'hex-string' type. Busi, et al. Expires 11 September 2023 [Page 16] Internet-Draft TE Common YANG Types March 2023 The most significant byte in the hex-string is the farthest to the left in the byte sequence. Leading zero bytes in the configured value may be omitted for brevity."; reference "RFC 7308: Extended Administrative Groups in MPLS Traffic Engineering (MPLS-TE)"; } typedef path-attribute-flags { type union { type identityref { base session-attributes-flags; } type identityref { base lsp-attributes-flags; } } description "Path attributes flags type."; } typedef performance-metrics-normality { type enumeration { enum unknown { value 0; description "Unknown."; } enum normal { value 1; description "Normal. Indicates that the anomalous bit is not set."; } enum abnormal { value 2; description "Abnormal. Indicates that the anomalous bit is set."; } } description "Indicates whether a performance metric is normal (anomalous bit not set), abnormal (anomalous bit set), or unknown."; reference "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions RFC 7823: Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions RFC 8570: IS-IS Traffic Engineering (TE) Metric Extensions"; Busi, et al. Expires 11 September 2023 [Page 17] Internet-Draft TE Common YANG Types March 2023 } typedef srlg { type uint32; description "SRLG type."; reference "RFC 4203: OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS) RFC 5307: IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"; } typedef te-common-status { type enumeration { enum up { description "Enabled."; } enum down { description "Disabled."; } enum testing { description "In some test mode."; } enum preparing-maintenance { description "The resource is disabled in the control plane to prepare for a graceful shutdown for maintenance purposes."; reference "RFC 5817: Graceful Shutdown in MPLS and Generalized MPLS Traffic Engineering Networks"; } enum maintenance { description "The resource is disabled in the data plane for maintenance purposes."; } enum unknown { description "Status is unknown."; } } description "Defines a type representing the common states of a TE resource."; Busi, et al. Expires 11 September 2023 [Page 18] Internet-Draft TE Common YANG Types March 2023 } typedef te-bandwidth { type string { pattern '0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|' + '1(\.([\da-fA-F]{0,5}[02468aAcCeE]?)?)?' + '[pP](\+)?(12[0-7]|' + '1[01]\d|0?\d?\d)?)|0[xX][\da-fA-F]{1,8}|\d+' + '(,(0[xX](0((\.0?)?[pP](\+)?0?|(\.0?))|' + '1(\.([\da-fA-F]{0,5}[02468aAcCeE]?)?)?' + '[pP](\+)?(12[0-7]|' + '1[01]\d|0?\d?\d)?)|0[xX][\da-fA-F]{1,8}|\d+))*'; } description "This is the generic bandwidth type. It is a string containing a list of numbers separated by commas, where each of these numbers can be non-negative decimal, hex integer, or hex float: (dec | hex | float)[*(','(dec | hex | float))] For the packet-switching type, the string encoding follows the type 'bandwidth-ieee-float32' as defined in RFC 8294 (e.g., 0x1p10), where the units are in bytes per second. For the Optical Transport Network (OTN) switching type, a list of integers can be used, such as '0,2,3,1', indicating two ODU0s and one ODU3. ('ODU' stands for 'Optical Data Unit'.) For Dense Wavelength Division Multiplexing (DWDM), a list of pairs of slot numbers and widths can be used, such as '0,2,3,3', indicating a frequency slot 0 with slot width 2 and a frequency slot 3 with slot width 3. Canonically, the string is represented as all lowercase and in hex, where the prefix '0x' precedes the hex number."; reference "RFC 8294: Common YANG Data Types for the Routing Area ITU-T Recommendation G.709: Interfaces for the optical transport network"; } typedef te-ds-class { type uint8 { range "0..7"; } description "The Differentiated Services Class-Type of traffic."; reference "RFC 4124: Protocol Extensions for Support of Diffserv-aware Busi, et al. Expires 11 September 2023 [Page 19] Internet-Draft TE Common YANG Types March 2023 MPLS Traffic Engineering, Section 4.3.1"; } typedef te-global-id { type uint32; description "An identifier to uniquely identify an operator, which can be either a provider or a client. The definition of this type is taken from RFCs 6370 and 5003. This attribute type is used solely to provide a globally unique context for TE topologies."; reference "RFC 5003: Attachment Individual Identifier (AII) Types for Aggregation RFC 6370: MPLS Transport Profile (MPLS-TP) Identifiers"; } typedef te-hop-type { type enumeration { enum loose { description "A loose hop in an explicit path."; } enum strict { description "A strict hop in an explicit path."; } } description "Enumerated type for specifying loose or strict paths."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels, Section 4.3.3"; } typedef te-link-access-type { type enumeration { enum point-to-point { description "The link is point-to-point."; } enum multi-access { description "The link is multi-access, including broadcast and NBMA."; } } description "Defines a type representing the access type of a TE link."; Busi, et al. Expires 11 September 2023 [Page 20] Internet-Draft TE Common YANG Types March 2023 reference "RFC 3630: Traffic Engineering (TE) Extensions to OSPF Version 2"; } typedef te-label-direction { type enumeration { enum forward { description "Label allocated for the forward LSP direction."; } enum reverse { description "Label allocated for the reverse LSP direction."; } } description "Enumerated type for specifying the forward or reverse label."; } typedef te-link-direction { type enumeration { enum incoming { description "The explicit route represents an incoming link on a node."; } enum outgoing { description "The explicit route represents an outgoing link on a node."; } } description "Enumerated type for specifying the direction of a link on a node."; } typedef te-metric { type uint32; description "TE metric."; reference "RFC 3785: Use of Interior Gateway Protocol (IGP) Metric as a second MPLS Traffic Engineering (TE) Metric"; } Busi, et al. Expires 11 September 2023 [Page 21] Internet-Draft TE Common YANG Types March 2023 typedef te-node-id { type yang:dotted-quad; description "A type representing the identifier for a node in a TE topology. The identifier is represented as 4 octets in dotted-quad notation. This attribute MAY be mapped to the Router Address TLV described in Section 2.4.1 of RFC 3630, the TE Router ID described in Section 3 of RFC 6827, the Traffic Engineering Router ID TLV described in Section 4.3 of RFC 5305, or the TE Router ID TLV described in Section 3.2.1 of RFC 6119. The reachability of such a TE node MAY be achieved by a mechanism such as that described in Section 6.2 of RFC 6827."; reference "RFC 3630: Traffic Engineering (TE) Extensions to OSPF Version 2, Section 2.4.1 RFC 5305: IS-IS Extensions for Traffic Engineering, Section 4.3 RFC 6119: IPv6 Traffic Engineering in IS-IS, Section 3.2.1 RFC 6827: Automatically Switched Optical Network (ASON) Routing for OSPFv2 Protocols, Section 3"; } typedef te-oper-status { type te-common-status; description "Defines a type representing the operational status of a TE resource."; } typedef te-admin-status { type te-common-status; description "Defines a type representing the administrative status of a TE resource."; } typedef te-path-disjointness { type bits { bit node { position 0; description "Node disjoint."; } bit link { position 1; description Busi, et al. Expires 11 September 2023 [Page 22] Internet-Draft TE Common YANG Types March 2023 "Link disjoint."; } bit srlg { position 2; description "SRLG (Shared Risk Link Group) disjoint."; } } description "Type of the resource disjointness for a TE tunnel path."; reference "RFC 4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery"; } typedef te-recovery-status { type enumeration { enum normal { description "Both the recovery span and the working span are fully allocated and active, data traffic is being transported over (or selected from) the working span, and no trigger events are reported."; } enum recovery-started { description "The recovery action has been started but not completed."; } enum recovery-succeeded { description "The recovery action has succeeded. The working span has reported a failure/degrade condition, and the user traffic is being transported (or selected) on the recovery span."; } enum recovery-failed { description "The recovery action has failed."; } enum reversion-started { description "The reversion has started."; } enum reversion-succeeded { description "The reversion action has succeeded."; } enum reversion-failed { description Busi, et al. Expires 11 September 2023 [Page 23] Internet-Draft TE Common YANG Types March 2023 "The reversion has failed."; } enum recovery-unavailable { description "The recovery is unavailable, as a result of either an operator's lockout command or a failure condition detected on the recovery span."; } enum recovery-admin { description "The operator has issued a command to switch the user traffic to the recovery span."; } enum wait-to-restore { description "The recovery domain is recovering from a failure/degrade condition on the working span that is being controlled by the Wait-to-Restore (WTR) timer."; } } description "Defines the status of a recovery action."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS) RFC 6378: MPLS Transport Profile (MPLS-TP) Linear Protection"; } typedef te-template-name { type string { pattern '/?([a-zA-Z0-9\-_.]+)(/[a-zA-Z0-9\-_.]+)*'; } description "A type for the name of a TE node template or TE link template."; } typedef te-topology-event-type { type enumeration { enum add { value 0; description "A TE node or TE link has been added."; } enum remove { value 1; description "A TE node or TE link has been removed."; Busi, et al. Expires 11 September 2023 [Page 24] Internet-Draft TE Common YANG Types March 2023 } enum update { value 2; description "A TE node or TE link has been updated."; } } description "TE event type for notifications."; } typedef te-topology-id { type union { type string { length "0"; // empty string } type string { pattern '([a-zA-Z0-9\-_.]+:)*' + '/?([a-zA-Z0-9\-_.]+)(/[a-zA-Z0-9\-_.]+)*'; } } description "An identifier for a topology. It is optional to have one or more prefixes at the beginning, separated by colons. The prefixes can be 'network-types' as defined in the 'ietf-network' module in RFC 8345, to help the user better understand the topology before further inquiry is made."; reference "RFC 8345: A YANG Data Model for Network Topologies"; } typedef te-tp-id { type union { type uint32; // Unnumbered type inet:ip-address; // IPv4 or IPv6 address } description "An identifier for a TE link endpoint on a node. This attribute is mapped to a local or remote link identifier as defined in RFCs 3630 and 5305."; reference "RFC 3630: Traffic Engineering (TE) Extensions to OSPF Version 2 RFC 5305: IS-IS Extensions for Traffic Engineering"; Busi, et al. Expires 11 September 2023 [Page 25] Internet-Draft TE Common YANG Types March 2023 } // CHANGE NOTE: The typedef bandwidth-scientific-notation below // has been added in this module revision // RFC Editor: remove the note above and this note typedef bandwidth-scientific-notation { type string { pattern '0(\.0?)?([eE](\+)?0?)?|' + '[1-9](\.[0-9]{0,6})?[eE](\+)?(9[0-6]|[1-8][0-9]|0?[0-9])?'; } units "bps"; description "Bandwidth values, expressed using the scientific notation in bits per second. The encoding format is the external decimal-significant character sequences specified in IEEE 754 and ISO/IEC C99 for 32-bit decimal floating-point numbers: (-1)**(S) * 10**(Exponent) * (Significant), where Significant uses 7 digits. An implementation for this representation may use decimal32 or binary32. The range of the Exponent is from -95 to +96 for decimal32, and from -38 to +38 for binary32. As a bandwidth value, the format is restricted to be normalized, non-negative, and non-fraction: n.dddddde{+}dd, N.DDDDDDE{+}DD, 0e0 or 0E0, where 'd' and 'D' are decimal digits; 'n' and 'N' are non-zeror decimal digits; 'e' and 'E' indicate a power of ten. Some examples are 0e0, 1e10, and 9.953e9."; reference "IEEE Std 754-2008: IEEE Standard for Floating-Point Arithmetic. ISO/IEC C99: Information technology - Programming Languages - C."; } // CHANGE NOTE: The typedef path-type below has been // added in this module revision // RFC Editor: remove the note above and this note typedef path-type { type enumeration { enum primary-path { description "Indicates that the TE path is a primary path."; } enum secondary-path { description "Indicates that the TE path is a secondary path."; Busi, et al. Expires 11 September 2023 [Page 26] Internet-Draft TE Common YANG Types March 2023 } enum primary-reverse-path { description "Indicates that the TE path is a primary reverse path."; } enum secondary-reverse-path { description "Indicates that the TE path is a secondary reverse path."; } } description "The type of TE path, indicating whether a path is a primary, or a reverse primary, or a secondary, or a reverse secondary path."; } /* TE features */ feature p2mp-te { description "Indicates support for Point-to-Multipoint TE (P2MP-TE)."; reference "RFC 4875: Extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched Paths (LSPs)"; } feature frr-te { description "Indicates support for TE Fast Reroute (FRR)."; reference "RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels"; } feature extended-admin-groups { description "Indicates support for TE link extended administrative groups."; reference "RFC 7308: Extended Administrative Groups in MPLS Traffic Engineering (MPLS-TE)"; } feature named-path-affinities { description "Indicates support for named path affinities."; } Busi, et al. Expires 11 September 2023 [Page 27] Internet-Draft TE Common YANG Types March 2023 feature named-extended-admin-groups { description "Indicates support for named extended administrative groups."; } feature named-srlg-groups { description "Indicates support for named SRLG groups."; } feature named-path-constraints { description "Indicates support for named path constraints."; } feature path-optimization-metric { description "Indicates support for path optimization metrics."; } feature path-optimization-objective-function { description "Indicates support for path optimization objective functions."; } /* * Identities */ // CHANGE NOTE: The base identity lsp-provisioning-error-reason // has been added in this module revision // RFC Editor: remove the note above and this note identity lsp-provisioning-error-reason { description "Base identity for LSP provisioning errors."; } identity session-attributes-flags { description "Base identity for the RSVP-TE session attributes flags."; } identity local-protection-desired { base session-attributes-flags; description "Local protection is desired."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels, Busi, et al. Expires 11 September 2023 [Page 28] Internet-Draft TE Common YANG Types March 2023 Section 4.7.1"; } identity se-style-desired { base session-attributes-flags; description "Shared explicit style, to allow the LSP to be established and share resources with the old LSP."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels"; } identity local-recording-desired { base session-attributes-flags; description "Label recording is desired."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels, Section 4.7.1"; } identity bandwidth-protection-desired { base session-attributes-flags; description "Requests FRR bandwidth protection on LSRs, if present."; reference "RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels"; } identity node-protection-desired { base session-attributes-flags; description "Requests FRR node protection on LSRs, if present."; reference "RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels"; } identity path-reevaluation-request { base session-attributes-flags; description "This flag indicates that a path re-evaluation (of the current path in use) is requested. Note that this does not trigger any LSP reroutes but instead just signals a request to evaluate whether a preferable path exists."; reference "RFC 4736: Reoptimization of Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Loosely Routed Label Switched Path (LSP)"; Busi, et al. Expires 11 September 2023 [Page 29] Internet-Draft TE Common YANG Types March 2023 } identity soft-preemption-desired { base session-attributes-flags; description "Soft preemption of LSP resources is desired."; reference "RFC 5712: MPLS Traffic Engineering Soft Preemption"; } identity lsp-attributes-flags { description "Base identity for LSP attributes flags."; } identity end-to-end-rerouting-desired { base lsp-attributes-flags; description "Indicates end-to-end rerouting behavior for an LSP undergoing establishment. This MAY also be used to specify the behavior of end-to-end LSP recovery for established LSPs."; reference "RFC 4920: Crankback Signaling Extensions for MPLS and GMPLS RSVP-TE RFC 5420: Encoding of Attributes for MPLS LSP Establishment Using Resource Reservation Protocol Traffic Engineering (RSVP-TE) RFC 7570: Label Switched Path (LSP) Attribute in the Explicit Route Object (ERO)"; } identity boundary-rerouting-desired { base lsp-attributes-flags; description "Indicates boundary rerouting behavior for an LSP undergoing establishment. This MAY also be used to specify segment-based LSP recovery through nested crankback for established LSPs. The boundary Area Border Router (ABR) / Autonomous System Border Router (ASBR) can decide to forward the PathErr message upstream to either an upstream boundary ABR/ASBR or the ingress LSR. Alternatively, it can try to select another egress boundary LSR."; reference "RFC 4920: Crankback Signaling Extensions for MPLS and GMPLS RSVP-TE RFC 5420: Encoding of Attributes for MPLS LSP Establishment Using Resource Reservation Protocol Traffic Engineering Busi, et al. Expires 11 September 2023 [Page 30] Internet-Draft TE Common YANG Types March 2023 (RSVP-TE) RFC 7570: Label Switched Path (LSP) Attribute in the Explicit Route Object (ERO)"; } identity segment-based-rerouting-desired { base lsp-attributes-flags; description "Indicates segment-based rerouting behavior for an LSP undergoing establishment. This MAY also be used to specify segment-based LSP recovery for established LSPs."; reference "RFC 4920: Crankback Signaling Extensions for MPLS and GMPLS RSVP-TE RFC 5420: Encoding of Attributes for MPLS LSP Establishment Using Resource Reservation Protocol Traffic Engineering (RSVP-TE) RFC 7570: Label Switched Path (LSP) Attribute in the Explicit Route Object (ERO)"; } identity lsp-integrity-required { base lsp-attributes-flags; description "Indicates that LSP integrity is required."; reference "RFC 4875: Extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched Paths (LSPs) RFC 7570: Label Switched Path (LSP) Attribute in the Explicit Route Object (ERO)"; } identity contiguous-lsp-desired { base lsp-attributes-flags; description "Indicates that a contiguous LSP is desired."; reference "RFC 5151: Inter-Domain MPLS and GMPLS Traffic Engineering -- Resource Reservation Protocol-Traffic Engineering (RSVP-TE) Extensions RFC 7570: Label Switched Path (LSP) Attribute in the Explicit Route Object (ERO)"; } identity lsp-stitching-desired { base lsp-attributes-flags; description Busi, et al. Expires 11 September 2023 [Page 31] Internet-Draft TE Common YANG Types March 2023 "Indicates that LSP stitching is desired."; reference "RFC 5150: Label Switched Path Stitching with Generalized Multiprotocol Label Switching Traffic Engineering (GMPLS TE) RFC 7570: Label Switched Path (LSP) Attribute in the Explicit Route Object (ERO)"; } identity pre-planned-lsp-flag { base lsp-attributes-flags; description "Indicates that the LSP MUST be provisioned in the control plane only."; reference "RFC 6001: Generalized MPLS (GMPLS) Protocol Extensions for Multi-Layer and Multi-Region Networks (MLN/MRN) RFC 7570: Label Switched Path (LSP) Attribute in the Explicit Route Object (ERO)"; } identity non-php-behavior-flag { base lsp-attributes-flags; description "Indicates that non-PHP (non-Penultimate Hop Popping) behavior for the LSP is desired."; reference "RFC 6511: Non-Penultimate Hop Popping Behavior and Out-of-Band Mapping for RSVP-TE Label Switched Paths RFC 7570: Label Switched Path (LSP) Attribute in the Explicit Route Object (ERO)"; } identity oob-mapping-flag { base lsp-attributes-flags; description "Indicates that signaling of the egress binding information is out of band (e.g., via the Border Gateway Protocol (BGP))."; reference "RFC 6511: Non-Penultimate Hop Popping Behavior and Out-of-Band Mapping for RSVP-TE Label Switched Paths RFC 7570: Label Switched Path (LSP) Attribute in the Explicit Route Object (ERO)"; } identity entropy-label-capability { base lsp-attributes-flags; description "Indicates entropy label capability."; Busi, et al. Expires 11 September 2023 [Page 32] Internet-Draft TE Common YANG Types March 2023 reference "RFC 6790: The Use of Entropy Labels in MPLS Forwarding RFC 7570: Label Switched Path (LSP) Attribute in the Explicit Route Object (ERO)"; } identity oam-mep-entity-desired { base lsp-attributes-flags; description "OAM Maintenance Entity Group End Point (MEP) entities desired."; reference "RFC 7260: GMPLS RSVP-TE Extensions for Operations, Administration, and Maintenance (OAM) Configuration"; } identity oam-mip-entity-desired { base lsp-attributes-flags; description "OAM Maintenance Entity Group Intermediate Points (MIP) entities desired."; reference "RFC 7260: GMPLS RSVP-TE Extensions for Operations, Administration, and Maintenance (OAM) Configuration"; } identity srlg-collection-desired { base lsp-attributes-flags; description "SRLG collection desired."; reference "RFC 7570: Label Switched Path (LSP) Attribute in the Explicit Route Object (ERO) RFC 8001: RSVP-TE Extensions for Collecting Shared Risk Link Group (SRLG) Information"; } identity loopback-desired { base lsp-attributes-flags; description "This flag indicates that a particular node on the LSP is required to enter loopback mode. This can also be used to specify the loopback state of the node."; reference "RFC 7571: GMPLS RSVP-TE Extensions for Lock Instruct and Loopback"; } Busi, et al. Expires 11 September 2023 [Page 33] Internet-Draft TE Common YANG Types March 2023 identity p2mp-te-tree-eval-request { base lsp-attributes-flags; description "P2MP-TE tree re-evaluation request."; reference "RFC 8149: RSVP Extensions for Reoptimization of Loosely Routed Point-to-Multipoint Traffic Engineering Label Switched Paths (LSPs)"; } identity rtm-set-desired { base lsp-attributes-flags; description "Residence Time Measurement (RTM) attribute flag requested."; reference "RFC 8169: Residence Time Measurement in MPLS Networks"; } identity link-protection-type { description "Base identity for the link protection type."; } identity link-protection-unprotected { base link-protection-type; description "Unprotected link type."; reference "RFC 4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery"; } identity link-protection-extra-traffic { base link-protection-type; description "Extra-Traffic protected link type."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity link-protection-shared { base link-protection-type; description "Shared protected link type."; reference "RFC 4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery"; Busi, et al. Expires 11 September 2023 [Page 34] Internet-Draft TE Common YANG Types March 2023 } identity link-protection-1-for-1 { base link-protection-type; description "One-for-one (1:1) protected link type."; reference "RFC 4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery"; } identity link-protection-1-plus-1 { base link-protection-type; description "One-plus-one (1+1) protected link type."; reference "RFC 4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery"; } identity link-protection-enhanced { base link-protection-type; description "A compound link protection type derived from the underlay TE tunnel protection configuration supporting the TE link."; } identity association-type { description "Base identity for the tunnel association."; } identity association-type-recovery { base association-type; description "Association type for recovery, used to associate LSPs of the same tunnel for recovery."; reference "RFC 4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery RFC 6780: RSVP ASSOCIATION Object Extensions"; } identity association-type-resource-sharing { base association-type; description "Association type for resource sharing, used to enable resource sharing during make-before-break."; Busi, et al. Expires 11 September 2023 [Page 35] Internet-Draft TE Common YANG Types March 2023 reference "RFC 4873: GMPLS Segment Recovery RFC 6780: RSVP ASSOCIATION Object Extensions"; } identity association-type-double-sided-bidir { base association-type; description "Association type for double-sided bidirectional LSPs, used to associate two LSPs of two tunnels that are independently configured on either endpoint."; reference "RFC 7551: RSVP-TE Extensions for Associated Bidirectional Label Switched Paths (LSPs)"; } identity association-type-single-sided-bidir { base association-type; description "Association type for single-sided bidirectional LSPs, used to associate two LSPs of two tunnels, where one tunnel is configured on one side/endpoint and the other tunnel is dynamically created on the other endpoint."; reference "RFC 6780: RSVP ASSOCIATION Object Extensions RFC 7551: RSVP-TE Extensions for Associated Bidirectional Label Switched Paths (LSPs)"; } // CHANGE NOTE: The identity association-type-diversity below has // been added in this module revision // RFC Editor: remove the note above and this note identity association-type-diversity { base association-type; description "Association Type diversity used to associate LSPs whose paths are to be diverse from each other."; reference "RFC8800: Path Computation Element Communication Protocol (PCEP) Extension for Label Switched Path (LSP) Diversity Constraint Signaling"; } // CHANGE NOTE: The description of the base identity // objective-function-type has been updated // in this module revision // RFC Editor: remove the note above and this note identity objective-function-type { Busi, et al. Expires 11 September 2023 [Page 36] Internet-Draft TE Common YANG Types March 2023 description "Base identity for path objective function type."; } identity of-minimize-cost-path { base objective-function-type; description "Objective function for minimizing path cost."; reference "RFC 5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)"; } identity of-minimize-load-path { base objective-function-type; description "Objective function for minimizing the load on one or more paths."; reference "RFC 5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)"; } identity of-maximize-residual-bandwidth { base objective-function-type; description "Objective function for maximizing residual bandwidth."; reference "RFC 5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)"; } // CHANGE NOTE: The identity of-minimize-agg-bandwidth-consumption // below has been obsoleted in this module revision // RFC Editor: remove the note above and this note identity of-minimize-agg-bandwidth-consumption { base objective-function-type; status obsolete; description "Objective function for minimizing aggregate bandwidth consumption."; reference "RFC 5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)"; } // CHANGE NOTE: The identity of-minimize-load-most-loaded-link // below has been obsoleted in this module revision Busi, et al. Expires 11 September 2023 [Page 37] Internet-Draft TE Common YANG Types March 2023 // RFC Editor: remove the note above and this note identity of-minimize-load-most-loaded-link { base objective-function-type; status obsolete; description "Objective function for minimizing the load on the link that is carrying the highest load."; reference "RFC 5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)"; } // CHANGE NOTE: The identity of-minimize-cost-path-set // below has been obsoleted in this module revision // RFC Editor: remove the note above and this note identity of-minimize-cost-path-set { base objective-function-type; status obsolete; description "Objective function for minimizing the cost on a path set."; reference "RFC 5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)"; } identity path-computation-method { description "Base identity for supported path computation mechanisms."; } identity path-locally-computed { base path-computation-method; description "Indicates a constrained-path LSP in which the path is computed by the local LER."; reference "RFC 3272: Overview and Principles of Internet Traffic Engineering, Section 5.4"; } identity path-externally-queried { base path-computation-method; description "Constrained-path LSP in which the path is obtained by querying an external source, such as a PCE server. In the case that an LSP is defined to be externally queried, it may also have associated explicit definitions (provided to the external source to aid computation). The path that is Busi, et al. Expires 11 September 2023 [Page 38] Internet-Draft TE Common YANG Types March 2023 returned by the external source may require further local computation on the device."; reference "RFC 3272: Overview and Principles of Internet Traffic Engineering RFC 4657: Path Computation Element (PCE) Communication Protocol Generic Requirements"; } identity path-explicitly-defined { base path-computation-method; description "Constrained-path LSP in which the path is explicitly specified as a collection of strict and/or loose hops."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels RFC 3272: Overview and Principles of Internet Traffic Engineering"; } identity lsp-metric-type { description "Base identity for the LSP metric specification types."; } identity lsp-metric-relative { base lsp-metric-type; description "The metric specified for the LSPs to which this identity refers is specified as a value relative to the IGP metric cost to the LSP's tail end."; reference "RFC 4657: Path Computation Element (PCE) Communication Protocol Generic Requirements"; } identity lsp-metric-absolute { base lsp-metric-type; description "The metric specified for the LSPs to which this identity refers is specified as an absolute value."; reference "RFC 4657: Path Computation Element (PCE) Communication Protocol Generic Requirements"; } identity lsp-metric-inherited { Busi, et al. Expires 11 September 2023 [Page 39] Internet-Draft TE Common YANG Types March 2023 base lsp-metric-type; description "The metric for the LSPs to which this identity refers is not specified explicitly; rather, it is directly inherited from the IGP cost."; reference "RFC 4657: Path Computation Element (PCE) Communication Protocol Generic Requirements"; } identity te-tunnel-type { description "Base identity from which specific tunnel types are derived."; } identity te-tunnel-p2p { base te-tunnel-type; description "TE Point-to-Point (P2P) tunnel type."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels"; } identity te-tunnel-p2mp { base te-tunnel-type; description "TE P2MP tunnel type."; reference "RFC 4875: Extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label Switched Paths (LSPs)"; } identity tunnel-action-type { description "Base identity from which specific tunnel action types are derived."; } identity tunnel-action-resetup { base tunnel-action-type; description "TE tunnel action that tears down the tunnel's current LSP (if any) and attempts to re-establish a new LSP."; } identity tunnel-action-reoptimize { base tunnel-action-type; Busi, et al. Expires 11 September 2023 [Page 40] Internet-Draft TE Common YANG Types March 2023 description "TE tunnel action that reoptimizes the placement of the tunnel LSP(s)."; } identity tunnel-action-switchpath { base tunnel-action-type; description "TE tunnel action that switches the tunnel's LSP to use the specified path."; } identity te-action-result { description "Base identity from which specific TE action results are derived."; } identity te-action-success { base te-action-result; description "TE action was successful."; } identity te-action-fail { base te-action-result; description "TE action failed."; } identity tunnel-action-inprogress { base te-action-result; description "TE action is in progress."; } identity tunnel-admin-state-type { description "Base identity for TE tunnel administrative states."; } identity tunnel-admin-state-up { base tunnel-admin-state-type; description "Tunnel's administrative state is up."; } identity tunnel-admin-state-down { Busi, et al. Expires 11 September 2023 [Page 41] Internet-Draft TE Common YANG Types March 2023 base tunnel-admin-state-type; description "Tunnel's administrative state is down."; } // CHANGE NOTE: The identity tunnel-admin-state-auto below // has been added in this module revision // RFC Editor: remove the note above and this note identity tunnel-admin-state-auto { base tunnel-admin-state-type; description "Tunnel administrative auto state. The administrative status in state datastore transitions to 'tunnel-admin-up' when the tunnel used by the client layer, and to 'tunnel-admin-down' when it is not used by the client layer."; } identity tunnel-state-type { description "Base identity for TE tunnel states."; } identity tunnel-state-up { base tunnel-state-type; description "Tunnel's state is up."; } identity tunnel-state-down { base tunnel-state-type; description "Tunnel's state is down."; } identity lsp-state-type { description "Base identity for TE LSP states."; } identity lsp-path-computing { base lsp-state-type; description "State path computation is in progress."; } identity lsp-path-computation-ok { base lsp-state-type; description Busi, et al. Expires 11 September 2023 [Page 42] Internet-Draft TE Common YANG Types March 2023 "State path computation was successful."; } identity lsp-path-computation-failed { base lsp-state-type; description "State path computation failed."; } identity lsp-state-setting-up { base lsp-state-type; description "State is being set up."; } identity lsp-state-setup-ok { base lsp-state-type; description "State setup was successful."; } identity lsp-state-setup-failed { base lsp-state-type; description "State setup failed."; } identity lsp-state-up { base lsp-state-type; description "State is up."; } identity lsp-state-tearing-down { base lsp-state-type; description "State is being torn down."; } identity lsp-state-down { base lsp-state-type; description "State is down."; } identity path-invalidation-action-type { description "Base identity for TE path invalidation action types."; Busi, et al. Expires 11 September 2023 [Page 43] Internet-Draft TE Common YANG Types March 2023 } identity path-invalidation-action-drop { base path-invalidation-action-type; description "Upon invalidation of the TE tunnel path, the tunnel remains valid, but any packet mapped over the tunnel is dropped."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels, Section 2.5"; } identity path-invalidation-action-teardown { base path-invalidation-action-type; description "TE path invalidation action teardown."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels, Section 2.5"; } identity lsp-restoration-type { description "Base identity from which LSP restoration types are derived."; } // CHANGE NOTE: The identity lsp-restoration-restore-none // below has been added in this module revision // RFC Editor: remove the note above and this note identity lsp-restoration-restore-none { base lsp-restoration-type; description "No LSP affected by a failure is restored."; } identity lsp-restoration-restore-any { base lsp-restoration-type; description "Any LSP affected by a failure is restored."; } identity lsp-restoration-restore-all { base lsp-restoration-type; description "Affected LSPs are restored after all LSPs of the tunnel are broken."; } Busi, et al. Expires 11 September 2023 [Page 44] Internet-Draft TE Common YANG Types March 2023 identity restoration-scheme-type { description "Base identity for LSP restoration schemes."; } identity restoration-scheme-preconfigured { base restoration-scheme-type; description "Restoration LSP is preconfigured prior to the failure."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity restoration-scheme-precomputed { base restoration-scheme-type; description "Restoration LSP is precomputed prior to the failure."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity restoration-scheme-presignaled { base restoration-scheme-type; description "Restoration LSP is presignaled prior to the failure."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity lsp-protection-type { description "Base identity from which LSP protection types are derived."; reference "RFC 4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery"; } identity lsp-protection-unprotected { base lsp-protection-type; description "'Unprotected' LSP protection type."; reference "RFC 4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery"; } Busi, et al. Expires 11 September 2023 [Page 45] Internet-Draft TE Common YANG Types March 2023 identity lsp-protection-reroute-extra { base lsp-protection-type; description "'(Full) Rerouting' LSP protection type."; reference "RFC 4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery"; } identity lsp-protection-reroute { base lsp-protection-type; description "'Rerouting without Extra-Traffic' LSP protection type."; reference "RFC 4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery"; } identity lsp-protection-1-for-n { base lsp-protection-type; description "'1:N Protection with Extra-Traffic' LSP protection type."; reference "RFC 4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery"; } identity lsp-protection-1-for-1 { base lsp-protection-type; description "LSP protection '1:1 Protection Type'."; reference "RFC 4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery"; } identity lsp-protection-unidir-1-plus-1 { base lsp-protection-type; description "'1+1 Unidirectional Protection' LSP protection type."; reference "RFC 4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery"; } identity lsp-protection-bidir-1-plus-1 { base lsp-protection-type; description Busi, et al. Expires 11 September 2023 [Page 46] Internet-Draft TE Common YANG Types March 2023 "'1+1 Bidirectional Protection' LSP protection type."; reference "RFC 4872: RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery"; } identity lsp-protection-extra-traffic { base lsp-protection-type; description "Extra-Traffic LSP protection type."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity lsp-protection-state { description "Base identity of protection states for reporting purposes."; } identity normal { base lsp-protection-state; description "Normal state."; } identity signal-fail-of-protection { base lsp-protection-state; description "The protection transport entity has a signal fail condition that is of higher priority than the forced switchover command."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity lockout-of-protection { base lsp-protection-state; description "A Loss of Protection (LoP) command is active."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity forced-switch { base lsp-protection-state; Busi, et al. Expires 11 September 2023 [Page 47] Internet-Draft TE Common YANG Types March 2023 description "A forced switchover command is active."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity signal-fail { base lsp-protection-state; description "There is a signal fail condition on either the working path or the protection path."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity signal-degrade { base lsp-protection-state; description "There is a signal degrade condition on either the working path or the protection path."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity manual-switch { base lsp-protection-state; description "A manual switchover command is active."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity wait-to-restore { base lsp-protection-state; description "A WTR timer is running."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity do-not-revert { base lsp-protection-state; description Busi, et al. Expires 11 September 2023 [Page 48] Internet-Draft TE Common YANG Types March 2023 "A Do Not Revert (DNR) condition is active because of non-revertive behavior."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity failure-of-protocol { base lsp-protection-state; description "LSP protection is not working because of a protocol failure condition."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity protection-external-commands { description "Base identity from which protection-related external commands used for troubleshooting purposes are derived."; } identity action-freeze { base protection-external-commands; description "A temporary configuration action initiated by an operator command that prevents any switchover action from being taken and, as such, freezes the current state."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity clear-freeze { base protection-external-commands; description "An action that clears the active freeze state."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity action-lockout-of-normal { base protection-external-commands; description "A temporary configuration action initiated by an operator command to ensure that the normal traffic is not allowed Busi, et al. Expires 11 September 2023 [Page 49] Internet-Draft TE Common YANG Types March 2023 to use the protection transport entity."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity clear-lockout-of-normal { base protection-external-commands; description "An action that clears the active lockout of the normal state."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity action-lockout-of-protection { base protection-external-commands; description "A temporary configuration action initiated by an operator command to ensure that the protection transport entity is temporarily not available to transport a traffic signal (either normal or Extra-Traffic)."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity action-forced-switch { base protection-external-commands; description "A switchover action initiated by an operator command to switch the Extra-Traffic signal, the normal traffic signal, or the null signal to the protection transport entity, unless a switchover command of equal or higher priority is in effect."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity action-manual-switch { base protection-external-commands; description "A switchover action initiated by an operator command to switch the Extra-Traffic signal, the normal traffic signal, or the null signal to the protection transport entity, unless a fault condition exists on other transport entities or a switchover command of equal or higher priority is in effect."; Busi, et al. Expires 11 September 2023 [Page 50] Internet-Draft TE Common YANG Types March 2023 reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } // cCHANGE NOTE: The description and reference of the // identity action-exercise have been updated in this module // revision // RFC Editor: remove the note above and this note identity action-exercise { base protection-external-commands; description "An action that starts testing whether or not Automatic Protection Switching (APS) communication is operating correctly. It is of lower priority than any other state or command."; reference "ITU-T G.808.1 v4.0 (05/2014): Generic protection switching - Linear trail and subnetwork protection"; } identity clear { base protection-external-commands; description "An action that clears the active near-end lockout of a protection, forced switchover, manual switchover, WTR state, or exercise command."; reference "RFC 4427: Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)"; } identity switching-capabilities { description "Base identity for interface switching capabilities."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"; } identity switching-psc1 { base switching-capabilities; description "Packet-Switch Capable-1 (PSC-1)."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"; } Busi, et al. Expires 11 September 2023 [Page 51] Internet-Draft TE Common YANG Types March 2023 identity switching-evpl { base switching-capabilities; description "Ethernet Virtual Private Line (EVPL)."; reference "RFC 6004: Generalized MPLS (GMPLS) Support for Metro Ethernet Forum and G.8011 Ethernet Service Switching"; } identity switching-l2sc { base switching-capabilities; description "Layer-2 Switch Capable (L2SC)."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"; } identity switching-tdm { base switching-capabilities; description "Time-Division-Multiplex Capable (TDM)."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"; } identity switching-otn { base switching-capabilities; description "OTN-TDM capable."; reference "RFC 7138: Traffic Engineering Extensions to OSPF for GMPLS Control of Evolving G.709 Optical Transport Networks"; } identity switching-dcsc { base switching-capabilities; description "Data Channel Switching Capable (DCSC)."; reference "RFC 6002: Generalized MPLS (GMPLS) Data Channel Switching Capable (DCSC) and Channel Set Label Extensions"; } identity switching-lsc { base switching-capabilities; description Busi, et al. Expires 11 September 2023 [Page 52] Internet-Draft TE Common YANG Types March 2023 "Lambda-Switch Capable (LSC)."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"; } identity switching-fsc { base switching-capabilities; description "Fiber-Switch Capable (FSC)."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"; } identity lsp-encoding-types { description "Base identity for encoding types."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"; } identity lsp-encoding-packet { base lsp-encoding-types; description "Packet LSP encoding."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"; } identity lsp-encoding-ethernet { base lsp-encoding-types; description "Ethernet LSP encoding."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"; } identity lsp-encoding-pdh { base lsp-encoding-types; description "ANSI/ETSI PDH LSP encoding."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"; Busi, et al. Expires 11 September 2023 [Page 53] Internet-Draft TE Common YANG Types March 2023 } identity lsp-encoding-sdh { base lsp-encoding-types; description "SDH ITU-T G.707 / SONET ANSI T1.105 LSP encoding."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"; } identity lsp-encoding-digital-wrapper { base lsp-encoding-types; description "Digital Wrapper LSP encoding."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"; } identity lsp-encoding-lambda { base lsp-encoding-types; description "Lambda (photonic) LSP encoding."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"; } identity lsp-encoding-fiber { base lsp-encoding-types; description "Fiber LSP encoding."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"; } identity lsp-encoding-fiber-channel { base lsp-encoding-types; description "FiberChannel LSP encoding."; reference "RFC 3471: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description"; } identity lsp-encoding-oduk { Busi, et al. Expires 11 September 2023 [Page 54] Internet-Draft TE Common YANG Types March 2023 base lsp-encoding-types; description "G.709 ODUk (Digital Path) LSP encoding."; reference "RFC 4328: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for G.709 Optical Transport Networks Control"; } identity lsp-encoding-optical-channel { base lsp-encoding-types; description "G.709 Optical Channel LSP encoding."; reference "RFC 4328: Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for G.709 Optical Transport Networks Control"; } identity lsp-encoding-line { base lsp-encoding-types; description "Line (e.g., 8B/10B) LSP encoding."; reference "RFC 6004: Generalized MPLS (GMPLS) Support for Metro Ethernet Forum and G.8011 Ethernet Service Switching"; } identity path-signaling-type { description "Base identity from which specific LSP path setup types are derived."; } identity path-setup-static { base path-signaling-type; description "Static LSP provisioning path setup."; } identity path-setup-rsvp { base path-signaling-type; description "RSVP-TE signaling path setup."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels"; } Busi, et al. Expires 11 September 2023 [Page 55] Internet-Draft TE Common YANG Types March 2023 identity path-setup-sr { base path-signaling-type; description "Segment-routing path setup."; } identity path-scope-type { description "Base identity from which specific path scope types are derived."; } identity path-scope-segment { base path-scope-type; description "Path scope segment."; reference "RFC 4873: GMPLS Segment Recovery"; } identity path-scope-end-to-end { base path-scope-type; description "Path scope end to end."; reference "RFC 4873: GMPLS Segment Recovery"; } identity route-usage-type { description "Base identity for route usage."; } identity route-include-object { base route-usage-type; description "'Include route' object."; } identity route-exclude-object { base route-usage-type; description "'Exclude route' object."; reference "RFC 4874: Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"; } Busi, et al. Expires 11 September 2023 [Page 56] Internet-Draft TE Common YANG Types March 2023 identity route-exclude-srlg { base route-usage-type; description "Excludes SRLGs."; reference "RFC 4874: Exclude Routes - Extension to Resource ReserVation Protocol-Traffic Engineering (RSVP-TE)"; } identity path-metric-type { description "Base identity for the path metric type."; } identity path-metric-te { base path-metric-type; description "TE path metric."; reference "RFC 3785: Use of Interior Gateway Protocol (IGP) Metric as a second MPLS Traffic Engineering (TE) Metric"; } identity path-metric-igp { base path-metric-type; description "IGP path metric."; reference "RFC 3785: Use of Interior Gateway Protocol (IGP) Metric as a second MPLS Traffic Engineering (TE) Metric"; } identity path-metric-hop { base path-metric-type; description "Hop path metric."; } identity path-metric-delay-average { base path-metric-type; description "Average unidirectional link delay."; reference "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions"; } identity path-metric-delay-minimum { base path-metric-type; Busi, et al. Expires 11 September 2023 [Page 57] Internet-Draft TE Common YANG Types March 2023 description "Minimum unidirectional link delay."; reference "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions"; } identity path-metric-residual-bandwidth { base path-metric-type; description "Unidirectional Residual Bandwidth, which is defined to be Maximum Bandwidth (RFC 3630) minus the bandwidth currently allocated to LSPs."; reference "RFC 3630: Traffic Engineering (TE) Extensions to OSPF Version 2 RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions"; } identity path-metric-optimize-includes { base path-metric-type; description "A metric that optimizes the number of included resources specified in a set."; } identity path-metric-optimize-excludes { base path-metric-type; description "A metric that optimizes to a maximum the number of excluded resources specified in a set."; } identity path-tiebreaker-type { description "Base identity for the path tiebreaker type."; } identity path-tiebreaker-minfill { base path-tiebreaker-type; description "Min-Fill LSP path placement."; } identity path-tiebreaker-maxfill { base path-tiebreaker-type; description "Max-Fill LSP path placement."; } Busi, et al. Expires 11 September 2023 [Page 58] Internet-Draft TE Common YANG Types March 2023 identity path-tiebreaker-random { base path-tiebreaker-type; description "Random LSP path placement."; } identity resource-affinities-type { description "Base identity for resource class affinities."; reference "RFC 2702: Requirements for Traffic Engineering Over MPLS"; } identity resource-aff-include-all { base resource-affinities-type; description "The set of attribute filters associated with a tunnel, all of which must be present for a link to be acceptable."; reference "RFC 2702: Requirements for Traffic Engineering Over MPLS RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels"; } identity resource-aff-include-any { base resource-affinities-type; description "The set of attribute filters associated with a tunnel, any of which must be present for a link to be acceptable."; reference "RFC 2702: Requirements for Traffic Engineering Over MPLS RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels"; } identity resource-aff-exclude-any { base resource-affinities-type; description "The set of attribute filters associated with a tunnel, any of which renders a link unacceptable."; reference "RFC 2702: Requirements for Traffic Engineering Over MPLS RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels"; } identity te-optimization-criterion { description "Base identity for the TE optimization criteria."; Busi, et al. Expires 11 September 2023 [Page 59] Internet-Draft TE Common YANG Types March 2023 reference "RFC 3272: Overview and Principles of Internet Traffic Engineering"; } identity not-optimized { base te-optimization-criterion; description "Optimization is not applied."; } identity cost { base te-optimization-criterion; description "Optimized on cost."; reference "RFC 5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)"; } identity delay { base te-optimization-criterion; description "Optimized on delay."; reference "RFC 5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)"; } identity path-computation-srlg-type { description "Base identity for SRLG path computation."; } identity srlg-ignore { base path-computation-srlg-type; description "Ignores SRLGs in the path computation."; } identity srlg-strict { base path-computation-srlg-type; description "Includes a strict SRLG check in the path computation."; } identity srlg-preferred { base path-computation-srlg-type; Busi, et al. Expires 11 September 2023 [Page 60] Internet-Draft TE Common YANG Types March 2023 description "Includes a preferred SRLG check in the path computation."; } identity srlg-weighted { base path-computation-srlg-type; description "Includes a weighted SRLG check in the path computation."; } // CHANGE NOTE: The base identity path-computation-error-reason // and its derived identities below have been // added in this module revision // RFC Editor: remove the note above and this note identity path-computation-error-reason { description "Base identity for path computation error reasons."; } identity path-computation-error-no-topology { base path-computation-error-reason; description "Path computation has failed because there is no topology with the provided topology-identifier."; } identity path-computation-error-no-dependent-server { base path-computation-error-reason; description "Path computation has failed because one or more dependent path computation servers are unavailable. The dependent path computation server could be a Backward-Recursive Path Computation (BRPC) downstream PCE or a child PCE."; reference "RFC5441, RFC8685"; } identity path-computation-error-pce-unavailable { base path-computation-error-reason; description "Path computation has failed because PCE is not available."; reference "RFC5440"; } identity path-computation-error-no-inclusion-hop { base path-computation-error-reason; Busi, et al. Expires 11 September 2023 [Page 61] Internet-Draft TE Common YANG Types March 2023 description "Path computation has failed because there is no node or link provided by one or more inclusion hops."; } identity path-computation-error-destination-unknown-in-domain { base path-computation-error-reason; description "Path computation has failed because the destination node is unknown in indicated destination domain."; reference "RFC8685"; } identity path-computation-error-no-resource { base path-computation-error-reason; description "Path computation has failed because there is no available resource in one or more domains."; reference "RFC8685"; } identity path-computation-error-child-pce-unresponsive { base path-computation-error-reason; description "Path computation has failed because child PCE is not responsive."; reference "RFC8685"; } identity path-computation-error-destination-domain-unknown { base path-computation-error-reason; description "Path computation has failed because the destination domain was unknown."; reference "RFC8685"; } identity path-computation-error-p2mp { base path-computation-error-reason; description "Path computation has failed because of P2MP reachability problem."; reference "RFC8306"; Busi, et al. Expires 11 September 2023 [Page 62] Internet-Draft TE Common YANG Types March 2023 } identity path-computation-error-no-gco-migration { base path-computation-error-reason; description "Path computation has failed because of no Global Concurrent Optimization (GCO) migration path found."; reference "RFC5557"; } identity path-computation-error-no-gco-solution { base path-computation-error-reason; description "Path computation has failed because of no GCO solution found."; reference "RFC5557"; } identity path-computation-error-path-not-found { base path-computation-error-reason; description "Path computation no path found error reason."; reference "RFC5440"; } identity path-computation-error-pks-expansion { base path-computation-error-reason; description "Path computation has failed because of Path-Key Subobject (PKS) expansion failure."; reference "RFC5520"; } identity path-computation-error-brpc-chain-unavailable { base path-computation-error-reason; description "Path computation has failed because PCE BRPC chain unavailable."; reference "RFC5441"; } identity path-computation-error-source-unknown { base path-computation-error-reason; Busi, et al. Expires 11 September 2023 [Page 63] Internet-Draft TE Common YANG Types March 2023 description "Path computation has failed because source node is unknown."; reference "RFC5440"; } identity path-computation-error-destination-unknown { base path-computation-error-reason; description "Path computation has failed because destination node is unknown."; reference "RFC5440"; } identity path-computation-error-no-server { base path-computation-error-reason; description "Path computation has failed because path computation server is unavailable."; reference "RFC5440"; } // CHANGE NOTE: The base identity protocol-origin-type and // its derived identities below have been // added in this module revision // RFC Editor: remove the note above and this note identity protocol-origin-type { description "Base identity for protocol origin type."; } identity protocol-origin-api { base protocol-origin-type; description "Protocol origin is via Application Programmable Interface (API)."; } identity protocol-origin-pcep { base protocol-origin-type; description "Protocol origin is Path Computation Engine Protocol (PCEP)."; reference "RFC5440"; } Busi, et al. Expires 11 September 2023 [Page 64] Internet-Draft TE Common YANG Types March 2023 identity protocol-origin-bgp { base protocol-origin-type; description "Protocol origin is Border Gateway Protocol (BGP)."; reference "RFC9012"; } // CHANGE NOTE: The base identity svec-objective-function-type // and its derived identities below have been // added in this module revision // RFC Editor: remove the note above and this note identity svec-objective-function-type { description "Base identity for SVEC objective function type."; reference "RFC5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)."; } identity svec-of-minimize-agg-bandwidth-consumption { base svec-objective-function-type; description "Objective function for minimizing aggregate bandwidth consumption (MBC)."; reference "RFC5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)."; } identity svec-of-minimize-load-most-loaded-link { base svec-objective-function-type; description "Objective function for minimizing the load on the link that is carrying the highest load (MLL)."; reference "RFC5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)."; } identity svec-of-minimize-cost-path-set { base svec-objective-function-type; description "Objective function for minimizing the cost on a path set (MCC)."; reference "RFC5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)."; } Busi, et al. Expires 11 September 2023 [Page 65] Internet-Draft TE Common YANG Types March 2023 identity svec-of-minimize-common-transit-domain { base svec-objective-function-type; description "Objective function for minimizing the number of common transit domains (MCTD)."; reference "RFC8685: Path Computation Element Communication Protocol (PCEP) Extensions for the Hierarchical Path Computation Element (H-PCE) Architecture."; } identity svec-of-minimize-shared-link { base svec-objective-function-type; description "Objective function for minimizing the number of shared links (MSL)."; reference "RFC8685: Path Computation Element Communication Protocol (PCEP) Extensions for the Hierarchical Path Computation Element (H-PCE) Architecture."; } identity svec-of-minimize-shared-srlg { base svec-objective-function-type; description "Objective function for minimizing the number of shared Shared Risk Link Groups (SRLG) (MSS)."; reference "RFC8685: Path Computation Element Communication Protocol (PCEP) Extensions for the Hierarchical Path Computation Element (H-PCE) Architecture."; } identity svec-of-minimize-shared-nodes { base svec-objective-function-type; description "Objective function for minimizing the number of shared nodes (MSN)."; reference "RFC8685: Path Computation Element Communication Protocol (PCEP) Extensions for the Hierarchical Path Computation Element (H-PCE) Architecture."; } // CHANGE NOTE: The base identity svec-metric-type and // its derived identities below have been // added in this module revision // RFC Editor: remove the note above and this note Busi, et al. Expires 11 September 2023 [Page 66] Internet-Draft TE Common YANG Types March 2023 identity svec-metric-type { description "Base identity for SVEC metric type."; reference "RFC5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)."; } identity svec-metric-cumul-te { base svec-metric-type; description "Cumulative TE cost."; reference "RFC5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)."; } identity svec-metric-cumul-igp { base svec-metric-type; description "Cumulative IGP cost."; reference "RFC5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)."; } identity svec-metric-cumul-hop { base svec-metric-type; description "Cumulative Hop path metric."; reference "RFC5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)."; } identity svec-metric-aggregate-bandwidth-consumption { base svec-metric-type; description "Aggregate bandwidth consumption."; reference "RFC5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)."; } identity svec-metric-load-of-the-most-loaded-link { base svec-metric-type; description "Load of the most loaded link."; Busi, et al. Expires 11 September 2023 [Page 67] Internet-Draft TE Common YANG Types March 2023 reference "RFC5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)."; } /** * TE bandwidth groupings **/ grouping te-bandwidth { description "This grouping defines the generic TE bandwidth. For some known data-plane technologies, specific modeling structures are specified. The string-encoded 'te-bandwidth' type is used for unspecified technologies. The modeling structure can be augmented later for other technologies."; container te-bandwidth { description "Container that specifies TE bandwidth. The choices can be augmented for specific data-plane technologies."; choice technology { default "generic"; description "Data-plane technology type."; case generic { leaf generic { type te-bandwidth; description "Bandwidth specified in a generic format."; } } } } } /** * TE label groupings **/ grouping te-label { description "This grouping defines the generic TE label. The modeling structure can be augmented for each technology. For unspecified technologies, 'rt-types:generalized-label' is used."; container te-label { description Busi, et al. Expires 11 September 2023 [Page 68] Internet-Draft TE Common YANG Types March 2023 "Container that specifies the TE label. The choices can be augmented for specific data-plane technologies."; choice technology { default "generic"; description "Data-plane technology type."; case generic { leaf generic { type rt-types:generalized-label; description "TE label specified in a generic format."; } } } leaf direction { type te-label-direction; default "forward"; description "Label direction."; } } } grouping te-topology-identifier { description "Augmentation for a TE topology."; container te-topology-identifier { description "TE topology identifier container."; leaf provider-id { type te-global-id; default "0"; description "An identifier to uniquely identify a provider. If omitted, it assumes that the topology provider ID value = 0 (the default)."; } leaf client-id { type te-global-id; default "0"; description "An identifier to uniquely identify a client. If omitted, it assumes that the topology client ID value = 0 (the default)."; } leaf topology-id { type te-topology-id; default ""; Busi, et al. Expires 11 September 2023 [Page 69] Internet-Draft TE Common YANG Types March 2023 description "When the datastore contains several topologies, 'topology-id' distinguishes between them. If omitted, the default (empty) string for this leaf is assumed."; } } } /** * TE performance metrics groupings **/ grouping performance-metrics-one-way-delay-loss { description "Performance Metrics (PM) information in real time that can be applicable to links or connections. PM defined in this grouping are applicable to generic TE PM as well as packet TE PM."; reference "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions RFC 7823: Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions RFC 8570: IS-IS Traffic Engineering (TE) Metric Extensions"; leaf one-way-delay { type uint32 { range "0..16777215"; } description "One-way delay or latency in microseconds."; } leaf one-way-delay-normality { type te-types:performance-metrics-normality; description "One-way delay normality."; } } grouping performance-metrics-two-way-delay-loss { description "PM information in real time that can be applicable to links or connections. PM defined in this grouping are applicable to generic TE PM as well as packet TE PM."; reference "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions RFC 7823: Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions Busi, et al. Expires 11 September 2023 [Page 70] Internet-Draft TE Common YANG Types March 2023 RFC 8570: IS-IS Traffic Engineering (TE) Metric Extensions"; leaf two-way-delay { type uint32 { range "0..16777215"; } description "Two-way delay or latency in microseconds."; } leaf two-way-delay-normality { type te-types:performance-metrics-normality; description "Two-way delay normality."; } } grouping performance-metrics-one-way-bandwidth { description "PM information in real time that can be applicable to links. PM defined in this grouping are applicable to generic TE PM as well as packet TE PM."; reference "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions RFC 7823: Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions RFC 8570: IS-IS Traffic Engineering (TE) Metric Extensions"; leaf one-way-residual-bandwidth { type rt-types:bandwidth-ieee-float32; units "bytes per second"; default "0x0p0"; description "Residual bandwidth that subtracts tunnel reservations from Maximum Bandwidth (or link capacity) (RFC 3630) and provides an aggregated remainder across QoS classes."; reference "RFC 3630: Traffic Engineering (TE) Extensions to OSPF Version 2"; } leaf one-way-residual-bandwidth-normality { type te-types:performance-metrics-normality; default "normal"; description "Residual bandwidth normality."; } leaf one-way-available-bandwidth { type rt-types:bandwidth-ieee-float32; units "bytes per second"; default "0x0p0"; Busi, et al. Expires 11 September 2023 [Page 71] Internet-Draft TE Common YANG Types March 2023 description "Available bandwidth that is defined to be residual bandwidth minus the measured bandwidth used for the actual forwarding of non-RSVP-TE LSP packets. For a bundled link, available bandwidth is defined to be the sum of the component link available bandwidths."; } leaf one-way-available-bandwidth-normality { type te-types:performance-metrics-normality; default "normal"; description "Available bandwidth normality."; } leaf one-way-utilized-bandwidth { type rt-types:bandwidth-ieee-float32; units "bytes per second"; default "0x0p0"; description "Bandwidth utilization that represents the actual utilization of the link (i.e., as measured in the router). For a bundled link, bandwidth utilization is defined to be the sum of the component link bandwidth utilizations."; } leaf one-way-utilized-bandwidth-normality { type te-types:performance-metrics-normality; default "normal"; description "Bandwidth utilization normality."; } } grouping one-way-performance-metrics { description "One-way PM throttle grouping."; leaf one-way-delay { type uint32 { range "0..16777215"; } default "0"; description "One-way delay or latency in microseconds."; } leaf one-way-residual-bandwidth { type rt-types:bandwidth-ieee-float32; units "bytes per second"; default "0x0p0"; description "Residual bandwidth that subtracts tunnel reservations from Busi, et al. Expires 11 September 2023 [Page 72] Internet-Draft TE Common YANG Types March 2023 Maximum Bandwidth (or link capacity) (RFC 3630) and provides an aggregated remainder across QoS classes."; reference "RFC 3630: Traffic Engineering (TE) Extensions to OSPF Version 2"; } leaf one-way-available-bandwidth { type rt-types:bandwidth-ieee-float32; units "bytes per second"; default "0x0p0"; description "Available bandwidth that is defined to be residual bandwidth minus the measured bandwidth used for the actual forwarding of non-RSVP-TE LSP packets. For a bundled link, available bandwidth is defined to be the sum of the component link available bandwidths."; } leaf one-way-utilized-bandwidth { type rt-types:bandwidth-ieee-float32; units "bytes per second"; default "0x0p0"; description "Bandwidth utilization that represents the actual utilization of the link (i.e., as measured in the router). For a bundled link, bandwidth utilization is defined to be the sum of the component link bandwidth utilizations."; } } grouping two-way-performance-metrics { description "Two-way PM throttle grouping."; leaf two-way-delay { type uint32 { range "0..16777215"; } default "0"; description "Two-way delay or latency in microseconds."; } } grouping performance-metrics-thresholds { description "Grouping for configurable thresholds for measured attributes."; uses one-way-performance-metrics; uses two-way-performance-metrics; Busi, et al. Expires 11 September 2023 [Page 73] Internet-Draft TE Common YANG Types March 2023 } grouping performance-metrics-attributes { description "Contains PM attributes."; container performance-metrics-one-way { description "One-way link performance information in real time."; reference "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions RFC 7823: Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions RFC 8570: IS-IS Traffic Engineering (TE) Metric Extensions"; uses performance-metrics-one-way-delay-loss; uses performance-metrics-one-way-bandwidth; } container performance-metrics-two-way { description "Two-way link performance information in real time."; reference "RFC 6374: Packet Loss and Delay Measurement for MPLS Networks"; uses performance-metrics-two-way-delay-loss; } } grouping performance-metrics-throttle-container { description "Controls PM throttling."; container throttle { must 'suppression-interval >= measure-interval' { error-message "'suppression-interval' cannot be less than " + "'measure-interval'."; description "Constraint on 'suppression-interval' and 'measure-interval'."; } description "Link performance information in real time."; reference "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions RFC 7823: Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions RFC 8570: IS-IS Traffic Engineering (TE) Metric Extensions"; leaf one-way-delay-offset { type uint32 { Busi, et al. Expires 11 September 2023 [Page 74] Internet-Draft TE Common YANG Types March 2023 range "0..16777215"; } default "0"; description "Offset value to be added to the measured delay value."; } leaf measure-interval { type uint32; default "30"; description "Interval, in seconds, to measure the extended metric values."; } leaf advertisement-interval { type uint32; default "0"; description "Interval, in seconds, to advertise the extended metric values."; } leaf suppression-interval { type uint32 { range "1..max"; } default "120"; description "Interval, in seconds, to suppress advertisement of the extended metric values."; reference "RFC 8570: IS-IS Traffic Engineering (TE) Metric Extensions, Section 6"; } container threshold-out { uses performance-metrics-thresholds; description "If the measured parameter falls outside an upper bound for all but the minimum-delay metric (or a lower bound for the minimum-delay metric only) and the advertised value is not already outside that bound, an 'anomalous' announcement (anomalous bit set) will be triggered."; } container threshold-in { uses performance-metrics-thresholds; description "If the measured parameter falls inside an upper bound for all but the minimum-delay metric (or a lower bound for the minimum-delay metric only) and the advertised value is not already inside that bound, a 'normal' Busi, et al. Expires 11 September 2023 [Page 75] Internet-Draft TE Common YANG Types March 2023 announcement (anomalous bit cleared) will be triggered."; } container threshold-accelerated-advertisement { description "When the difference between the last advertised value and the current measured value exceeds this threshold, an 'anomalous' announcement (anomalous bit set) will be triggered."; uses performance-metrics-thresholds; } } } /** * TE tunnel generic groupings **/ grouping explicit-route-hop { description "The explicit route entry grouping."; choice type { description "The explicit route entry type."; case numbered-node-hop { container numbered-node-hop { leaf node-id { type te-node-id; mandatory true; description "The identifier of a node in the TE topology."; } leaf hop-type { type te-hop-type; default "strict"; description "Strict or loose hop."; } description "Numbered node route hop."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels, Section 4.3, EXPLICIT_ROUTE in RSVP-TE RFC 3477: Signalling Unnumbered Links in Resource ReSerVation Protocol - Traffic Engineering (RSVP-TE)"; } } case numbered-link-hop { container numbered-link-hop { Busi, et al. Expires 11 September 2023 [Page 76] Internet-Draft TE Common YANG Types March 2023 leaf link-tp-id { type te-tp-id; mandatory true; description "TE Link Termination Point (LTP) identifier."; } leaf hop-type { type te-hop-type; default "strict"; description "Strict or loose hop."; } leaf direction { type te-link-direction; default "outgoing"; description "Link route object direction."; } description "Numbered link explicit route hop."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels, Section 4.3, EXPLICIT_ROUTE in RSVP-TE RFC 3477: Signalling Unnumbered Links in Resource ReSerVation Protocol - Traffic Engineering (RSVP-TE)"; } } case unnumbered-link-hop { container unnumbered-link-hop { leaf link-tp-id { type te-tp-id; mandatory true; description "TE LTP identifier. The combination of the TE link ID and the TE node ID is used to identify an unnumbered TE link."; } leaf node-id { type te-node-id; mandatory true; description "The identifier of a node in the TE topology."; } leaf hop-type { type te-hop-type; default "strict"; description "Strict or loose hop."; Busi, et al. Expires 11 September 2023 [Page 77] Internet-Draft TE Common YANG Types March 2023 } leaf direction { type te-link-direction; default "outgoing"; description "Link route object direction."; } description "Unnumbered link explicit route hop."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels, Section 4.3, EXPLICIT_ROUTE in RSVP-TE RFC 3477: Signalling Unnumbered Links in Resource ReSerVation Protocol - Traffic Engineering (RSVP-TE)"; } } case as-number { container as-number-hop { leaf as-number { type inet:as-number; mandatory true; description "The Autonomous System (AS) number."; } leaf hop-type { type te-hop-type; default "strict"; description "Strict or loose hop."; } description "AS explicit route hop."; } } case label { container label-hop { description "Label hop type."; uses te-label; } description "The label explicit route hop type."; } } } grouping record-route-state { description Busi, et al. Expires 11 September 2023 [Page 78] Internet-Draft TE Common YANG Types March 2023 "The Record Route grouping."; leaf index { type uint32; description "Record Route hop index. The index is used to identify an entry in the list. The order of entries is defined by the user without relying on key values."; } choice type { description "The Record Route entry type."; case numbered-node-hop { container numbered-node-hop { description "Numbered node route hop container."; leaf node-id { type te-node-id; mandatory true; description "The identifier of a node in the TE topology."; } leaf-list flags { type path-attribute-flags; description "Path attributes flags."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels RFC 4561: Definition of a Record Route Object (RRO) Node-Id Sub-Object"; } } description "Numbered node route hop."; } case numbered-link-hop { container numbered-link-hop { description "Numbered link route hop container."; leaf link-tp-id { type te-tp-id; mandatory true; description "Numbered TE LTP identifier."; } leaf-list flags { type path-attribute-flags; Busi, et al. Expires 11 September 2023 [Page 79] Internet-Draft TE Common YANG Types March 2023 description "Path attributes flags."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels RFC 4561: Definition of a Record Route Object (RRO) Node-Id Sub-Object"; } } description "Numbered link route hop."; } case unnumbered-link-hop { container unnumbered-link-hop { leaf link-tp-id { type te-tp-id; mandatory true; description "TE LTP identifier. The combination of the TE link ID and the TE node ID is used to identify an unnumbered TE link."; } leaf node-id { type te-node-id; description "The identifier of a node in the TE topology."; } leaf-list flags { type path-attribute-flags; description "Path attributes flags."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels RFC 4561: Definition of a Record Route Object (RRO) Node-Id Sub-Object"; } description "Unnumbered link Record Route hop."; reference "RFC 3477: Signalling Unnumbered Links in Resource ReSerVation Protocol - Traffic Engineering (RSVP-TE)"; } description "Unnumbered link route hop."; } Busi, et al. Expires 11 September 2023 [Page 80] Internet-Draft TE Common YANG Types March 2023 case label { container label-hop { description "Label route hop type."; uses te-label; leaf-list flags { type path-attribute-flags; description "Path attributes flags."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels RFC 4090: Fast Reroute Extensions to RSVP-TE for LSP Tunnels RFC 4561: Definition of a Record Route Object (RRO) Node-Id Sub-Object"; } } description "The label Record Route entry types."; } } } grouping label-restriction-info { description "Label set item information."; leaf restriction { type enumeration { enum inclusive { description "The label or label range is inclusive."; } enum exclusive { description "The label or label range is exclusive."; } } default "inclusive"; description "Indicates whether the list item is inclusive or exclusive."; } leaf index { type uint32; description "The index of the label restriction list entry."; } container label-start { must "(not(../label-end/te-label/direction) and" Busi, et al. Expires 11 September 2023 [Page 81] Internet-Draft TE Common YANG Types March 2023 + " not(te-label/direction))" + " or " + "(../label-end/te-label/direction = te-label/direction)" + " or " + "(not(te-label/direction) and" + " (../label-end/te-label/direction = 'forward'))" + " or " + "(not(../label-end/te-label/direction) and" + " (te-label/direction = 'forward'))" { error-message "'label-start' and 'label-end' must have the " + "same direction."; } description "This is the starting label if a label range is specified. This is the label value if a single label is specified, in which case the 'label-end' attribute is not set."; uses te-label; } container label-end { must "(not(../label-start/te-label/direction) and" + " not(te-label/direction))" + " or " + "(../label-start/te-label/direction = te-label/direction)" + " or " + "(not(te-label/direction) and" + " (../label-start/te-label/direction = 'forward'))" + " or " + "(not(../label-start/te-label/direction) and" + " (te-label/direction = 'forward'))" { error-message "'label-start' and 'label-end' must have the " + "same direction."; } description "This is the ending label if a label range is specified. This attribute is not set if a single label is specified."; uses te-label; } container label-step { description "The step increment between labels in the label range. The label start/end values will have to be consistent with the sign of label step. For example, 'label-start' < 'label-end' enforces 'label-step' > 0 'label-start' > 'label-end' enforces 'label-step' < 0."; choice technology { default "generic"; description "Data-plane technology type."; Busi, et al. Expires 11 September 2023 [Page 82] Internet-Draft TE Common YANG Types March 2023 case generic { leaf generic { type int32; default "1"; description "Label range step."; } } } } leaf range-bitmap { type yang:hex-string; description "When there are gaps between 'label-start' and 'label-end', this attribute is used to specify the positions of the used labels. This is represented in big endian as 'hex-string'. The most significant byte in the hex-string is the farthest to the left in the byte sequence. Leading zero bytes in the configured value may be omitted for brevity. Each bit position in the 'range-bitmap' 'hex-string' maps to a label in the range derived from 'label-start'. For example, assuming that 'label-start' = 16000 and 'range-bitmap' = 0x01000001, then: - bit position (0) is set, and the corresponding mapped label from the range is 16000 + (0 * 'label-step') or 16000 for default 'label-step' = 1. - bit position (24) is set, and the corresponding mapped label from the range is 16000 + (24 * 'label-step') or 16024 for default 'label-step' = 1."; } } grouping label-set-info { description "Grouping for the list of label restrictions specifying what labels may or may not be used."; container label-restrictions { description "The label restrictions container."; list label-restriction { key "index"; description "The absence of the label restrictions container implies that all labels are acceptable; otherwise, only restricted labels are available."; Busi, et al. Expires 11 September 2023 [Page 83] Internet-Draft TE Common YANG Types March 2023 reference "RFC 7579: General Network Element Constraint Encoding for GMPLS-Controlled Networks"; uses label-restriction-info; } } } grouping optimization-metric-entry { description "Optimization metrics configuration grouping."; leaf metric-type { type identityref { base path-metric-type; } description "Identifies the 'metric-type' that the path computation process uses for optimization."; } leaf weight { type uint8; default "1"; description "TE path metric normalization weight."; } container explicit-route-exclude-objects { when "../metric-type = " + "'te-types:path-metric-optimize-excludes'"; description "Container for the 'exclude route' object list."; uses path-route-exclude-objects; } container explicit-route-include-objects { when "../metric-type = " + "'te-types:path-metric-optimize-includes'"; description "Container for the 'include route' object list."; uses path-route-include-objects; } } grouping common-constraints { description "Common constraints grouping that can be set on a constraint set or directly on the tunnel."; uses te-bandwidth { description "A requested bandwidth to use for path computation."; Busi, et al. Expires 11 September 2023 [Page 84] Internet-Draft TE Common YANG Types March 2023 } leaf link-protection { type identityref { base link-protection-type; } default "te-types:link-protection-unprotected"; description "Link protection type required for the links included in the computed path."; reference "RFC 4202: Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)"; } leaf setup-priority { type uint8 { range "0..7"; } default "7"; description "TE LSP requested setup priority."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels"; } leaf hold-priority { type uint8 { range "0..7"; } default "7"; description "TE LSP requested hold priority."; reference "RFC 3209: RSVP-TE: Extensions to RSVP for LSP Tunnels"; } leaf signaling-type { type identityref { base path-signaling-type; } default "te-types:path-setup-rsvp"; description "TE tunnel path signaling type."; } } grouping tunnel-constraints { description "Tunnel constraints grouping that can be set on a constraint set or directly on the tunnel."; uses te-topology-identifier; Busi, et al. Expires 11 September 2023 [Page 85] Internet-Draft TE Common YANG Types March 2023 uses common-constraints; } grouping path-constraints-route-objects { description "List of route entries to be included or excluded when performing the path computation."; container explicit-route-objects-always { description "Container for the 'exclude route' object list."; list route-object-exclude-always { key "index"; ordered-by user; description "List of route objects to always exclude from the path computation."; leaf index { type uint32; description "Explicit Route Object index. The index is used to identify an entry in the list. The order of entries is defined by the user without relying on key values."; } uses explicit-route-hop; } list route-object-include-exclude { key "index"; ordered-by user; description "List of route objects to include or exclude in the path computation."; leaf explicit-route-usage { type identityref { base route-usage-type; } default "te-types:route-include-object"; description "Indicates whether to include or exclude the route object. The default is to include it."; } leaf index { type uint32; description "Route object include-exclude index. The index is used to identify an entry in the list. The order of entries is defined by the user without relying on key values."; } uses explicit-route-hop { Busi, et al. Expires 11 September 2023 [Page 86] Internet-Draft TE Common YANG Types March 2023 augment "type" { case srlg { container srlg { description "SRLG container."; leaf srlg { type uint32; description "SRLG value."; } } description "An SRLG value to be included or excluded."; } description "Augmentation for a generic explicit route for SRLG exclusion."; } } } } } grouping path-route-include-objects { description "List of route objects to be included when performing the path computation."; list route-object-include-object { key "index"; ordered-by user; description "List of Explicit Route Objects to be included in the path computation."; leaf index { type uint32; description "Route object entry index. The index is used to identify an entry in the list. The order of entries is defined by the user without relying on key values."; } uses explicit-route-hop; } } grouping path-route-exclude-objects { description "List of route objects to be excluded when performing the path computation."; Busi, et al. Expires 11 September 2023 [Page 87] Internet-Draft TE Common YANG Types March 2023 list route-object-exclude-object { key "index"; ordered-by user; description "List of Explicit Route Objects to be excluded in the path computation."; leaf index { type uint32; description "Route object entry index. The index is used to identify an entry in the list. The order of entries is defined by the user without relying on key values."; } uses explicit-route-hop { augment "type" { case srlg { container srlg { description "SRLG container."; leaf srlg { type uint32; description "SRLG value."; } } description "An SRLG value to be included or excluded."; } description "Augmentation for a generic explicit route for SRLG exclusion."; } } } } grouping generic-path-metric-bounds { description "TE path metric bounds grouping."; container path-metric-bounds { description "TE path metric bounds container."; list path-metric-bound { key "metric-type"; description "List of TE path metric bounds."; leaf metric-type { type identityref { Busi, et al. Expires 11 September 2023 [Page 88] Internet-Draft TE Common YANG Types March 2023 base path-metric-type; } description "Identifies an entry in the list of 'metric-type' items bound for the TE path."; } leaf upper-bound { type uint64; default "0"; description "Upper bound on the end-to-end TE path metric. A zero indicates an unbounded upper limit for the specific 'metric-type'."; } } } } grouping generic-path-optimization { description "TE generic path optimization grouping."; container optimizations { description "The objective function container that includes attributes to impose when computing a TE path."; choice algorithm { description "Optimizations algorithm."; case metric { if-feature "path-optimization-metric"; /* Optimize by metric */ list optimization-metric { key "metric-type"; description "TE path metric type."; uses optimization-metric-entry; } /* Tiebreakers */ container tiebreakers { description "Container for the list of tiebreakers."; list tiebreaker { key "tiebreaker-type"; description "The list of tiebreaker criteria to apply on an equally favored set of paths, in order to pick the best."; leaf tiebreaker-type { Busi, et al. Expires 11 September 2023 [Page 89] Internet-Draft TE Common YANG Types March 2023 type identityref { base path-metric-type; } description "Identifies an entry in the list of tiebreakers."; } } } } case objective-function { if-feature "path-optimization-objective-function"; /* Objective functions */ container objective-function { description "The objective function container that includes attributes to impose when computing a TE path."; leaf objective-function-type { type identityref { base objective-function-type; } default "te-types:of-minimize-cost-path"; description "Objective function entry."; } } } } } } grouping generic-path-affinities { description "Path affinities grouping."; container path-affinities-values { description "Path affinities represented as values."; list path-affinities-value { key "usage"; description "List of named affinity constraints."; leaf usage { type identityref { base resource-affinities-type; } description "Identifies an entry in the list of value affinity constraints."; } Busi, et al. Expires 11 September 2023 [Page 90] Internet-Draft TE Common YANG Types March 2023 leaf value { type admin-groups; default ""; description "The affinity value. The default is empty."; } } } container path-affinity-names { description "Path affinities represented as names."; list path-affinity-name { key "usage"; description "List of named affinity constraints."; leaf usage { type identityref { base resource-affinities-type; } description "Identifies an entry in the list of named affinity constraints."; } list affinity-name { key "name"; leaf name { type string; description "Identifies a named affinity entry."; } description "List of named affinities."; } } } } grouping generic-path-srlgs { description "Path SRLG grouping."; container path-srlgs-lists { description "Path SRLG properties container."; list path-srlgs-list { key "usage"; description "List of SRLG values to be included or excluded."; leaf usage { Busi, et al. Expires 11 September 2023 [Page 91] Internet-Draft TE Common YANG Types March 2023 type identityref { base route-usage-type; } description "Identifies an entry in a list of SRLGs to either include or exclude."; } leaf-list values { type srlg; description "List of SRLG values."; } } } container path-srlgs-names { description "Container for the list of named SRLGs."; list path-srlgs-name { key "usage"; description "List of named SRLGs to be included or excluded."; leaf usage { type identityref { base route-usage-type; } description "Identifies an entry in a list of named SRLGs to either include or exclude."; } leaf-list names { type string; description "List of named SRLGs."; } } } } grouping generic-path-disjointness { description "Path disjointness grouping."; leaf disjointness { type te-path-disjointness; description "The type of resource disjointness. When configured for a primary path, the disjointness level applies to all secondary LSPs. When configured for a secondary path, the disjointness level overrides the level Busi, et al. Expires 11 September 2023 [Page 92] Internet-Draft TE Common YANG Types March 2023 configured for the primary path."; } } grouping common-path-constraints-attributes { description "Common path constraints configuration grouping."; uses common-constraints; uses generic-path-metric-bounds; uses generic-path-affinities; uses generic-path-srlgs; } grouping generic-path-constraints { description "Global named path constraints configuration grouping."; container path-constraints { description "TE named path constraints container."; uses common-path-constraints-attributes; uses generic-path-disjointness; } } grouping generic-path-properties { description "TE generic path properties grouping."; container path-properties { config false; description "The TE path properties."; list path-metric { key "metric-type"; description "TE path metric type."; leaf metric-type { type identityref { base path-metric-type; } description "TE path metric type."; } leaf accumulative-value { type uint64; description "TE path metric accumulative value."; } } Busi, et al. Expires 11 September 2023 [Page 93] Internet-Draft TE Common YANG Types March 2023 uses generic-path-affinities; uses generic-path-srlgs; container path-route-objects { description "Container for the list of route objects either returned by the computation engine or actually used by an LSP."; list path-route-object { key "index"; ordered-by user; description "List of route objects either returned by the computation engine or actually used by an LSP."; leaf index { type uint32; description "Route object entry index. The index is used to identify an entry in the list. The order of entries is defined by the user without relying on key values."; } uses explicit-route-hop; } } } } // NOTE: The grouping encoding-and-switching-type below has been // added in this module revision // RFC Editor: remove the note above and this note grouping encoding-and-switching-type { description "Common grouping to define the LSP encoding and switching types"; leaf encoding { type identityref { base te-types:lsp-encoding-types; } description "LSP encoding type."; reference "RFC3945"; } leaf switching-type { type identityref { base te-types:switching-capabilities; } description "LSP switching type."; Busi, et al. Expires 11 September 2023 [Page 94] Internet-Draft TE Common YANG Types March 2023 reference "RFC3945"; } } } Figure 1: TE Types YANG module 5. Packet TE Types YANG Module The "ietf-te-packet-types" module imports from the "ietf-te-types" module defined in Section 4 of this document. CHANGE NOTE: Please focus your review only on the updates to the YANG model: see also Appendix A.1. RFC Editor: remove the CHANGE NOTE above and this note file "ietf-te-packet-types@2023-03-10.yang" module ietf-te-packet-types { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-te-packet-types"; prefix te-packet-types; /* Import TE generic types */ import ietf-te-types { prefix te-types; reference "RFCXXXX: Updated Common YANG Data Types for Traffic Engineering"; } // RFC Editor: replace XXXX with actual RFC number // and remove this note organization "IETF Traffic Engineering Architecture and Signaling (TEAS) Working Group"; contact "WG Web: WG List: Editor: Tarek Saad Editor: Rakesh Gandhi Busi, et al. Expires 11 September 2023 [Page 95] Internet-Draft TE Common YANG Types March 2023 Editor: Vishnu Pavan Beeram Editor: Xufeng Liu Editor: Igor Bryskin "; description "This YANG module contains a collection of generally useful YANG data type definitions specific to MPLS TE. The model fully conforms to the Network Management Datastore Architecture (NMDA). Copyright (c) 2023 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC XXXX (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself for full legal notices."; revision 2023-03-10 { description "Added common TE packet identities: - bandwidth-profile-type. Added common TE packet groupings: - te-packet-path-bandwidth; - te-packet-link-bandwidth."; reference "RFC XXXX: Updated Common YANG Data Types for Traffic Engineering"; } // RFC Editor: replace XXXX with actual RFC number, update date // information and remove this note revision 2020-06-10 { description "Latest revision of TE MPLS types."; reference "RFC 8776: Common YANG Data Types for Traffic Engineering"; Busi, et al. Expires 11 September 2023 [Page 96] Internet-Draft TE Common YANG Types March 2023 } /* * Identities */ // CHANGE NOTE: The base identity bandwidth-profile-type and // its derived identities below have been // added in this module revision // RFC Editor: remove the note above and this note identity bandwidth-profile-type { description "Bandwidth Profile Types"; } identity mef-10-bwp { base bandwidth-profile-type; description "MEF 10 Bandwidth Profile"; reference "MEF 10.3: Ethernet Services Attributes Phase 3"; } identity rfc-2697-bwp { base bandwidth-profile-type; description "RFC 2697 Bandwidth Profile"; reference "RFC2697: A Single Rate Three Color Marker"; } identity rfc-2698-bwp { base bandwidth-profile-type; description "RFC 2698 Bandwidth Profile"; reference "RFC2698: A Two Rate Three Color Marker"; } identity rfc-4115-bwp { base bandwidth-profile-type; description "RFC 4115 Bandwidth Profile"; reference "RFC4115: A Differentiated Service Two-Rate, Three-Color Marker with Efficient Handling of in-Profile Traffic"; } Busi, et al. Expires 11 September 2023 [Page 97] Internet-Draft TE Common YANG Types March 2023 /* * Typedefs */ typedef te-bandwidth-requested-type { type enumeration { enum specified { description "Bandwidth is explicitly specified."; } enum auto { description "Bandwidth is automatically computed."; } } description "Enumerated type for specifying whether bandwidth is explicitly specified or automatically computed."; } typedef te-class-type { type uint8; description "Diffserv-TE Class-Type. Defines a set of Traffic Trunks crossing a link that is governed by a specific set of bandwidth constraints. Class-Type is used for the purposes of link bandwidth allocation, constraint-based routing, and admission control."; reference "RFC 4124: Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engineering"; } typedef bc-type { type uint8 { range "0..7"; } description "Diffserv-TE bandwidth constraints as defined in RFC 4124."; reference "RFC 4124: Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engineering"; } typedef bandwidth-kbps { type uint64; units "Kbps"; description Busi, et al. Expires 11 September 2023 [Page 98] Internet-Draft TE Common YANG Types March 2023 "Bandwidth values, expressed in kilobits per second."; } typedef bandwidth-mbps { type uint64; units "Mbps"; description "Bandwidth values, expressed in megabits per second."; } typedef bandwidth-gbps { type uint64; units "Gbps"; description "Bandwidth values, expressed in gigabits per second."; } identity backup-protection-type { description "Base identity for the backup protection type."; } identity backup-protection-link { base backup-protection-type; description "Backup provides link protection only."; } identity backup-protection-node-link { base backup-protection-type; description "Backup offers node (preferred) or link protection."; } identity bc-model-type { description "Base identity for the Diffserv-TE Bandwidth Constraints Model type."; reference "RFC 4124: Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engineering"; } identity bc-model-rdm { base bc-model-type; description "Russian Dolls Bandwidth Constraints Model type."; reference Busi, et al. Expires 11 September 2023 [Page 99] Internet-Draft TE Common YANG Types March 2023 "RFC 4127: Russian Dolls Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering"; } identity bc-model-mam { base bc-model-type; description "Maximum Allocation Bandwidth Constraints Model type."; reference "RFC 4125: Maximum Allocation Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering"; } identity bc-model-mar { base bc-model-type; description "Maximum Allocation with Reservation Bandwidth Constraints Model type."; reference "RFC 4126: Max Allocation with Reservation Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering & Performance Comparisons"; } /* * Groupings */ grouping performance-metrics-attributes-packet { description "Contains PM attributes."; uses te-types:performance-metrics-attributes { augment "performance-metrics-one-way" { leaf one-way-min-delay { type uint32 { range "0..16777215"; } description "One-way minimum delay or latency in microseconds."; } leaf one-way-min-delay-normality { type te-types:performance-metrics-normality; default "normal"; description "One-way minimum delay or latency normality."; } leaf one-way-max-delay { type uint32 { Busi, et al. Expires 11 September 2023 [Page 100] Internet-Draft TE Common YANG Types March 2023 range "0..16777215"; } description "One-way maximum delay or latency in microseconds."; } leaf one-way-max-delay-normality { type te-types:performance-metrics-normality; default "normal"; description "One-way maximum delay or latency normality."; } leaf one-way-delay-variation { type uint32 { range "0..16777215"; } description "One-way delay variation in microseconds."; reference "RFC 5481: Packet Delay Variation Applicability Statement, Section 4.2"; } leaf one-way-delay-variation-normality { type te-types:performance-metrics-normality; default "normal"; description "One-way delay variation normality."; reference "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions RFC 7823: Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions RFC 8570: IS-IS Traffic Engineering (TE) Metric Extensions"; } leaf one-way-packet-loss { type decimal64 { fraction-digits 6; range "0..50.331642"; } description "One-way packet loss as a percentage of the total traffic sent over a configurable interval. The finest precision is 0.000003%, where the maximum is 50.331642%."; reference "RFC 8570: IS-IS Traffic Engineering (TE) Metric Extensions, Section 4.4"; } Busi, et al. Expires 11 September 2023 [Page 101] Internet-Draft TE Common YANG Types March 2023 leaf one-way-packet-loss-normality { type te-types:performance-metrics-normality; default "normal"; description "Packet loss normality."; reference "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions RFC 7823: Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions RFC 8570: IS-IS Traffic Engineering (TE) Metric Extensions"; } description "PM one-way packet-specific augmentation for a generic PM grouping."; } augment "performance-metrics-two-way" { leaf two-way-min-delay { type uint32 { range "0..16777215"; } default "0"; description "Two-way minimum delay or latency in microseconds."; } leaf two-way-min-delay-normality { type te-types:performance-metrics-normality; default "normal"; description "Two-way minimum delay or latency normality."; reference "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions RFC 7823: Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions RFC 8570: IS-IS Traffic Engineering (TE) Metric Extensions"; } leaf two-way-max-delay { type uint32 { range "0..16777215"; } default "0"; description "Two-way maximum delay or latency in microseconds."; Busi, et al. Expires 11 September 2023 [Page 102] Internet-Draft TE Common YANG Types March 2023 } leaf two-way-max-delay-normality { type te-types:performance-metrics-normality; default "normal"; description "Two-way maximum delay or latency normality."; reference "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions RFC 7823: Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions RFC 8570: IS-IS Traffic Engineering (TE) Metric Extensions"; } leaf two-way-delay-variation { type uint32 { range "0..16777215"; } default "0"; description "Two-way delay variation in microseconds."; reference "RFC 5481: Packet Delay Variation Applicability Statement, Section 4.2"; } leaf two-way-delay-variation-normality { type te-types:performance-metrics-normality; default "normal"; description "Two-way delay variation normality."; reference "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions RFC 7823: Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions RFC 8570: IS-IS Traffic Engineering (TE) Metric Extensions"; } leaf two-way-packet-loss { type decimal64 { fraction-digits 6; range "0..50.331642"; } default "0"; description "Two-way packet loss as a percentage of the total traffic Busi, et al. Expires 11 September 2023 [Page 103] Internet-Draft TE Common YANG Types March 2023 sent over a configurable interval. The finest precision is 0.000003%."; } leaf two-way-packet-loss-normality { type te-types:performance-metrics-normality; default "normal"; description "Two-way packet loss normality."; } description "PM two-way packet-specific augmentation for a generic PM grouping."; reference "RFC 7471: OSPF Traffic Engineering (TE) Metric Extensions RFC 7823: Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions RFC 8570: IS-IS Traffic Engineering (TE) Metric Extensions"; } } } grouping one-way-performance-metrics-packet { description "One-way packet PM throttle grouping."; leaf one-way-min-delay { type uint32 { range "0..16777215"; } default "0"; description "One-way minimum delay or latency in microseconds."; } leaf one-way-max-delay { type uint32 { range "0..16777215"; } default "0"; description "One-way maximum delay or latency in microseconds."; } leaf one-way-delay-variation { type uint32 { range "0..16777215"; } default "0"; description Busi, et al. Expires 11 September 2023 [Page 104] Internet-Draft TE Common YANG Types March 2023 "One-way delay variation in microseconds."; } leaf one-way-packet-loss { type decimal64 { fraction-digits 6; range "0..50.331642"; } default "0"; description "One-way packet loss as a percentage of the total traffic sent over a configurable interval. The finest precision is 0.000003%."; } } grouping two-way-performance-metrics-packet { description "Two-way packet PM throttle grouping."; leaf two-way-min-delay { type uint32 { range "0..16777215"; } default "0"; description "Two-way minimum delay or latency in microseconds."; } leaf two-way-max-delay { type uint32 { range "0..16777215"; } default "0"; description "Two-way maximum delay or latency in microseconds."; } leaf two-way-delay-variation { type uint32 { range "0..16777215"; } default "0"; description "Two-way delay variation in microseconds."; } leaf two-way-packet-loss { type decimal64 { fraction-digits 6; range "0..50.331642"; } default "0"; Busi, et al. Expires 11 September 2023 [Page 105] Internet-Draft TE Common YANG Types March 2023 description "Two-way packet loss as a percentage of the total traffic sent over a configurable interval. The finest precision is 0.000003%."; } } grouping performance-metrics-throttle-container-packet { description "Packet PM threshold grouping."; uses te-types:performance-metrics-throttle-container { augment "throttle/threshold-out" { uses one-way-performance-metrics-packet; uses two-way-performance-metrics-packet; description "PM threshold-out packet augmentation for a generic grouping."; } augment "throttle/threshold-in" { uses one-way-performance-metrics-packet; uses two-way-performance-metrics-packet; description "PM threshold-in packet augmentation for a generic grouping."; } augment "throttle/threshold-accelerated-advertisement" { uses one-way-performance-metrics-packet; uses two-way-performance-metrics-packet; description "PM accelerated advertisement packet augmentation for a generic grouping."; } } } // CHANGE NOTE: The te-packet-path-bandwidth below has been // added in this module revision // RFC Editor: remove the note above and this note grouping te-packet-path-bandwidth { description "Path bandwidth for Packet. "; leaf bandwidth-profile-name{ type string; description "Name of Bandwidth Profile."; } leaf bandwidth-profile-type { type identityref { base bandwidth-profile-type; Busi, et al. Expires 11 September 2023 [Page 106] Internet-Draft TE Common YANG Types March 2023 } description "Type of Bandwidth Profile."; } leaf cir { type uint64; units "Kbps"; description "Committed Information Rate in kilobits per second."; } leaf eir { type uint64; units "Kbps"; /* Need to indicate that EIR is not supported by RFC 2697 must '../bw-profile-type = "etht-types:mef-10-bwp" or ' + '../bw-profile-type = "etht-types:rfc-2698-bwp" or ' + '../bw-profile-type = "etht-types:rfc-4115-bwp"' must '../bw-profile-type != "etht-types:rfc-2697-bwp"' */ description "Excess Information Rate in kilobits per second. In case of RFC 2698: PIR = CIR + EIR"; } leaf cbs { type uint64; units "KBytes"; description "Committed Burst Size."; } leaf ebs { type uint64; units "KBytes"; description "Excess Burst Size. In case of RFC 2698: PBS = CBS + EBS"; } } Busi, et al. Expires 11 September 2023 [Page 107] Internet-Draft TE Common YANG Types March 2023 // CHANGE NOTE: The te-packet-path-bandwidth below has been // added in this module revision // RFC Editor: remove the note above and this note grouping te-packet-link-bandwidth { description "Link Bandwidth for Packet. "; leaf packet-bandwidth { type te-types:bandwidth-scientific-notation; description "Available bandwith value expressed in kilobits per second"; } } } Figure 2: Packet TE Types YANG module 6. IANA Considerations For the following URIs in the "IETF XML Registry" [RFC3688], IANA has updated the reference field to refer to this document: URI: urn:ietf:params:xml:ns:yang:ietf-te-types Registrant Contact: The IESG. XML: N/A, the requested URI is an XML namespace. URI: urn:ietf:params:xml:ns:yang:ietf-te-packet-types Registrant Contact: The IESG. XML: N/A, the requested URI is an XML namespace. This document also adds updated YANG modules to the "YANG Module Names" registry [RFC7950]: name: ietf-te-types namespace: urn:ietf:params:xml:ns:yang:ietf-te-types prefix: te-types reference: RFC XXXX name: ietf-te-packet-types namespace: urn:ietf:params:xml:ns:yang:ietf-te-packet-types prefix: te-packet-types reference: RFC XXXX RFC Editor: Please replace XXXX with the RFC number assigned to this document. Busi, et al. Expires 11 September 2023 [Page 108] Internet-Draft TE Common YANG Types March 2023 7. Security Considerations The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446]. The Network Configuration Access Control Model (NACM) [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content. The YANG module in this document defines common TE type definitions (e.g., typedef, identity, and grouping statements) in YANG data modeling language to be imported and used by other TE modules. When imported and used, the resultant schema will have data nodes that can be writable or readable. Access to such data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. The security considerations spelled out in the YANG 1.1 specification [RFC7950] apply for this document as well. 8. References 8.1. Normative References [ITU_G.808.1] ITU-T Recommendation G.808.1, "Generic protection switching - Linear trail and subnetwork protection", ITU-T G.808.1 , May 2014. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation Element (PCE) Communication Protocol (PCEP)", RFC 5440, DOI 10.17487/RFC5440, March 2009, . Busi, et al. Expires 11 September 2023 [Page 109] Internet-Draft TE Common YANG Types March 2023 [RFC5441] Vasseur, JP., Ed., Zhang, R., Bitar, N., and JL. Le Roux, "A Backward-Recursive PCE-Based Computation (BRPC) Procedure to Compute Shortest Constrained Inter-Domain Traffic Engineering Label Switched Paths", RFC 5441, DOI 10.17487/RFC5441, April 2009, . [RFC5520] Bradford, R., Ed., Vasseur, JP., and A. Farrel, "Preserving Topology Confidentiality in Inter-Domain Path Computation Using a Path-Key-Based Mechanism", RFC 5520, DOI 10.17487/RFC5520, April 2009, . [RFC5541] Le Roux, JL., Vasseur, JP., and Y. Lee, "Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)", RFC 5541, DOI 10.17487/RFC5541, June 2009, . [RFC5557] Lee, Y., Le Roux, JL., King, D., and E. Oki, "Path Computation Element Communication Protocol (PCEP) Requirements and Protocol Extensions in Support of Global Concurrent Optimization", RFC 5557, DOI 10.17487/RFC5557, July 2009, . [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, . [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, . [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, . [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, . [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, . Busi, et al. Expires 11 September 2023 [Page 110] Internet-Draft TE Common YANG Types March 2023 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, . [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, . [RFC8294] Liu, X., Qu, Y., Lindem, A., Hopps, C., and L. Berger, "Common YANG Data Types for the Routing Area", RFC 8294, DOI 10.17487/RFC8294, December 2017, . [RFC8306] Zhao, Q., Dhody, D., Ed., Palleti, R., and D. King, "Extensions to the Path Computation Element Communication Protocol (PCEP) for Point-to-Multipoint Traffic Engineering Label Switched Paths", RFC 8306, DOI 10.17487/RFC8306, November 2017, . [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, . [RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N., Ananthakrishnan, H., and X. Liu, "A YANG Data Model for Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March 2018, . [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, . [RFC8685] Zhang, F., Zhao, Q., Gonzalez de Dios, O., Casellas, R., and D. King, "Path Computation Element Communication Protocol (PCEP) Extensions for the Hierarchical Path Computation Element (H-PCE) Architecture", RFC 8685, DOI 10.17487/RFC8685, December 2019, . [RFC8776] Saad, T., Gandhi, R., Liu, X., Beeram, V., and I. Bryskin, "Common YANG Data Types for Traffic Engineering", RFC 8776, DOI 10.17487/RFC8776, June 2020, . Busi, et al. Expires 11 September 2023 [Page 111] Internet-Draft TE Common YANG Types March 2023 [RFC8800] Litkowski, S., Sivabalan, S., Barth, C., and M. Negi, "Path Computation Element Communication Protocol (PCEP) Extension for Label Switched Path (LSP) Diversity Constraint Signaling", RFC 8800, DOI 10.17487/RFC8800, July 2020, . [RFC9012] Patel, K., Van de Velde, G., Sangli, S., and J. Scudder, "The BGP Tunnel Encapsulation Attribute", RFC 9012, DOI 10.17487/RFC9012, April 2021, . 8.2. Informative References [I-D.ietf-teas-yang-l3-te-topo] Liu, X., Bryskin, I., Beeram, V. P., Saad, T., Shah, H. C., and O. G. de Dios, "YANG Data Model for Layer 3 TE Topologies", Work in Progress, Internet-Draft, draft-ietf- teas-yang-l3-te-topo-13, 10 July 2022, . [I-D.ietf-teas-yang-path-computation] Busi, I., Belotti, S., de Dios, O. G., Sharma, A., Shi, Y., and D. Ceccarelli, "A YANG Data Model for requesting path computation", Work in Progress, Internet-Draft, draft-ietf-teas-yang-path-computation-20, 10 March 2023, . [I-D.ietf-teas-yang-te] Saad, T., Gandhi, R., Liu, X., Beeram, V. P., Bryskin, I., and O. G. de Dios, "A YANG Data Model for Traffic Engineering Tunnels, Label Switched Paths and Interfaces", Work in Progress, Internet-Draft, draft-ietf-teas-yang-te- 31, 24 October 2022, . [I-D.ietf-teas-yang-te-mpls] Saad, T., Gandhi, R., Liu, X., Beeram, V. P., and I. Bryskin, "A YANG Data Model for MPLS Traffic Engineering Tunnels", Work in Progress, Internet-Draft, draft-ietf- teas-yang-te-mpls-03, 9 March 2020, . Busi, et al. Expires 11 September 2023 [Page 112] Internet-Draft TE Common YANG Types March 2023 [ITU-T_G.709] International Telecommunication Union, "Interfaces for the optical transport network", ITU-T G.709 , June 2020. [MEF_10.3] MEF, "Ethernet Services Attributes Phase 3", MEF 10.3 , October 2013. [RFC2697] Heinanen, J. and R. Guerin, "A Single Rate Three Color Marker", RFC 2697, DOI 10.17487/RFC2697, September 1999, . [RFC2698] Heinanen, J. and R. Guerin, "A Two Rate Three Color Marker", RFC 2698, DOI 10.17487/RFC2698, September 1999, . [RFC2702] Awduche, D., Malcolm, J., Agogbua, J., O'Dell, M., and J. McManus, "Requirements for Traffic Engineering Over MPLS", RFC 2702, DOI 10.17487/RFC2702, September 1999, . [RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001, . [RFC3272] Awduche, D., Chiu, A., Elwalid, A., Widjaja, I., and X. Xiao, "Overview and Principles of Internet Traffic Engineering", RFC 3272, DOI 10.17487/RFC3272, May 2002, . [RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description", RFC 3471, DOI 10.17487/RFC3471, January 2003, . [RFC3477] Kompella, K. and Y. Rekhter, "Signalling Unnumbered Links in Resource ReSerVation Protocol - Traffic Engineering (RSVP-TE)", RFC 3477, DOI 10.17487/RFC3477, January 2003, . [RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering (TE) Extensions to OSPF Version 2", RFC 3630, DOI 10.17487/RFC3630, September 2003, . [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, . Busi, et al. Expires 11 September 2023 [Page 113] Internet-Draft TE Common YANG Types March 2023 [RFC3785] Le Faucheur, F., Uppili, R., Vedrenne, A., Merckx, P., and T. Telkamp, "Use of Interior Gateway Protocol (IGP) Metric as a second MPLS Traffic Engineering (TE) Metric", BCP 87, RFC 3785, DOI 10.17487/RFC3785, May 2004, . [RFC4090] Pan, P., Ed., Swallow, G., Ed., and A. Atlas, Ed., "Fast Reroute Extensions to RSVP-TE for LSP Tunnels", RFC 4090, DOI 10.17487/RFC4090, May 2005, . [RFC4115] Aboul-Magd, O. and S. Rabie, "A Differentiated Service Two-Rate, Three-Color Marker with Efficient Handling of in-Profile Traffic", RFC 4115, DOI 10.17487/RFC4115, July 2005, . [RFC4124] Le Faucheur, F., Ed., "Protocol Extensions for Support of Diffserv-aware MPLS Traffic Engineering", RFC 4124, DOI 10.17487/RFC4124, June 2005, . [RFC4125] Le Faucheur, F. and W. Lai, "Maximum Allocation Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering", RFC 4125, DOI 10.17487/RFC4125, June 2005, . [RFC4126] Ash, J., "Max Allocation with Reservation Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering & Performance Comparisons", RFC 4126, DOI 10.17487/RFC4126, June 2005, . [RFC4127] Le Faucheur, F., Ed., "Russian Dolls Bandwidth Constraints Model for Diffserv-aware MPLS Traffic Engineering", RFC 4127, DOI 10.17487/RFC4127, June 2005, . [RFC4202] Kompella, K., Ed. and Y. Rekhter, Ed., "Routing Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4202, DOI 10.17487/RFC4202, October 2005, . [RFC4203] Kompella, K., Ed. and Y. Rekhter, Ed., "OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4203, DOI 10.17487/RFC4203, October 2005, . Busi, et al. Expires 11 September 2023 [Page 114] Internet-Draft TE Common YANG Types March 2023 [RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for G.709 Optical Transport Networks Control", RFC 4328, DOI 10.17487/RFC4328, January 2006, . [RFC4427] Mannie, E., Ed. and D. Papadimitriou, Ed., "Recovery (Protection and Restoration) Terminology for Generalized Multi-Protocol Label Switching (GMPLS)", RFC 4427, DOI 10.17487/RFC4427, March 2006, . [RFC4561] Vasseur, J.-P., Ed., Ali, Z., and S. Sivabalan, "Definition of a Record Route Object (RRO) Node-Id Sub- Object", RFC 4561, DOI 10.17487/RFC4561, June 2006, . [RFC4657] Ash, J., Ed. and J.L. Le Roux, Ed., "Path Computation Element (PCE) Communication Protocol Generic Requirements", RFC 4657, DOI 10.17487/RFC4657, September 2006, . [RFC4736] Vasseur, JP., Ed., Ikejiri, Y., and R. Zhang, "Reoptimization of Multiprotocol Label Switching (MPLS) Traffic Engineering (TE) Loosely Routed Label Switched Path (LSP)", RFC 4736, DOI 10.17487/RFC4736, November 2006, . [RFC4872] Lang, J.P., Ed., Rekhter, Y., Ed., and D. Papadimitriou, Ed., "RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery", RFC 4872, DOI 10.17487/RFC4872, May 2007, . [RFC4873] Berger, L., Bryskin, I., Papadimitriou, D., and A. Farrel, "GMPLS Segment Recovery", RFC 4873, DOI 10.17487/RFC4873, May 2007, . [RFC4875] Aggarwal, R., Ed., Papadimitriou, D., Ed., and S. Yasukawa, Ed., "Extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE) for Point-to- Multipoint TE Label Switched Paths (LSPs)", RFC 4875, DOI 10.17487/RFC4875, May 2007, . Busi, et al. Expires 11 September 2023 [Page 115] Internet-Draft TE Common YANG Types March 2023 [RFC4920] Farrel, A., Ed., Satyanarayana, A., Iwata, A., Fujita, N., and G. Ash, "Crankback Signaling Extensions for MPLS and GMPLS RSVP-TE", RFC 4920, DOI 10.17487/RFC4920, July 2007, . [RFC5003] Metz, C., Martini, L., Balus, F., and J. Sugimoto, "Attachment Individual Identifier (AII) Types for Aggregation", RFC 5003, DOI 10.17487/RFC5003, September 2007, . [RFC5150] Ayyangar, A., Kompella, K., Vasseur, JP., and A. Farrel, "Label Switched Path Stitching with Generalized Multiprotocol Label Switching Traffic Engineering (GMPLS TE)", RFC 5150, DOI 10.17487/RFC5150, February 2008, . [RFC5151] Farrel, A., Ed., Ayyangar, A., and JP. Vasseur, "Inter- Domain MPLS and GMPLS Traffic Engineering -- Resource Reservation Protocol-Traffic Engineering (RSVP-TE) Extensions", RFC 5151, DOI 10.17487/RFC5151, February 2008, . [RFC5305] Li, T. and H. Smit, "IS-IS Extensions for Traffic Engineering", RFC 5305, DOI 10.17487/RFC5305, October 2008, . [RFC5307] Kompella, K., Ed. and Y. Rekhter, Ed., "IS-IS Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 5307, DOI 10.17487/RFC5307, October 2008, . [RFC5420] Farrel, A., Ed., Papadimitriou, D., Vasseur, JP., and A. Ayyangar, "Encoding of Attributes for MPLS LSP Establishment Using Resource Reservation Protocol Traffic Engineering (RSVP-TE)", RFC 5420, DOI 10.17487/RFC5420, February 2009, . [RFC5712] Meyer, M., Ed. and JP. Vasseur, Ed., "MPLS Traffic Engineering Soft Preemption", RFC 5712, DOI 10.17487/RFC5712, January 2010, . [RFC6001] Papadimitriou, D., Vigoureux, M., Shiomoto, K., Brungard, D., and JL. Le Roux, "Generalized MPLS (GMPLS) Protocol Extensions for Multi-Layer and Multi-Region Networks (MLN/ MRN)", RFC 6001, DOI 10.17487/RFC6001, October 2010, . Busi, et al. Expires 11 September 2023 [Page 116] Internet-Draft TE Common YANG Types March 2023 [RFC6004] Berger, L. and D. Fedyk, "Generalized MPLS (GMPLS) Support for Metro Ethernet Forum and G.8011 Ethernet Service Switching", RFC 6004, DOI 10.17487/RFC6004, October 2010, . [RFC6119] Harrison, J., Berger, J., and M. Bartlett, "IPv6 Traffic Engineering in IS-IS", RFC 6119, DOI 10.17487/RFC6119, February 2011, . [RFC6370] Bocci, M., Swallow, G., and E. Gray, "MPLS Transport Profile (MPLS-TP) Identifiers", RFC 6370, DOI 10.17487/RFC6370, September 2011, . [RFC6378] Weingarten, Y., Ed., Bryant, S., Osborne, E., Sprecher, N., and A. Fulignoli, Ed., "MPLS Transport Profile (MPLS- TP) Linear Protection", RFC 6378, DOI 10.17487/RFC6378, October 2011, . [RFC6511] Ali, Z., Swallow, G., and R. Aggarwal, "Non-Penultimate Hop Popping Behavior and Out-of-Band Mapping for RSVP-TE Label Switched Paths", RFC 6511, DOI 10.17487/RFC6511, February 2012, . [RFC6780] Berger, L., Le Faucheur, F., and A. Narayanan, "RSVP ASSOCIATION Object Extensions", RFC 6780, DOI 10.17487/RFC6780, October 2012, . [RFC6790] Kompella, K., Drake, J., Amante, S., Henderickx, W., and L. Yong, "The Use of Entropy Labels in MPLS Forwarding", RFC 6790, DOI 10.17487/RFC6790, November 2012, . [RFC6827] Malis, A., Ed., Lindem, A., Ed., and D. Papadimitriou, Ed., "Automatically Switched Optical Network (ASON) Routing for OSPFv2 Protocols", RFC 6827, DOI 10.17487/RFC6827, January 2013, . [RFC7139] Zhang, F., Ed., Zhang, G., Belotti, S., Ceccarelli, D., and K. Pithewan, "GMPLS Signaling Extensions for Control of Evolving G.709 Optical Transport Networks", RFC 7139, DOI 10.17487/RFC7139, March 2014, . Busi, et al. Expires 11 September 2023 [Page 117] Internet-Draft TE Common YANG Types March 2023 [RFC7260] Takacs, A., Fedyk, D., and J. He, "GMPLS RSVP-TE Extensions for Operations, Administration, and Maintenance (OAM) Configuration", RFC 7260, DOI 10.17487/RFC7260, June 2014, . [RFC7308] Osborne, E., "Extended Administrative Groups in MPLS Traffic Engineering (MPLS-TE)", RFC 7308, DOI 10.17487/RFC7308, July 2014, . [RFC7471] Giacalone, S., Ward, D., Drake, J., Atlas, A., and S. Previdi, "OSPF Traffic Engineering (TE) Metric Extensions", RFC 7471, DOI 10.17487/RFC7471, March 2015, . [RFC7551] Zhang, F., Ed., Jing, R., and R. Gandhi, Ed., "RSVP-TE Extensions for Associated Bidirectional Label Switched Paths (LSPs)", RFC 7551, DOI 10.17487/RFC7551, May 2015, . [RFC7570] Margaria, C., Ed., Martinelli, G., Balls, S., and B. Wright, "Label Switched Path (LSP) Attribute in the Explicit Route Object (ERO)", RFC 7570, DOI 10.17487/RFC7570, July 2015, . [RFC7571] Dong, J., Chen, M., Li, Z., and D. Ceccarelli, "GMPLS RSVP-TE Extensions for Lock Instruct and Loopback", RFC 7571, DOI 10.17487/RFC7571, July 2015, . [RFC7579] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and J. Han, "General Network Element Constraint Encoding for GMPLS-Controlled Networks", RFC 7579, DOI 10.17487/RFC7579, June 2015, . [RFC7823] Atlas, A., Drake, J., Giacalone, S., and S. Previdi, "Performance-Based Path Selection for Explicitly Routed Label Switched Paths (LSPs) Using TE Metric Extensions", RFC 7823, DOI 10.17487/RFC7823, May 2016, . [RFC8001] Zhang, F., Ed., Gonzalez de Dios, O., Ed., Margaria, C., Hartley, M., and Z. Ali, "RSVP-TE Extensions for Collecting Shared Risk Link Group (SRLG) Information", RFC 8001, DOI 10.17487/RFC8001, January 2017, . Busi, et al. Expires 11 September 2023 [Page 118] Internet-Draft TE Common YANG Types March 2023 [RFC8149] Saad, T., Ed., Gandhi, R., Ed., Ali, Z., Venator, R., and Y. Kamite, "RSVP Extensions for Reoptimization of Loosely Routed Point-to-Multipoint Traffic Engineering Label Switched Paths (LSPs)", RFC 8149, DOI 10.17487/RFC8149, April 2017, . [RFC8169] Mirsky, G., Ruffini, S., Gray, E., Drake, J., Bryant, S., and A. Vainshtein, "Residence Time Measurement in MPLS Networks", RFC 8169, DOI 10.17487/RFC8169, May 2017, . [RFC8570] Ginsberg, L., Ed., Previdi, S., Ed., Giacalone, S., Ward, D., Drake, J., and Q. Wu, "IS-IS Traffic Engineering (TE) Metric Extensions", RFC 8570, DOI 10.17487/RFC8570, March 2019, . [RFC9314] Jethanandani, M., Ed., Rahman, R., Ed., Zheng, L., Ed., Pallagatti, S., and G. Mirsky, "YANG Data Model for Bidirectional Forwarding Detection (BFD)", RFC 9314, DOI 10.17487/RFC9314, September 2022, . Appendix A. Changes from RFC 8776 To be added in a future revision of this draft. A.1. TE Types YANG Diffs RFC Editor: please remove this appendix before publication. This section provides the diff between the YANG module in section 3.1 of [RFC8776] and the YANG model revision in Section 4. The intention of this appendix is to facilitate focusing the review of the YANG model in Section 4 to the changes compared with the YANG model in [RFC8776]. This diff has been generated using the following UNIX commands to compare the YANG module revisions in section 3.1 of [RFC8776] and in Section 4: diff ietf-te-types@2020-06-10.yang ietf-te-types.yang > model-diff.txt sed 's/^/ /' model-diff.txt > model-diff-spaces.txt sed 's/^ > / > /' model-diff-spaces.txt > model-updates.txt The output (model-updates.txt) is reported here: Busi, et al. Expires 11 September 2023 [Page 119] Internet-Draft TE Common YANG Types March 2023 30c30 < --- > 55c55 < Copyright (c) 2020 IETF Trust and the persons identified as --- > Copyright (c) 2023 IETF Trust and the persons identified as 60c60 < the license terms contained in, the Simplified BSD License set --- > the license terms contained in, the Revised BSD License set 65,66c65,99 < This version of this YANG module is part of RFC 8776; see the < RFC itself for full legal notices."; --- > This version of this YANG module is part of RFC XXXX > (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself > for full legal notices."; > > revision 2023-03-10 { > description > "Added: > - typedef bandwidth-scientific-notation; > - base identity lsp-provisioning-error-reason; > - identity association-type-diversity; > - identity tunnel-admin-state-auto; > - identity lsp-restoration-restore-none; > - base identity path-computation-error-reason and > its derived identities; > - base identity protocol-origin-type and > its derived identities; > - base identity svec-objective-function-type and its derived > identities; > - base identity svec-metric-type and its derived identities; > - grouping encoding-and-switching-type. > > Updated: > - description of the base identity objective-function-type; > - description and reference of identity action-exercise. > > Obsoleted: > - identity of-minimize-agg-bandwidth-consumption > - identity of-minimize-load-most-loaded-link > - identity of-minimize-cost-path-set"; > reference > "RFC XXXX: Updated Common YANG Data Types for Traffic > Engineering"; Busi, et al. Expires 11 September 2023 [Page 120] Internet-Draft TE Common YANG Types March 2023 > } > // RFC Editor: replace XXXX with actual RFC number, update date > // information and remove this note 545a579,640 > // CHANGE NOTE: The typedef bandwidth-scientific-notation below > // has been added in this module revision > // RFC Editor: remove the note above and this note > typedef bandwidth-scientific-notation { > type string { > pattern > '0(\.0?)?([eE](\+)?0?)?|' > + '[1-9](\.[0-9]{0,6})?[eE](\+)?(9[0-6]|[1-8][0-9]|0?[0-9])?'; > } > units "bps"; > description > "Bandwidth values, expressed using the scientific notation > in bits per second. > The encoding format is the external decimal-significant > character sequences specified in IEEE 754 and ISO/IEC C99 > for 32-bit decimal floating-point numbers: > (-1)**(S) * 10**(Exponent) * (Significant), > where Significant uses 7 digits. > An implementation for this representation may use decimal32 > or binary32. The range of the Exponent is from -95 to +96 > for decimal32, and from -38 to +38 for binary32. > As a bandwidth value, the format is restricted to be > normalized, non-negative, and non-fraction: > n.dddddde{+}dd, N.DDDDDDE{+}DD, 0e0 or 0E0, > where 'd' and 'D' are decimal digits; 'n' and 'N' are > non-zeror decimal digits; 'e' and 'E' indicate a power of ten. > Some examples are 0e0, 1e10, and 9.953e9."; > reference > "IEEE Std 754-2008: IEEE Standard for Floating-Point > Arithmetic. > ISO/IEC C99: Information technology - Programming > Languages - C."; > } > > // CHANGE NOTE: The typedef path-type below has been > // added in this module revision > // RFC Editor: remove the note above and this note > typedef path-type { > type enumeration { > enum primary-path { > description > "Indicates that the TE path is a primary path."; > } > enum secondary-path { Busi, et al. Expires 11 September 2023 [Page 121] Internet-Draft TE Common YANG Types March 2023 > description > "Indicates that the TE path is a secondary path."; > } > enum primary-reverse-path { > description > "Indicates that the TE path is a primary reverse path."; > } > enum secondary-reverse-path { > description > "Indicates that the TE path is a secondary reverse path."; > } > } > description > "The type of TE path, indicating whether a path is a primary, > or a reverse primary, or a secondary, or a reverse secondary > path."; > } > 606a702,709 > // CHANGE NOTE: The base identity lsp-provisioning-error-reason > // has been added in this module revision > // RFC Editor: remove the note above and this note > identity lsp-provisioning-error-reason { > description > "Base identity for LSP provisioning errors."; > } > 982a1086,1103 > // CHANGE NOTE: The identity association-type-diversity below has > // been added in this module revision > // RFC Editor: remove the note above and this note > identity association-type-diversity { > base association-type; > description > "Association Type diversity used to associate LSPs whose > paths are to be diverse from each other."; > reference > "RFC8800: Path Computation Element Communication Protocol > (PCEP) Extension for Label Switched Path (LSP) Diversity > Constraint Signaling"; > } > > // CHANGE NOTE: The description of the base identity > // objective-function-type has been updated > // in this module revision > // RFC Editor: remove the note above and this note 985c1106 < "Base objective function type."; Busi, et al. Expires 11 September 2023 [Page 122] Internet-Draft TE Common YANG Types March 2023 --- > "Base identity for path objective function type."; 1015a1137,1139 > // CHANGE NOTE: The identity of-minimize-agg-bandwidth-consumption > // below has been obsoleted in this module revision > // RFC Editor: remove the note above and this note 1017a1142 > status obsolete; 1020c1145 < consumption."; --- > consumption."; 1023c1148 < Computation Element Communication Protocol (PCEP)"; --- > Computation Element Communication Protocol (PCEP)"; 1025a1151,1153 > // CHANGE NOTE: The identity of-minimize-load-most-loaded-link > // below has been obsoleted in this module revision > // RFC Editor: remove the note above and this note 1027a1156 > status obsolete; 1030c1159 < is carrying the highest load."; --- > is carrying the highest load."; 1033c1162 < Computation Element Communication Protocol (PCEP)"; --- > Computation Element Communication Protocol (PCEP)"; 1035a1165,1167 > // CHANGE NOTE: The identity of-minimize-cost-path-set > // below has been obsoleted in this module revision > // RFC Editor: remove the note above and this note 1037a1170 > status obsolete; 1216a1350,1361 > // CHANGE NOTE: The identity tunnel-admin-state-auto below > // has been added in this module revision > // RFC Editor: remove the note above and this note > identity tunnel-admin-state-auto { > base tunnel-admin-state-type; > description > "Tunnel administrative auto state. The administrative status > in state datastore transitions to 'tunnel-admin-up' when the > tunnel used by the client layer, and to 'tunnel-admin-down' > when it is not used by the client layer."; > } Busi, et al. Expires 11 September 2023 [Page 123] Internet-Draft TE Common YANG Types March 2023 > 1321a1467,1475 > // CHANGE NOTE: The identity lsp-restoration-restore-none > // below has been added in this module revision > // RFC Editor: remove the note above and this note > identity lsp-restoration-restore-none { > base lsp-restoration-type; > description > "No LSP affected by a failure is restored."; > } > 1628a1783,1786 > // cCHANGE NOTE: The description and reference of the > // identity action-exercise have been updated in this module > // revision > // RFC Editor: remove the note above and this note 1632,1633c1790,1792 < "An action that starts testing whether or not APS communication < is operating correctly. It is of lower priority than any --- > "An action that starts testing whether or not Automatic > Protection Switching (APS) communication is operating > correctly. It is of lower priority than any 1636,1637c1795,1796 < "RFC 4427: Recovery (Protection and Restoration) Terminology < for Generalized Multi-Protocol Label Switching (GMPLS)"; --- > "ITU-T G.808.1 v4.0 (05/2014): Generic protection switching - > Linear trail and subnetwork protection"; 2110a2270,2602 > // CHANGE NOTE: The base identity path-computation-error-reason > // and its derived identities below have been > // added in this module revision > // RFC Editor: remove the note above and this note > identity path-computation-error-reason { > description > "Base identity for path computation error reasons."; > } > > identity path-computation-error-no-topology { > base path-computation-error-reason; > description > "Path computation has failed because there is no topology > with the provided topology-identifier."; > } > > identity path-computation-error-no-dependent-server { > base path-computation-error-reason; Busi, et al. Expires 11 September 2023 [Page 124] Internet-Draft TE Common YANG Types March 2023 > description > "Path computation has failed because one or more dependent > path computation servers are unavailable. > The dependent path computation server could be > a Backward-Recursive Path Computation (BRPC) downstream > PCE or a child PCE."; > reference > "RFC5441, RFC8685"; > } > > identity path-computation-error-pce-unavailable { > base path-computation-error-reason; > description > "Path computation has failed because PCE is not available."; > reference > "RFC5440"; > } > > identity path-computation-error-no-inclusion-hop { > base path-computation-error-reason; > description > "Path computation has failed because there is no > node or link provided by one or more inclusion hops."; > } > > identity path-computation-error-destination-unknown-in-domain { > base path-computation-error-reason; > description > "Path computation has failed because the destination node is > unknown in indicated destination domain."; > reference > "RFC8685"; > } > > identity path-computation-error-no-resource { > base path-computation-error-reason; > description > "Path computation has failed because there is no > available resource in one or more domains."; > reference > "RFC8685"; > } > > identity path-computation-error-child-pce-unresponsive { > base path-computation-error-reason; > description > "Path computation has failed because child PCE is not > responsive."; Busi, et al. Expires 11 September 2023 [Page 125] Internet-Draft TE Common YANG Types March 2023 > reference > "RFC8685"; > } > > identity path-computation-error-destination-domain-unknown { > base path-computation-error-reason; > description > "Path computation has failed because the destination domain > was unknown."; > reference > "RFC8685"; > } > > identity path-computation-error-p2mp { > base path-computation-error-reason; > description > "Path computation has failed because of P2MP reachability > problem."; > reference > "RFC8306"; > } > > identity path-computation-error-no-gco-migration { > base path-computation-error-reason; > description > "Path computation has failed because of no Global Concurrent > Optimization (GCO) migration path found."; > reference > "RFC5557"; > } > > identity path-computation-error-no-gco-solution { > base path-computation-error-reason; > description > "Path computation has failed because of no GCO solution > found."; > reference > "RFC5557"; > } > > identity path-computation-error-path-not-found { > base path-computation-error-reason; > description > "Path computation no path found error reason."; > reference > "RFC5440"; > } > Busi, et al. Expires 11 September 2023 [Page 126] Internet-Draft TE Common YANG Types March 2023 > identity path-computation-error-pks-expansion { > base path-computation-error-reason; > description > "Path computation has failed because of Path-Key Subobject > (PKS) expansion failure."; > reference > "RFC5520"; > } > > identity path-computation-error-brpc-chain-unavailable { > base path-computation-error-reason; > description > "Path computation has failed because PCE BRPC chain > unavailable."; > reference > "RFC5441"; > } > > identity path-computation-error-source-unknown { > base path-computation-error-reason; > description > "Path computation has failed because source node is > unknown."; > reference > "RFC5440"; > } > > identity path-computation-error-destination-unknown { > base path-computation-error-reason; > description > "Path computation has failed because destination node is > unknown."; > reference > "RFC5440"; > } > > identity path-computation-error-no-server { > base path-computation-error-reason; > description > "Path computation has failed because path computation > server is unavailable."; > reference > "RFC5440"; > } > > // CHANGE NOTE: The base identity protocol-origin-type and > // its derived identities below have been > // added in this module revision Busi, et al. Expires 11 September 2023 [Page 127] Internet-Draft TE Common YANG Types March 2023 > // RFC Editor: remove the note above and this note > identity protocol-origin-type { > description > "Base identity for protocol origin type."; > } > > identity protocol-origin-api { > base protocol-origin-type; > description > "Protocol origin is via Application Programmable Interface > (API)."; > } > > identity protocol-origin-pcep { > base protocol-origin-type; > description > "Protocol origin is Path Computation Engine Protocol > (PCEP)."; > reference "RFC5440"; > } > > identity protocol-origin-bgp { > base protocol-origin-type; > description > "Protocol origin is Border Gateway Protocol (BGP)."; > reference "RFC9012"; > } > > // CHANGE NOTE: The base identity svec-objective-function-type > // and its derived identities below have been > // added in this module revision > // RFC Editor: remove the note above and this note > identity svec-objective-function-type { > description > "Base identity for SVEC objective function type."; > reference > "RFC5541: Encoding of Objective Functions in the Path > Computation Element Communication Protocol (PCEP)."; > } > > identity svec-of-minimize-agg-bandwidth-consumption { > base svec-objective-function-type; > description > "Objective function for minimizing aggregate bandwidth > consumption (MBC)."; > reference > "RFC5541: Encoding of Objective Functions in the Path > Computation Element Communication Protocol (PCEP)."; Busi, et al. Expires 11 September 2023 [Page 128] Internet-Draft TE Common YANG Types March 2023 > } > > identity svec-of-minimize-load-most-loaded-link { > base svec-objective-function-type; > description > "Objective function for minimizing the load on the link that > is carrying the highest load (MLL)."; > reference > "RFC5541: Encoding of Objective Functions in the Path > Computation Element Communication Protocol (PCEP)."; > } > > identity svec-of-minimize-cost-path-set { > base svec-objective-function-type; > description > "Objective function for minimizing the cost on a path set > (MCC)."; > reference > "RFC5541: Encoding of Objective Functions in the Path > Computation Element Communication Protocol (PCEP)."; > } > > identity svec-of-minimize-common-transit-domain { > base svec-objective-function-type; > description > "Objective function for minimizing the number of common > transit domains (MCTD)."; > reference > "RFC8685: Path Computation Element Communication Protocol > (PCEP) Extensions for the Hierarchical Path Computation > Element (H-PCE) Architecture."; > } > > identity svec-of-minimize-shared-link { > base svec-objective-function-type; > description > "Objective function for minimizing the number of shared > links (MSL)."; > reference > "RFC8685: Path Computation Element Communication Protocol > (PCEP) Extensions for the Hierarchical Path Computation > Element (H-PCE) Architecture."; > } > > identity svec-of-minimize-shared-srlg { > base svec-objective-function-type; > description > "Objective function for minimizing the number of shared Busi, et al. Expires 11 September 2023 [Page 129] Internet-Draft TE Common YANG Types March 2023 > Shared Risk Link Groups (SRLG) (MSS)."; > reference > "RFC8685: Path Computation Element Communication Protocol > (PCEP) Extensions for the Hierarchical Path Computation > Element (H-PCE) Architecture."; > } > > identity svec-of-minimize-shared-nodes { > base svec-objective-function-type; > description > "Objective function for minimizing the number of shared > nodes (MSN)."; > reference > "RFC8685: Path Computation Element Communication Protocol > (PCEP) Extensions for the Hierarchical Path Computation > Element (H-PCE) Architecture."; > } > > // CHANGE NOTE: The base identity svec-metric-type and > // its derived identities below have been > // added in this module revision > // RFC Editor: remove the note above and this note > identity svec-metric-type { > description > "Base identity for SVEC metric type."; > reference > "RFC5541: Encoding of Objective Functions in the Path > Computation Element Communication Protocol (PCEP)."; > } > > identity svec-metric-cumul-te { > base svec-metric-type; > description > "Cumulative TE cost."; > reference > "RFC5541: Encoding of Objective Functions in the Path > Computation Element Communication Protocol (PCEP)."; > } > > identity svec-metric-cumul-igp { > base svec-metric-type; > description > "Cumulative IGP cost."; > reference > "RFC5541: Encoding of Objective Functions in the Path > Computation Element Communication Protocol (PCEP)."; > } > Busi, et al. Expires 11 September 2023 [Page 130] Internet-Draft TE Common YANG Types March 2023 > identity svec-metric-cumul-hop { > base svec-metric-type; > description > "Cumulative Hop path metric."; > reference > "RFC5541: Encoding of Objective Functions in the Path > Computation Element Communication Protocol (PCEP)."; > } > > identity svec-metric-aggregate-bandwidth-consumption { > base svec-metric-type; > description > "Aggregate bandwidth consumption."; > reference > "RFC5541: Encoding of Objective Functions in the Path > Computation Element Communication Protocol (PCEP)."; > } > > identity svec-metric-load-of-the-most-loaded-link { > base svec-metric-type; > description > "Load of the most loaded link."; > reference > "RFC5541: Encoding of Objective Functions in the Path > Computation Element Communication Protocol (PCEP)."; > } > 3379c3871,3898 < } \ No newline at end of file --- > > // NOTE: The grouping encoding-and-switching-type below has been > // added in this module revision > // RFC Editor: remove the note above and this note > grouping encoding-and-switching-type { > description > "Common grouping to define the LSP encoding and > switching types"; > leaf encoding { > type identityref { > base te-types:lsp-encoding-types; > } > description > "LSP encoding type."; > reference > "RFC3945"; > } Busi, et al. Expires 11 September 2023 [Page 131] Internet-Draft TE Common YANG Types March 2023 > leaf switching-type { > type identityref { > base te-types:switching-capabilities; > } > description > "LSP switching type."; > reference > "RFC3945"; > } > } > } A.2. Packet TE Types YANG Diffs RFC Editor: please remove this appendix before publication. This section provides the diff between the YANG module in section 3.2 of [RFC8776] and the YANG model revision in Section 5. The intention of this appendix is to facilitate focusing the review of the YANG model in Section 5 to the changes compared with the YANG model in [RFC8776]. This diff has been generated using the following UNIX commands to compare the YANG module revisions in section 3.2 of [RFC8776] and in Section 5: diff ietf-te-packet-types@2020-06-10.yang ietf-te-packet-types.yang > model-diff.txt sed 's/^/ /' model-diff.txt > model-diff-spaces.txt sed 's/^ > / > /' model-diff-spaces.txt > model-updates.txt The output (model-updates.txt) is reported here: 11c11,12 < "RFC 8776: Common YANG Data Types for Traffic Engineering"; --- > "RFCXXXX: Updated Common YANG Data Types for Traffic > Engineering"; 12a14,15 > // RFC Editor: replace XXXX with actual RFC number > // and remove this note 22c25 < --- > 41c44 Busi, et al. Expires 11 September 2023 [Page 132] Internet-Draft TE Common YANG Types March 2023 < Copyright (c) 2020 IETF Trust and the persons identified as --- > Copyright (c) 2023 IETF Trust and the persons identified as 46c49 < the license terms contained in, the Simplified BSD License set --- > the license terms contained in, the Revised BSD License set 51,52c54,71 < This version of this YANG module is part of RFC 8776; see the < RFC itself for full legal notices."; --- > This version of this YANG module is part of RFC XXXX > (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself > for full legal notices."; > > revision 2023-03-10 { > description > "Added common TE packet identities: > - bandwidth-profile-type. > > Added common TE packet groupings: > - te-packet-path-bandwidth; > - te-packet-link-bandwidth."; > reference > "RFC XXXX: Updated Common YANG Data Types for Traffic > Engineering"; > } > // RFC Editor: replace XXXX with actual RFC number, update date > // information and remove this note 61c80,126 < /** --- > /* > * Identities > */ > > // CHANGE NOTE: The base identity bandwidth-profile-type and > // its derived identities below have been > // added in this module revision > // RFC Editor: remove the note above and this note > identity bandwidth-profile-type { > description > "Bandwidth Profile Types"; > } > > identity mef-10-bwp { > base bandwidth-profile-type; > description Busi, et al. Expires 11 September 2023 [Page 133] Internet-Draft TE Common YANG Types March 2023 > "MEF 10 Bandwidth Profile"; > reference > "MEF 10.3: Ethernet Services Attributes Phase 3"; > } > > identity rfc-2697-bwp { > base bandwidth-profile-type; > description > "RFC 2697 Bandwidth Profile"; > reference > "RFC2697: A Single Rate Three Color Marker"; > } > > identity rfc-2698-bwp { > base bandwidth-profile-type; > description > "RFC 2698 Bandwidth Profile"; > reference > "RFC2698: A Two Rate Three Color Marker"; > } > > identity rfc-4115-bwp { > base bandwidth-profile-type; > description > "RFC 4115 Bandwidth Profile"; > reference > "RFC4115: A Differentiated Service Two-Rate, Three-Color > Marker with Efficient Handling of in-Profile Traffic"; > } > > /* 180a246,249 > /* > * Groupings > */ > 472a542,617 > } > } > > // CHANGE NOTE: The te-packet-path-bandwidth below has been > // added in this module revision > // RFC Editor: remove the note above and this note > grouping te-packet-path-bandwidth { > description > "Path bandwidth for Packet. "; > leaf bandwidth-profile-name{ > type string; Busi, et al. Expires 11 September 2023 [Page 134] Internet-Draft TE Common YANG Types March 2023 > description "Name of Bandwidth Profile."; > } > leaf bandwidth-profile-type { > type identityref { > base bandwidth-profile-type; > } > description "Type of Bandwidth Profile."; > } > > leaf cir { > type uint64; > units "Kbps"; > description > "Committed Information Rate in kilobits per second."; > } > > leaf eir { > type uint64; > units "Kbps"; > /* > Need to indicate that EIR is not supported by RFC 2697 > > must > > '../bw-profile-type = "etht-types:mef-10-bwp" or ' + > '../bw-profile-type = "etht-types:rfc-2698-bwp" or ' + > '../bw-profile-type = "etht-types:rfc-4115-bwp"' > > must > '../bw-profile-type != "etht-types:rfc-2697-bwp"' > */ > description > "Excess Information Rate in kilobits per second. > > In case of RFC 2698: PIR = CIR + EIR"; > } > > leaf cbs { > type uint64; > units "KBytes"; > description > "Committed Burst Size."; > } > > leaf ebs { > type uint64; > units "KBytes"; > description Busi, et al. Expires 11 September 2023 [Page 135] Internet-Draft TE Common YANG Types March 2023 > "Excess Burst Size. > > In case of RFC 2698: PBS = CBS + EBS"; > } > } > > // CHANGE NOTE: The te-packet-path-bandwidth below has been > // added in this module revision > // RFC Editor: remove the note above and this note > grouping te-packet-link-bandwidth { > description > "Link Bandwidth for Packet. "; > leaf packet-bandwidth { > type te-types:bandwidth-scientific-notation; > description > "Available bandwith value expressed in kilobits per > second"; Appendix B. Option Considered for updating RFC8776 RFC Editor: please remove this appendix before publication. The concern is how to be able to update the ietf-te-types YANG module published in [RFC8776] without delaying too much the progress of the mature WG documents. Three possible options have been identified to address this concern. One option is to keep these definitions in the YANG modules where they have initially been defined: other YANG modules can still import them. The drawback of this approach is that it defeating the value of common YANG modules like ietf-te-types since common definitions will be spread around multiple specific YANG modules. A second option is to define them in a new common YANG module (e.g., ietf-te-types-ext). The drawback of this approach is that it will increase the number of YANG modules providing tiny updates to the ietf-te-types YANG module. A third option is to develop a revision of the ietf-te-types YANG module within an RFC8776-bis. The drawback of this approach is that the process for developing a big RFC8776-bis just for a tiny update is too high. Moreover, as suggested during IETF 113 Netmod WG discussion, a new revision of the ietf-te-packet-types YANG module, which is also defined in [RFC8776] but it does not need to be revised, needs to be published just to change its reference to RFC8776-bis (see [RFC9314]). Busi, et al. Expires 11 September 2023 [Page 136] Internet-Draft TE Common YANG Types March 2023 A fourth option, considered in the -00 WG version, was to: * describe within the document only the updates to the ietf-te-types YANG module proposed by this document; * include the whole updated YANG model within the main body; * add some notes, to be removed before publication, within updated YANG model to focus the review only to the updates to the ietf-te- types YANG module proposed by this document. Based on the feedbacks from IETF 114 discussion, this version has been restructured to become an RFC8776-bis, with some notes, to be removed before publication, to focus the review only to the updates to the ietf-te-types YANG module proposed by this document. During the Netmod WG session at IETF 114, an alternative process has been introduced: https://datatracker.ietf.org/meeting/114/materials/slides-114-netmod- ad-topic-managing-the-evolution-of-ietf-yang-modules-00.pdf Future updates of this document could align with the proposed approach. Acknowledgements The authors would like to thank Robert Wilton, Lou Berger, Mahesh Jethanandani and Jeff Haas for their valuable input to the discussion about the process to follow to provide tiny updates to a YANG module already published as an RFC. This document was prepared using kramdown. Authors' Addresses Italo Busi Huawei Email: italo.busi@huawei.com Aihua Guo Futurewei Technologies Email: aihuaguo.ietf@gmail.com Xufeng Liu IBM Corporation Busi, et al. Expires 11 September 2023 [Page 137] Internet-Draft TE Common YANG Types March 2023 Email: xufeng.liu.ietf@gmail.com Tarek Saad Cisco Systems Inc. Email: tsaad.net@gmail.com Rakesh Gandhi Cisco Systems, Inc. Email: rgandhi@cisco.com Vishnu Pavan Beeram Juniper Networks Email: vbeeram@juniper.net Igor Bryskin Individual Email: i_bryskin@yahoo.com Busi, et al. Expires 11 September 2023 [Page 138]