Skip to main content
  • New IETF Area focuses on web and transport technologies

    The new Web and Internet Transport (WIT) area covers protocols that provide the functions of the transport layer of the Internet, including congestion control and queue management, real-time communication, as well as protocols that implement the World Wide Web and adjacent technologies.

    8 Oct 2024
  • IETF Meetings recording playback system now open source

    The source code of the playback system for the recordings of IETF meeting sessions was recently released by Meetecho under an open source license, and the IETF has now deployed its own instance of the system.

    2 Oct 2024
  • Workshop on the Next Era of NEtwork Management OPerationS (NEMOPS)

    A workshop organized by the Internet Architecture Board (IAB) aims to chart a path for the development of future network management protocols and techniques. The Next Era of Network Management Operations (NEMOPS) workshop will begin by assessing the impacts of the previous IAB workshop on both network operations and protocol development.

    20 Sep 2024
  • RFC data visualizations accessibility review

    RFCs are freely available to download, copy, publish, display and distribute. One benefit of providing free access to RFCs is that they can be used by the largest number of people possible to build a better Internet for all. To truly include as many people as we can, the IETF community has consistently tried to uphold accessibility standards for the publication of RFCs.

    10 Sep 2024
  • Consultation on the Second IASA2 Retrospective

    The IETF Administration LLC is soliciting community feedback on the second retrospective on the IETF Administrative Support Activity (IASA 2.0). This follows our first retrospective from 2021.

    4 Sep 2024

Filter by topic and date

Filter by topic and date

EDHOC - A new lightweight authenticated key exchange protocol provides improved security with less overhead for Internet-of-Things devices

5 Jun 2024

Ephemeral Diffie-Hellman Over COSE (EDHOC) is a very compact, lightweight authenticated key exchange protocol, providing state-of-the-art security including mutual authentication, forward secrecy and identity protection.

pexels-mhafetrey-2416657-4048177

Running an authenticated key exchange protocol over low-power Internet-of-Things radio technologies is challenging. These technologies often have Maximum Transmission Units (MTUs) on the order of several tens of bytes and very limited data rates, sometimes lower than dial-up modems used to access the Internet in the 1990s. What is more, the devices are also constrained in terms of the available memory and processing. EDHOC—described in the recently-published RFC 9528 and RFC 9529—enables state-of-the-art key exchange, for which we have formal security proofs, yet avoids message fragmentation even in the presence of these radio constraints thanks to small message sizes. EDHOC implementations require a minimal amount of code and data memory.

EDHOC is designed to be a security enabler in the next generation of Internet-of-Things products and can be used for instance in appliances for home and businesses. One example of a company working in this area is ASSA ABLOY, who offer a broad range of access solutions where EDHOC is considered as a suitable authentication component enabling modern standards-based IoT integrations that are power efficient, fast and lightweight.

EDHOC is built on proven technologies. It uses the Concise Binary Object Representation (CBOR) encoding for message compactness, without sacrificing on extensibility. It leverages the CBOR Object Signing and Encryption (COSE) algorithms to provide cryptographic agility and reduce the amount of new code that is required on constrained devices. EDHOC also uses COSE for identification of authentication credentials, including COSE keys, CBOR Web Token (CWT), CWT Claims Set (CCS), X.509, and CBOR-encoded X.509 (C509) certificates. EDHOC’s authentication credentials, e.g. certificates, need not be transported over the air, a feature that enables significant byte savings. Through this effective usage of Internet technologies standardized for constrained environments, and careful cryptographic design, EDHOC guarantees mutual authentication of the two endpoints and the confidentiality of the established shared secret. This secret can then be used by other protocols such as Object Security for Constrained RESTful Environments (OSCORE) or COSE for data encryption.

Following up on the successful standardization stories of TLS 1.3 and Messaging Layer Security (MLS), particular attention during the standardization process in the LAKE working group was given to formal verification of protocol security. The academic community was invited to study the protocol and responded with more than 5 independent studies. The open process gives assurance that the protocol is sound.

Screenshot 2024-06-03 at 16.22.11

EDHOC is already widely implemented. Optimized implementations for microcontrollers exist in Rust and in C, and in Java for non-constrained systems. Implementations have been interop-tested through several interop events organized by the LAKE working group. More implementation effort is always welcome and any feedback should be communicated to the LAKE working group, which is continuing the maintenance of EDHOC by compiling implementation experience, defining application profiles and adding security applications through the integration point defined by the base protocol.


Share this page