Skip to main content
  • RFC Production Center management transition

    After an extensive review of recent developments in the RFC Editor function, the IETF Administration LLC (IETF LLC) and Association Management Solutions LLC (AMS) have agreed that the IETF LLC will assume management of existing RFC Production Center (RPC) staff, under an Employer of Record arrangement with AMS, the employer of the RPC team.

    5 Jan 2025
  • Workshop on the Decentralization of the Internet at ACM CoNEXT 2024

    The recent Decentralization of the Internet (DIN) workshop at ACM CoNEXT-2024 brought together network researchers, law and policy experts, and digital right activists to discuss the consolidation and centralization of the existing Internet applications, services, and infrastructure observed in recent years.

    19 Dec 2024
  • Launch of the IETF Community Survey 2024

    The IETF Community survey is our major annual survey of the whole of the IETF community and is used to inform the actions of IETF leadership throughout the year. The 2024 IETF Community Survey is live and we want to hear from you!

    19 Dec 2024
  • Second IASA2 Retrospective Report

    The IETF Administration LLC (IETF LLC) has now completed the second IETF Administrative Support Activity (IASA 2.0) retrospective. The report was developed with community input and review, and is now available online.

    18 Dec 2024
  • IETF Administration LLC 2025 Draft Budget

    The IETF Administration LLC has prepared its draft budget for 2025 and now seeks community feedback.

    13 Dec 2024

Filter by topic and date

Filter by topic and date

EDHOC - A new lightweight authenticated key exchange protocol provides improved security with less overhead for Internet-of-Things devices

5 Jun 2024

Ephemeral Diffie-Hellman Over COSE (EDHOC) is a very compact, lightweight authenticated key exchange protocol, providing state-of-the-art security including mutual authentication, forward secrecy and identity protection.

pexels-mhafetrey-2416657-4048177

Running an authenticated key exchange protocol over low-power Internet-of-Things radio technologies is challenging. These technologies often have Maximum Transmission Units (MTUs) on the order of several tens of bytes and very limited data rates, sometimes lower than dial-up modems used to access the Internet in the 1990s. What is more, the devices are also constrained in terms of the available memory and processing. EDHOC—described in the recently-published RFC 9528 and RFC 9529—enables state-of-the-art key exchange, for which we have formal security proofs, yet avoids message fragmentation even in the presence of these radio constraints thanks to small message sizes. EDHOC implementations require a minimal amount of code and data memory.

EDHOC is designed to be a security enabler in the next generation of Internet-of-Things products and can be used for instance in appliances for home and businesses. One example of a company working in this area is ASSA ABLOY, who offer a broad range of access solutions where EDHOC is considered as a suitable authentication component enabling modern standards-based IoT integrations that are power efficient, fast and lightweight.

EDHOC is built on proven technologies. It uses the Concise Binary Object Representation (CBOR) encoding for message compactness, without sacrificing on extensibility. It leverages the CBOR Object Signing and Encryption (COSE) algorithms to provide cryptographic agility and reduce the amount of new code that is required on constrained devices. EDHOC also uses COSE for identification of authentication credentials, including COSE keys, CBOR Web Token (CWT), CWT Claims Set (CCS), X.509, and CBOR-encoded X.509 (C509) certificates. EDHOC’s authentication credentials, e.g. certificates, need not be transported over the air, a feature that enables significant byte savings. Through this effective usage of Internet technologies standardized for constrained environments, and careful cryptographic design, EDHOC guarantees mutual authentication of the two endpoints and the confidentiality of the established shared secret. This secret can then be used by other protocols such as Object Security for Constrained RESTful Environments (OSCORE) or COSE for data encryption.

Following up on the successful standardization stories of TLS 1.3 and Messaging Layer Security (MLS), particular attention during the standardization process in the LAKE working group was given to formal verification of protocol security. The academic community was invited to study the protocol and responded with more than 5 independent studies. The open process gives assurance that the protocol is sound.

Screenshot 2024-06-03 at 16.22.11

EDHOC is already widely implemented. Optimized implementations for microcontrollers exist in Rust and in C, and in Java for non-constrained systems. Implementations have been interop-tested through several interop events organized by the LAKE working group. More implementation effort is always welcome and any feedback should be communicated to the LAKE working group, which is continuing the maintenance of EDHOC by compiling implementation experience, defining application profiles and adding security applications through the integration point defined by the base protocol.


Share this page