
RFC 9512

YAML Media Type

Abstract

This document registers the application/yaml media type and the +yaml structured syntax

suffix with IANA. Both identify document components that are serialized according to the YAML

specification.

Stream:

RFC:

Category:

Published:

ISSN:

Authors:

Internet Engineering Task Force (IETF)

9512

Informational

February 2024

2070-1721

 R. Polli

DTD, Italian Government

E. Wilde

Axway

E. Aro

Mozilla

Status of This Memo

This document is not an Internet Standards Track specification; it is published for informational

purposes.

This document is a product of the Internet Engineering Task Force (IETF). It represents the

consensus of the IETF community. It has received public review and has been approved for

publication by the Internet Engineering Steering Group (IESG). Not all documents approved by

the IESG are candidates for any level of Internet Standard; see Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback

on it may be obtained at .https://www.rfc-editor.org/info/rfc9512

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Polli, et al. Informational Page 1

https://www.rfc-editor.org/rfc/rfc9512
https://www.rfc-editor.org/info/rfc9512
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Notational Conventions

1.2. Fragment Identification

1.2.1. Fragment Identification via Alias Nodes

2. Media Type and Structured Syntax Suffix Registrations

2.1. Media Type application/yaml

2.2. The +yaml Structured Syntax Suffix

3. Interoperability Considerations

3.1. YAML Is an Evolving Language

3.2. YAML Streams

3.3. Filename Extension

3.4. YAML and JSON

3.5. Fragment Identifiers

4. Security Considerations

4.1. Arbitrary Code Execution

4.2. Resource Exhaustion

4.3. YAML Streams

4.4. Expressing Booleans

5. IANA Considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Examples Related to Fragment Identifier Interoperability

A.1. Unreferenceable Nodes

A.2. Referencing a Missing Node

A.3. Representation Graph with Anchors and Cyclic References

Acknowledgements

3

3

3

4

5

5

6

6

6

7

7

7

8

9

9

9

10

10

10

10

10

11

12

12

12

12

13

RFC 9512 YAML Media Type February 2024

Polli, et al. Informational Page 2

Authors' Addresses 13

1. Introduction

YAML is a data serialization format that is capable of conveying one or multiple

documents in a single presentation stream (e.g., a file or a network resource). It is widely used on

the Internet, including in the API sector (e.g., see), but a corresponding media type and

structured syntax suffix had not previously been registered by IANA.

To increase interoperability when exchanging YAML streams and leverage content negotiation

mechanisms when exchanging YAML resources, this specification registers the application/

yaml media type and the +yaml structured syntax suffix .

Moreover, it provides security considerations and interoperability considerations related to

, including its relation with .

[YAML]

[OAS]

[MEDIATYPE]

[YAML] [JSON]

1.1. Notational Conventions

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

The terms "content negotiation" and "resource" in this document are to be interpreted as in

.

The terms "fragment" and "fragment identifier" in this document are to be interpreted as in

.

The terms "presentation", "stream", "YAML document", "representation graph", "tag",

"serialization detail", "node", "alias node", "anchor", and "anchor name" in this document are to

be interpreted as in .

Figures containing YAML code always start with the %YAML directive to improve readability.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

[HTTP]

[URI]

[YAML]

1.2. Fragment Identification

A fragment identifies a node in a stream.

A fragment identifier starting with "*" is to be interpreted as a YAML alias node (see Section

1.2.1).

RFC 9512 YAML Media Type February 2024

Polli, et al. Informational Page 3

For single-document YAML streams, a fragment identifier that is empty or that starts with "/" is to

be interpreted as a JSON Pointer and is evaluated on the YAML representation

graph, traversing alias nodes; in particular, the empty fragment identifier references the root

node. This syntax can only reference the YAML nodes that are on a path that is made up of nodes

interoperable with the JSON data model (see Section 3.4).

A fragment identifier is not guaranteed to reference an existing node. Therefore, applications

 define how an unresolved alias node ought to be handled.

[JSON-POINTER]

SHOULD

1.2.1. Fragment Identification via Alias Nodes

This section describes how to use alias nodes (see Sections 3.2.2.2 and 7.1 of) as fragment

identifiers to designate nodes.

A YAML alias node can be represented in a URI fragment identifier by encoding it into bytes

using UTF-8 , but percent-encoding of those characters is not allowed by the fragment rule

in .

If multiple nodes match a fragment identifier, the first occurrence of such a match is selected.

Users concerned with interoperability of fragment identifiers:

 limit alias nodes to a set of characters that do not require encoding to be expressed

as URI fragment identifiers (this is generally possible since anchor names are a serialization

detail), and

 use alias nodes that match multiple nodes.

In the example resource below, the relative reference (see) file.yaml#*foo

identifies the first alias node *foo pointing to the node with value scalar and not to the one in

the second document, whereas the relative reference file.yaml#*document_2 identifies the root

node of the second document {one: [a, sequence]}.

[YAML]

[UTF-8]

Section 3.5 of [URI]

• SHOULD

• SHOULD NOT

Section 4.2 of [URI]

Figure 1: A YAML Stream Containing Two YAML Documents

 %YAML 1.2

 one: &foo scalar
 two: &bar
 - some
 - sequence
 - items
 ...
 %YAML 1.2

 &document_2
 one: &foo [a, sequence]

RFC 9512 YAML Media Type February 2024

Polli, et al. Informational Page 4

https://rfc-editor.org/rfc/rfc3986#section-3.5
https://rfc-editor.org/rfc/rfc3986#section-4.2

2. Media Type and Structured Syntax Suffix Registrations

This section includes the information required for IANA to register the application/yaml media

type and the +yaml structured syntax suffix per .[MEDIATYPE]

Type name:

Subtype name:

Required parameters:

Optional parameters:

Encoding considerations:

Security considerations:

Interoperability considerations:

Published specification:

Applications that use this media type:

Fragment identifier considerations:

Additional information:

Deprecated alias names for this type:

Magic number(s):

File extension(s):

Macintosh file type code(s):

Windows Clipboard Name:

Person and email address to contact for further information:

Intended usage:

Restrictions on usage:

2.1. Media Type application/yaml

The media type for YAML is application/yaml; the following information serves as the

registration form for this media type.

application

yaml

N/A

N/A; unrecognized parameters should be ignored.

binary

See Section 4 of this document.

See Section 3 of this document.

, this document

Applications that need a human-friendly, cross-language,

and Unicode-based data serialization language designed around the common data types of

dynamic programming languages.

See Section 1.2 of this document.

application/x-yaml, text/yaml, and text/x-yaml. These

names are used but are not registered.

N/A

"yaml" (preferred) and "yml". See Section 3.3 of this document.

N/A

YAML

See the Authors' Addresses section

of this document.

COMMON

None

[YAML]

RFC 9512 YAML Media Type February 2024

Polli, et al. Informational Page 5

Author:

Change controller:

See the Authors' Addresses section of this document.

IETF

Name:

+suffix:

References:

Encoding considerations:

Interoperability considerations:

Fragment identifier considerations:

Security considerations:

Contact:

Author:

Change controller:

2.2. The +yaml Structured Syntax Suffix

The suffix +yaml be used with any media type whose representation follows that established

for application/yaml. The structured syntax suffix registration form follows. See

for definitions of each part of the registration form.

YAML Ain't Markup Language (YAML)

+yaml

, this document

Same as application/yaml

Same as application/yaml

Unlike application/yaml, there is no fragment

identification syntax defined for +yaml.

A specific xxx/yyy+yaml media type needs to define the syntax and semantics for fragment

identifiers because the ones defined for application/yaml do not apply unless explicitly

expressed.

Same as application/yaml

httpapi@ietf.org or art@ietf.org

See the Authors' Addresses section of this document.

IETF

MAY

[MEDIATYPE]

[YAML]

3. Interoperability Considerations

3.1. YAML Is an Evolving Language

YAML is an evolving language, and over time, some features have been added and others

removed.

The application/yaml media type registration is independent of the YAML version. This allows

content negotiation of version-independent YAML resources.

Implementers concerned about features related to a specific YAML version can specify it in YAML

documents using the %YAML directive (see Section 6.8.1 of).[YAML]

RFC 9512 YAML Media Type February 2024

Polli, et al. Informational Page 6

3.2. YAML Streams

A YAML stream can contain zero or more YAML documents.

When receiving a multi-document stream, an application that only expects single-document

streams should signal an error instead of ignoring the extra documents.

Current implementations consider different documents in a stream independent, similarly to

JSON text sequences (see); elements such as anchors are not guaranteed to be

referenceable across different documents.

[RFC7464]

3.3. Filename Extension

The "yaml" filename extension is the preferred one; it is the most popular and widely used on the

web. The "yml" filename extension is still used. The simultaneous usage of two filename

extensions in the same context might cause interoperability issues (e.g., when both a

"config.yaml" and a "config.yml" are present).

3.4. YAML and JSON

When using flow collection styles (see Section 7.4 of), a YAML document could look like

JSON ; thus, similar interoperability considerations apply.

When using YAML as a more efficient format to serialize information intended to be consumed

as JSON, information not reflected in the representation graph and classified as presentation or

serialization details (see Section 3.2 of) can be discarded. This includes comments (see

Section 3.2.3.3 of), directives, and alias nodes (see Section 7.1 of) that do not have

a JSON counterpart.

Implementers need to ensure that relevant information will not be lost during processing. For

example, they might consider alias nodes being replaced by static values as acceptable.

[YAML]

[JSON]

[YAML]

[YAML] [YAML]

Figure 2: JSON Replaces Alias Nodes with Static Values

 %YAML 1.2

 # This comment will be lost
 # when serializing in JSON.
 Title:
 type: string
 maxLength: &text_limit 64

 Name:
 type: string
 maxLength: *text_limit # Replaced by the value 64.

RFC 9512 YAML Media Type February 2024

Polli, et al. Informational Page 7

In some cases, an implementer may want to define a list of allowed YAML features, taking into

account that the following features might have interoperability issues with :

multi-document YAML streams

non-UTF-8 encoding. Before encoding YAML streams in UTF-16 or UTF-32, it is important to

note that mandates the use of UTF-8 when exchanging JSON texts

between systems that are not part of a closed ecosystem and that Section 5.2 of

recommends the use of UTF-8.

mapping keys that are not strings

cyclic references represented using anchors (see Section 4.2 and Figure 4)

.inf and .nan float values, since JSON does not support them

non-JSON types, including the ones associated with tags like !!timestamp that were included

in the default schema of older YAML versions

tags in general, specifically ones that do not map to JSON types, e.g., custom and local tags

such as !!python/object and !mytag (see Section 2.4 of)

[JSON]

•

•

Section 8.1 of [JSON]

[YAML]

•

•

•

•

•

[YAML]

Figure 3: Example of Mapping Keys and Values Not Supported in JSON in a Multi‑Document YAML

Stream

 %YAML 1.2

 non-json-keys:
 0: a number
 [0, 1]: a sequence
 ? {k: v}
 : a map

 non-json-keys:
 !date 2020-01-01: a timestamp
 non-json-value: !date 2020-01-01
 ...

3.5. Fragment Identifiers

To allow fragment identifiers to traverse alias nodes, the YAML representation graph needs to be

generated before the fragment identifier evaluation. It is important that this evaluation does not

cause the issues mentioned in Sections 3.4 and 4, such as infinite loops and unexpected code

execution.

Implementers need to consider that the YAML version and supported features (e.g., merge keys)

can affect the generation of the representation graph (see Figure 9).

In Section 1.2, this document extends the use of specifications based on the JSON data model with

support for YAML fragment identifiers. This is to improve the interoperability of already-

consolidated practices, such as writing in YAML.OpenAPI documents [OAS]

RFC 9512 YAML Media Type February 2024

Polli, et al. Informational Page 8

https://rfc-editor.org/rfc/rfc8259#section-8.1

Appendix A provides a non-exhaustive list of examples to help readers understand

interoperability issues related to fragment identifiers.

4. Security Considerations

Security requirements for both media types and media type suffixes are discussed in

.

Section 4.6

of [MEDIATYPE]

4.1. Arbitrary Code Execution

Care should be used when using YAML tags because their resolution might trigger unexpected

code execution.

Code execution in deserializers should be disabled by default and only be enabled explicitly. In

the latter case, the implementation should ensure (for example, via specific functions) that the

code execution results in strictly bounded time/memory limits.

Many implementations provide safe deserializers that address these issues.

4.2. Resource Exhaustion

YAML documents are rooted, connected, directed graphs and can contain reference cycles, so

they can't be treated as simple trees (see Section 3.2.1 of). An implementation that treats

them as simple trees risks going into an infinite loop while traversing the YAML representation

graph. This can happen:

when trying to serialize it as JSON or

when searching/identifying nodes using specifications based on the JSON data model (e.g.,

).

Even if a representation graph is not cyclic, treating it as a simple tree could lead to improper

behaviors, such as triggering an Exponential Data Expansion (e.g., a Billion Laughs Attack).

[YAML]

•

•

[JSON-POINTER]

Figure 4: A Cyclic Document

 %YAML 1.2

 x: &x
 y: *x

RFC 9512 YAML Media Type February 2024

Polli, et al. Informational Page 9

https://rfc-editor.org/rfc/rfc6838#section-4.6

[HTTP]

6. References

6.1. Normative References

This can be addressed using processors that limit the anchor recursion depth and validate the

input before processing it; even in these cases, it is important to carefully test the

implementation you are going to use. The same considerations apply when serializing a YAML

representation graph in a format that does not support reference cycles (see Section 3.4).

Figure 5: A Billion Laughs Document

 %YAML 1.2

 x1: &a1 ["a", "a"]
 x2: &a2 [*a1, *a1]
 x3: &a3 [*a2, *a2]

4.3. YAML Streams

Incremental parsing and processing of a YAML stream can produce partial results and later

indicate failure to parse the remainder of the stream; to prevent partial processing,

implementers might prefer validating and processing all the documents in a stream at the same

time.

Repeated parsing and re-encoding of a YAML stream can result in the addition or removal of

document delimiters (e.g., --- or ...) as well as the modification of anchor names and other

serialization details that can break signature validation.

4.4. Expressing Booleans

Section 10.3.2 of specifies that only the scalars matching the regular expression true|

True|TRUE|false|False|FALSE are interpreted as booleans. Older YAML versions were more

tolerant (e.g., interpreting NO and N as False and interpreting YES and Y as True). When the older

syntax is used, a YAML implementation could then interpret {insecure: n} as {insecure:

"n"} instead of {insecure: false}. Using the syntax defined in Section 10.3.2 of

prevents these issues.

[YAML]

[YAML]

5. IANA Considerations

IANA has updated the "Media Types" registry with the registration information in Section 2.1 for

the media type application/yaml.

IANA has updated the "Structured Syntax Suffixes" registry with the registration information in

Section 2.2 for the structured syntax suffix +yaml.

RFC 9512 YAML Media Type February 2024

Polli, et al. Informational Page 10

https://www.iana.org/assignments/media-types
https://www.iana.org/assignments/media-type-structured-suffix

[JSON]

[JSON-POINTER]

[MEDIATYPE]

[OAS]

[RFC2119]

[RFC8174]

[URI]

[UTF-8]

[YAML]

[RFC7464]

, , and , ,

, , , June 2022,

.

, ,

, , , December 2017,

.

, , and ,

, , , April 2013,

.

, , and ,

, , , , January 2013,

.

, , , , , and ,

, , 26 July 2017.

, , ,

, , March 1997,

.

, ,

, , , May 2017,

.

, , and ,

, , , , January 2005,

.

, , , ,

, November 2003,

.

, , , , , , and ,

, 1 October 2021,

.

6.2. Informative References

, , ,

, February 2015, .

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP Semantics" STD

97 RFC 9110 DOI 10.17487/RFC9110 <https://www.rfc-editor.org/info/

rfc9110>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange Format"

STD 90 RFC 8259 DOI 10.17487/RFC8259 <https://www.rfc-

editor.org/info/rfc8259>

Bryan, P., Ed. Zyp, K. M. Nottingham, Ed. "JavaScript Object Notation

(JSON) Pointer" RFC 6901 DOI 10.17487/RFC6901 <https://www.rfc-

editor.org/info/rfc6901>

Freed, N. Klensin, J. T. Hansen "Media Type Specifications and Registration

Procedures" BCP 13 RFC 6838 DOI 10.17487/RFC6838 <https://

www.rfc-editor.org/info/rfc6838>

Miller, D. Whitlock, J. Gardiner, M. Ralphson, M. Ratovsky, R. U. Sarid

"OpenAPI Specification" v3.0.0

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/

rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/

rfc8174>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier (URI):

Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986

<https://www.rfc-editor.org/info/rfc3986>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629

DOI 10.17487/RFC3629 <https://www.rfc-editor.org/info/

rfc3629>

Ben-Kiki, O. Evans, C. dot Net, I. Müller, T. Antoniou, P. Aro, E. T. Smith

"YAML Ain't Markup Language Version 1.2" <https://yaml.org/

spec/1.2.2/>

Williams, N. "JavaScript Object Notation (JSON) Text Sequences" RFC 7464 DOI

10.17487/RFC7464 <https://www.rfc-editor.org/info/rfc7464>

RFC 9512 YAML Media Type February 2024

Polli, et al. Informational Page 11

https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://yaml.org/spec/1.2.2/
https://yaml.org/spec/1.2.2/
https://www.rfc-editor.org/info/rfc7464

Appendix A. Examples Related to Fragment Identifier

Interoperability

A.1. Unreferenceable Nodes

This example shows a couple of YAML nodes that cannot be referenced based on the JSON data

model since their mapping keys are not strings.

Figure 6: Example of YAML Nodes That Are Not Referenceable Based on JSON Data Model

 %YAML 1.2

 a-map-cannot:
 ? {be: expressed}
 : with a JSON Pointer

 0: no numeric mapping keys in JSON

A.2. Referencing a Missing Node

In this example, the fragment #/0 does not reference an existing node.

Figure 7: Example of a JSON Pointer That Does Not Reference an Existing Node

 %YAML 1.2

 0: "JSON Pointer `#/0` references a string mapping key."

A.3. Representation Graph with Anchors and Cyclic References

In this YAML document, the #/foo/bar/baz fragment identifier traverses the representation

graph and references the string you. Moreover, the presence of a cyclic reference implies that

there are infinite fragment identifiers #/foo/bat/../bat/bar referencing the &anchor node.

Figure 8: Example of a Cyclic Reference and Alias Nodes

 %YAML 1.2

 anchor: &anchor
 baz: you
 foo: &foo
 bar: *anchor
 bat: *foo

RFC 9512 YAML Media Type February 2024

Polli, et al. Informational Page 12

Many YAML implementations will resolve the merge key "<<:" defined in YAML 1.1 in the

representation graph. This means that the fragment #/book/author/given_name references the

string Federico and that the fragment #/book/<< will not reference any existing node.

Figure 9: Example of YAML Merge Keys

 %YAML 1.1

 # Many implementations use merge keys.
 the-viceroys: &the-viceroys
 title: The Viceroys
 author:
 given_name: Federico
 family_name: De Roberto
 book:
 <<: *the-viceroys
 title: The Illusion

Acknowledgements

Thanks to and for being the initial contributors to this specification and

to and for their support during the adoption phase.

In addition, this document owes a lot to the extensive discussion inside and outside the HTTPAPI

Working Group. The following contributors helped improve this specification by opening pull

requests, reporting bugs, asking smart questions, drafting or reviewing text, and evaluating open

issues: , , , , and

Erik Wilde David Biesack

Darrel Miller Rich Salz

Tina (tinita) Müller Ben Hutton Carsten Bormann Manu Sporny Jason Desrosiers.

Authors' Addresses

Roberto Polli

Digital Transformation Department, Italian Government

Italy

 robipolli@gmail.com Email:

Erik Wilde

Axway

Switzerland

 erik.wilde@dret.net Email:

Eemeli Aro

Mozilla

Finland

 eemeli@gmail.com Email:

RFC 9512 YAML Media Type February 2024

Polli, et al. Informational Page 13

https://yaml.org/type/merge.html
mailto:robipolli@gmail.com
mailto:erik.wilde@dret.net
mailto:eemeli@gmail.com

	RFC 9512
	YAML Media Type
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions
	1.2. Fragment Identification
	1.2.1. Fragment Identification via Alias Nodes

	2. Media Type and Structured Syntax Suffix Registrations
	2.1. Media Type application/yaml
	2.2. The +yaml Structured Syntax Suffix

	3. Interoperability Considerations
	3.1. YAML Is an Evolving Language
	3.2. YAML Streams
	3.3. Filename Extension
	3.4. YAML and JSON
	3.5. Fragment Identifiers

	4. Security Considerations
	4.1. Arbitrary Code Execution
	4.2. Resource Exhaustion
	4.3. YAML Streams
	4.4. Expressing Booleans

	5. IANA Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Examples Related to Fragment Identifier Interoperability
	A.1. Unreferenceable Nodes
	A.2. Referencing a Missing Node
	A.3. Representation Graph with Anchors and Cyclic References

	Acknowledgements
	Authors' Addresses

 YAML Media Type

 Digital Transformation Department, Italian Government

 Italy

 robipolli@gmail.com

 Axway

 Switzerland

 erik.wilde@dret.net

 Mozilla

 Finland

 eemeli@gmail.com

 art
 httpapi

 This document registers the application/yaml media type and the
 +yaml structured syntax suffix with IANA. Both identify document
components that are serialized according to the YAML specification.

 Status of This Memo

 This document is not an Internet Standards Track specification; it is
 published for informational purposes.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by the
 Internet Engineering Steering Group (IESG). Not all documents
 approved by the IESG are candidates for any level of Internet
 Standard; see Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Notational Conventions

 . Fragment Identification

 . Fragment Identification via Alias Nodes

 . Media Type and Structured Syntax Suffix Registrations

 . Media Type application/yaml

 . The +yaml Structured Syntax Suffix

 . Interoperability Considerations

 . YAML Is an Evolving Language

 . YAML Streams

 . Filename Extension

 . YAML and JSON

 . Fragment Identifiers

 . Security Considerations

 . Arbitrary Code Execution

 . Resource Exhaustion

 . YAML Streams

 . Expressing Booleans

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 . Examples Related to Fragment Identifier Interoperability

 . Unreferenceable Nodes

 . Referencing a Missing Node

 . Representation Graph with Anchors and Cyclic References

 Acknowledgements

 Authors' Addresses

 Introduction
 YAML is a data serialization format that is
 capable of conveying one or multiple documents in a single presentation
 stream (e.g., a file or a network resource). It is widely used on the
 Internet, including in the API sector (e.g., see),
 but a corresponding media type and structured syntax suffix had not
 previously been registered by IANA.
 To increase interoperability when exchanging YAML streams and
 leverage content negotiation mechanisms when exchanging YAML resources,
 this specification registers the application/yaml media type
 and the +yaml structured syntax suffix .
 Moreover, it provides security considerations and interoperability
 considerations related to , including its relation
 with .

 Notational Conventions

 The key words " MUST", " MUST NOT", " REQUIRED", " SHALL", " SHALL NOT", " SHOULD", " SHOULD NOT", " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be interpreted as
 described in BCP 14
 when, and only when, they appear in all capitals, as shown here.

 The terms "content negotiation" and "resource"
 in this document are to be interpreted as in .
 The terms "fragment" and "fragment identifier" in this document are
 to be interpreted as in .
 The terms "presentation", "stream", "YAML document",
 "representation graph", "tag", "serialization detail", "node", "alias
 node", "anchor", and "anchor name" in this document are to be
 interpreted as in .
 Figures containing YAML code always start with the %YAML
 directive to improve readability.

 Fragment Identification
 A fragment identifies a node in a stream.
 A fragment identifier starting with "*"
is to be interpreted as a YAML alias node (see).
 For single-document YAML streams, a fragment identifier that is
 empty or that starts with "/" is to be interpreted as a JSON Pointer
 and is evaluated on the YAML
 representation graph, traversing alias nodes; in particular, the
 empty fragment identifier references the root node. This syntax can
 only reference the YAML nodes that are on a path that is made up of
 nodes interoperable with the JSON data model (see).
 A fragment identifier is not guaranteed to reference an existing node.
Therefore, applications SHOULD define how an unresolved alias node
ought to be handled.

 Fragment Identification via Alias Nodes
 This section describes how to use
alias nodes (see Sections 3.2.2.2 and 7.1 of)
as fragment identifiers to designate nodes.
 A YAML alias node can be represented in a URI fragment identifier
by encoding it into bytes using UTF-8 ,
but percent-encoding of those characters is not allowed by the fragment rule
in .
 If multiple nodes match a fragment identifier,
the first occurrence of such a match is selected.
 Users concerned with interoperability of fragment identifiers:

 SHOULD limit alias nodes to a set of characters
that do not require encoding
to be expressed as URI fragment identifiers
(this is generally possible since
anchor names are a serialization detail), and

 SHOULD NOT use alias nodes that match multiple nodes.

 In the example resource below, the relative reference (see)
 file.yaml#*foo identifies the first alias node
 *foo pointing to the node with value scalar and
 not to the one in the second document, whereas the relative reference
 file.yaml#*document_2 identifies the root node of the
 second document {one: [a, sequence]}.

 A YAML Stream Containing Two YAML Documents

 %YAML 1.2

 one: &foo scalar
 two: &bar
 - some
 - sequence
 - items
 ...
 %YAML 1.2

 &document_2
 one: &foo [a, sequence]

 Media Type and Structured Syntax Suffix Registrations
 This section includes the information required for IANA to register
 the application/yaml media type and the +yaml structured syntax suffix
 per .

 Media Type application/yaml
 The media type for YAML is application/yaml;
the following information serves as the registration form for this media type.

 Type name:

 application

 Subtype name:

 yaml

 Required parameters:

 N/A

 Optional parameters:

 N/A; unrecognized parameters should be ignored.

 Encoding considerations:

 binary

 Security considerations:

 See of this document.

 Interoperability considerations:

 See of this document.

 Published specification:

 , this document

 Applications that use this media type:

 Applications that need a human-friendly, cross-language, and Unicode-based data serialization language designed around the common data types of dynamic programming languages.

 Fragment identifier considerations:

 See of this document.

 Additional information:

 Deprecated alias names for this
 type:
 application/x-yaml, text/yaml, and text/x-yaml. These
 names are used but are not registered.
 Magic number(s):
 N/A
 File extension(s):
 "yaml" (preferred) and "yml". See of this document.
 Macintosh file type code(s):
 N/A
 Windows Clipboard Name:
 YAML

 Person and email address to contact for further information:

 See the Authors' Addresses section of this document.

 Intended usage:

 COMMON

 Restrictions on usage:

 None

 Author:

 See the Authors' Addresses section of this document.

 Change controller:

 IETF

 The +yaml Structured Syntax Suffix
 The suffix
 +yaml MAY be used with any media type whose representation follows
that established for application/yaml.
The structured syntax suffix registration form follows.
	See for definitions of each part of the registration form.

 Name:

 YAML Ain't Markup Language (YAML)

 +suffix:

 +yaml

 References:

 , this document

 Encoding considerations:

 Same as application/yaml

 Interoperability considerations:

 Same as application/yaml

 Fragment identifier considerations:

 Unlike application/yaml,
there is no fragment identification syntax defined
for +yaml.

 A specific xxx/yyy+yaml media type
needs to define the syntax and semantics for fragment identifiers
because the ones defined for application/yaml
do not apply unless explicitly expressed.

 Security considerations:

 Same as application/yaml

 Contact:

 httpapi@ietf.org or art@ietf.org

 Author:

 See the Authors' Addresses section of this document.

 Change controller:

 IETF

 Interoperability Considerations

 YAML Is an Evolving Language
 YAML is an evolving language, and over time,
some features have been added and others removed.
 The application/yaml media type registration is independent of the YAML version.
This allows content negotiation of version-independent YAML resources.
 Implementers concerned about features related to a specific YAML version
can specify it in YAML documents using the %YAML directive
(see Section 6.8.1 of).

 YAML Streams
 A YAML stream can contain zero or more YAML documents.
 When receiving a multi-document stream,
an application that only expects single-document streams
should signal an error instead of ignoring the extra documents.
 Current implementations consider different documents in a stream independent,
similarly to JSON text sequences (see);
elements such as anchors are not guaranteed to be referenceable
across different documents.

 Filename Extension
 The "yaml" filename extension is the preferred one;
it is the most popular and widely used on the web.
The "yml" filename extension is still used.
The simultaneous usage of two filename extensions in the same context
might cause interoperability issues
(e.g., when both a "config.yaml" and a "config.yml" are present).

 YAML and JSON
 When using flow collection styles (see Section 7.4 of),
a YAML document could look like JSON ;
thus, similar interoperability considerations apply.
 When using YAML as a more efficient format
to serialize information intended to be consumed as JSON,
information not reflected in the representation graph
and classified as presentation or serialization details
(see Section 3.2 of) can be discarded.
This includes comments (see Section 3.2.3.3 of),
directives, and alias nodes (see Section 7.1 of)
that do not have a JSON counterpart.

 JSON Replaces Alias Nodes with Static Values

 %YAML 1.2

 # This comment will be lost
 # when serializing in JSON.
 Title:
 type: string
 maxLength: &text_limit 64

 Name:
 type: string
 maxLength: *text_limit # Replaced by the value 64.

 Implementers need to ensure that relevant
information will not be lost during processing.
For example, they might consider
alias nodes being replaced by static values as acceptable.
 In some cases, an implementer may want to
define a list of allowed YAML features,
taking into account that the following features might have interoperability
issues with :

 multi-document YAML streams
 non-UTF-8 encoding. Before encoding YAML streams in UTF-16 or UTF-32,
it is important to note that mandates the use of UTF-8
when exchanging JSON texts between systems that are not part of a closed ecosystem
and that Section 5.2 of recommends the use of UTF-8.
 mapping keys that are not strings
 cyclic references represented using anchors (see
and)

 .inf and .nan float values, since JSON does not support them
 non-JSON types,
including the ones associated with tags like !!timestamp
that were included in the default schema of older YAML versions
 tags in general, specifically ones that do not map to JSON
 types, e.g., custom and local tags such as !!python/object
 and !mytag (see Section 2.4 of)

 Example of Mapping Keys and Values Not Supported in JSON in a Multi‑Document YAML Stream

 %YAML 1.2

 non-json-keys:
 0: a number
 [0, 1]: a sequence
 ? {k: v}
 : a map

 non-json-keys:
 !date 2020-01-01: a timestamp
 non-json-value: !date 2020-01-01
 ...

 Fragment Identifiers
 To allow fragment identifiers to traverse alias nodes, the YAML
 representation graph needs to be generated before the fragment
 identifier evaluation. It is important that this evaluation does not
 cause the issues mentioned in Sections and , such as infinite loops and
 unexpected code execution.
 Implementers need to consider that the YAML version and supported features (e.g., merge keys)
can affect the generation of the representation graph (see).
 In , this document extends the use of specifications based on
the JSON data model with support for YAML fragment identifiers.
This is to improve the interoperability of already-consolidated practices,
such as writing OpenAPI documents in YAML.
 provides a non-exhaustive list of examples to help
readers understand interoperability issues related to fragment identifiers.

 Security Considerations
 Security requirements for both media types and media type suffixes
are discussed in .

 Arbitrary Code Execution
 Care should be used when using YAML tags because their resolution
 might trigger unexpected code execution.
 Code execution in deserializers should be disabled by default
and only be enabled explicitly.
In the latter case, the implementation should ensure (for example, via specific functions)
that the code execution results in strictly bounded time/memory limits.
 Many implementations provide safe deserializers that address these issues.

 Resource Exhaustion
 YAML documents are rooted, connected, directed graphs
and can contain reference cycles,
so they can't be treated as simple trees (see Section 3.2.1 of).
An implementation that treats them as simple trees
risks going into an infinite loop while traversing the YAML representation graph.
This can happen:

 when trying to serialize it as JSON or
 when searching/identifying nodes using specifications based on the JSON data model (e.g.,).

 A Cyclic Document

 %YAML 1.2

 x: &x
 y: *x

 Even if a representation graph is not cyclic, treating it as a
 simple tree could lead to improper behaviors, such as triggering an
 Exponential Data Expansion (e.g., a Billion Laughs Attack).

 A Billion Laughs Document

 %YAML 1.2

 x1: &a1 ["a", "a"]
 x2: &a2 [*a1, *a1]
 x3: &a3 [*a2, *a2]

 This can be addressed using processors that limit the anchor recursion depth
and validate the input before processing it;
even in these cases, it is important
to carefully test the implementation you are going to use.
The same considerations apply when serializing a YAML representation graph
in a format that does not support reference cycles (see).

 YAML Streams
 Incremental parsing and processing of a YAML stream can produce partial results
and later indicate failure to parse the remainder of the stream;
to prevent partial processing, implementers might prefer validating and processing all the documents in a stream at the same time.
 Repeated parsing and re-encoding of a YAML stream can result
in the addition or removal of document delimiters (e.g., --- or ...)
as well as the modification of anchor names and other serialization details that can break signature validation.

 Expressing Booleans
 Section 10.3.2 of specifies that only the scalars matching the
regular expression true|True|TRUE|false|False|FALSE are interpreted as booleans.
Older YAML versions were more tolerant (e.g., interpreting NO and N as False and interpreting
 YES and Y as True).
When the older syntax is used, a YAML implementation could then interpret
 {insecure: n} as {insecure: "n"} instead of {insecure: false}.
Using the syntax defined in Section 10.3.2 of prevents these issues.

 IANA Considerations
 IANA has updated the "Media Types"
 registry with the registration information in for the
 media type application/yaml.

 IANA has updated the "Structured
 Syntax Suffixes" registry with the registration information in
 for the structured syntax suffix
 +yaml.

 References

 Normative References

 HTTP Semantics

 The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for distributed, collaborative, hypertext information systems. This document describes the overall architecture of HTTP, establishes common terminology, and defines aspects of the protocol that are shared by all versions. In this definition are core protocol elements, extensibility mechanisms, and the "http" and "https" Uniform Resource Identifier (URI) schemes.
 This document updates RFC 3864 and obsoletes RFCs 2818, 7231, 7232, 7233, 7235, 7538, 7615, 7694, and portions of 7230.

 The JavaScript Object Notation (JSON) Data Interchange Format

 JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent data interchange format. It was derived from the ECMAScript Programming Language Standard. JSON defines a small set of formatting rules for the portable representation of structured data.
 This document removes inconsistencies with other specifications of JSON, repairs specification errors, and offers experience-based interoperability guidance.

 JavaScript Object Notation (JSON) Pointer

 JSON Pointer defines a string syntax for identifying a specific value within a JavaScript Object Notation (JSON) document.

 Media Type Specifications and Registration Procedures

 This document defines procedures for the specification and registration of media types for use in HTTP, MIME, and other Internet protocols. This memo documents an Internet Best Current Practice.

 OpenAPI Specification

 v3.0.0

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Uniform Resource Identifier (URI): Generic Syntax

 A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. This specification defines the generic URI syntax and a process for resolving URI references that might be in relative form, along with guidelines and security considerations for the use of URIs on the Internet. The URI syntax defines a grammar that is a superset of all valid URIs, allowing an implementation to parse the common components of a URI reference without knowing the scheme-specific requirements of every possible identifier. This specification does not define a generative grammar for URIs; that task is performed by the individual specifications of each URI scheme. [STANDARDS-TRACK]

 UTF-8, a transformation format of ISO 10646

 ISO/IEC 10646-1 defines a large character set called the Universal Character Set (UCS) which encompasses most of the world's writing systems. The originally proposed encodings of the UCS, however, were not compatible with many current applications and protocols, and this has led to the development of UTF-8, the object of this memo. UTF-8 has the characteristic of preserving the full US-ASCII range, providing compatibility with file systems, parsers and other software that rely on US-ASCII values but are transparent to other values. This memo obsoletes and replaces RFC 2279.

 YAML Ain't Markup Language Version 1.2

 Informative References

 JavaScript Object Notation (JSON) Text Sequences

 This document describes the JavaScript Object Notation (JSON) text sequence format and associated media type "application/json-seq". A JSON text sequence consists of any number of JSON texts, all encoded in UTF-8, each prefixed by an ASCII Record Separator (0x1E), and each ending with an ASCII Line Feed character (0x0A).

 Examples Related to Fragment Identifier Interoperability

 Unreferenceable Nodes
 This example shows a couple of YAML nodes that cannot be
 referenced based on the JSON data model since their mapping keys are
 not strings.

 Example of YAML Nodes That Are Not Referenceable Based on JSON Data Model

 %YAML 1.2

 a-map-cannot:
 ? {be: expressed}
 : with a JSON Pointer

 0: no numeric mapping keys in JSON

 Referencing a Missing Node
 In this example, the fragment #/0 does not reference an existing node.

 Example of a JSON Pointer That Does Not Reference an Existing Node

 %YAML 1.2

 0: "JSON Pointer `#/0` references a string mapping key."

 Representation Graph with Anchors and Cyclic References
 In this YAML document, the #/foo/bar/baz fragment identifier
traverses the representation graph and references the string you.
Moreover, the presence of a cyclic reference implies that
there are infinite fragment identifiers #/foo/bat/../bat/bar
referencing the &anchor node.

 Example of a Cyclic Reference and Alias Nodes

 %YAML 1.2

 anchor: &anchor
 baz: you
 foo: &foo
 bar: *anchor
 bat: *foo

 Many YAML implementations will resolve
 the merge key "<<:" defined in YAML 1.1
in the representation graph.
This means that the fragment #/book/author/given_name references the string Federico
and that the fragment #/book/<< will not reference any existing node.

 Example of YAML Merge Keys

 %YAML 1.1

 # Many implementations use merge keys.
 the-viceroys: &the-viceroys
 title: The Viceroys
 author:
 given_name: Federico
 family_name: De Roberto
 book:
 <<: *the-viceroys
 title: The Illusion

 Acknowledgements
 Thanks to and for being the initial contributors to this specification
and to and for their support during the adoption phase.
 In addition, this document owes a lot to the
 extensive discussion inside and outside the HTTPAPI Working Group. The
 following contributors helped improve this specification by opening
 pull requests, reporting bugs, asking smart questions, drafting or
 reviewing text, and evaluating open issues: , , , , and

 Authors' Addresses

 Digital Transformation Department, Italian Government

 Italy

 robipolli@gmail.com

 Axway

 Switzerland

 erik.wilde@dret.net

 Mozilla

 Finland

 eemeli@gmail.com

