Towards Adaptive Congestion Management for Interactive Real Time Communications

Dirk Kutscher

Mirja Kühlewind

Bob Briscoe

IAB/IRTF Congestion Control Workshop
July 2012

Interactive Real-Time Communication on the Internet

We started here...

...Arrived at Systems

Terminal-initiated QoS control.

- IMS: SIP-based control framework in UMTS and LTE
- Using SIP to trigger QoS reservation
- Dedicated bearers for real-time traffic
- Extensive QoS and control infrastructure ("carrier grade") ₃

RTCWEB

- Real-time communication without the telco framework
 - No ossified control architecture
 - Web-based model (browser programmability) to foster innovation
 - But obviously no QoS framework
 - Congestion control essentially missing

Essentially: Two Problems

1. Lack of congestion control of IRTC flows

- Anticipated usage scenarios of RTCWEB to impact TCP and other flows
 - A perceived threat may be enough to trigger operator actions (or to make users abandon it)
- Uptake of RTCWEB endangered

2. Impact of TCP-based flows on IRTC

- Poor queue management & loss-based congestion control to induce delays
- Unhappy RTCWEB users

Challenge

- Reasonable large-scale IRTC performance over the Internet?
 - –Without having to resort to closed control frameworks?
 - —Without needing separate queues for IRTC and TCP?

Way Forward

- Re-think fairness
 - Per flow fairness not helpful
 - Cf. current usage of multi-TCP flows by applications
 - Especially not useful for IRTC
 - E.g., video codecs creating key frames => spikes in sending rates
 - Enable flows to take a bigger share
 - When needed and when harm to others is acceptable
- Promote, incentivize and ultimately enforce
 - Congestion responsiveness and minimisation
 - For all traffic

Needed Elements

- Better queue management and better congestion signals
 - AQM
- Fast and accurate feedback
 - ECN for RTP (& deploy ECN for TCP too!)
- Adaptiveness on transport and application layers
 - Codec support is there need profiles and usable APIs
- Incentives to adapt
 - And a suitable fairness model

Incentives

- Making 'cost' of congestion visible to OS on RTT scales
 - Cost: congestion contribution per flow
- Making 'cost' of congestion visible to network operators
- Example: User A running multiple applications
 - Multiple flows per application session
 - Receiving congestion signals on all of them
 - Only user/application knows what is important
 - Decision on how to re-act should be based on app profiles and user prefs
 - If important video stream cannot be adapted, some TCP flow should (disproportionally)
 - Same model for competing flows of different users / hosts

Congestion Exposure (ConEx)

- Making congestion visible in the network
 - At different time scales, for different purposes
- Senders know their current congestion contribution and declare it to network
- Operator policy can provide necessary incentives to "act responsibly" and otherwise enforce
- Other usages (on larger time scales)
 - Capacity Provisioning and Traffic engineering according to observed congestion...

Summary

- Want to enable viable IRTC with minimized control plane
- Have to bring down delay and promote adaptiveness
- Many elements already there
- Incentives model based on congestion exposure one of them
- Experiments needed