
Mozilla’s Position on Web Packaging
Web packaging proposes a significant change to the web platform in the way that

content is delivered and authenticated.

From a technical standpoint, the changes are thorough and well-considered. There are

some technical costs around security, operations, and complexity, but the specifications

take steps to limit most of these costs.

The most disruptive feature of the proposal, origin substitution, describes a fundamental

change to the security architecture of the web. In addition to a significant increase in

complexity, origin substitution creates new angles of attack that site operators need to

consider before they adopt the technology. Changes to the way sites operate could result

in non-trivial security risks.

The main concern is web packaging might be employed to alter power dynamics between

aggregators and publishers. At this moment, we don’t understand enough to say

definitively that this is damaging to the system. How this technology is deployed matters.

Deployment without systems of accountability, oversight, and limitations on use could be

harmful. There are no constraints on deployment in the proposals, so much depends on

how the technology is used and the incentives around that use.

As a large suite of mechanisms, there are parts of web packaging that could be valuable

on their own, such as the design of a common resource bundling format. There are also

ways in which using web packaging could encourage better security and performance

practices from sites.

As a whole, and for origin substitution in particular, until more information is available

on the effect on the web ecosystem, Mozilla concludes that it would not be good for the

web to deploy web packaging.

What is web packaging?
Web packaging is a combination of technologies:

- A means of ​signing an HTTP request/response exchange​.
- A ​format for bundling multiple request/response exchanges into a single file​.
- Changes to fetch​ that support the ability for signed content to be treated as being

in a particular origin.

Combined this allows a site to create a package that can be distributed via any means to

clients. Clients would be able to render the resources contained in that package as

https://wicg.github.io/webpackage/draft-yasskin-http-origin-signed-responses.html
https://wicg.github.io/webpackage/draft-yasskin-wpack-bundled-exchanges.html
https://wicg.github.io/webpackage/loading.html

though they were live resources on the origin. This idea that we call “origin substitution”

- the ability to present content for an origin without contacting that origin - is the central

problem that web packaging aims to tackle. Origin substitution is also the source of all

the problems and trade-offs that are being made.

Why web packaging?
There has been a lot of discussion about two use cases for web packaging. Web

packaging supports distribution of content in two major ways: offline and by third

parties.

A ​use cases document​ describes many other potential uses, but examining these two

cases is most important.

Offline distribution
The proponents originally claimed that this is primarily to enable offline sharing of

online content. That is, people would be able to download web pages (or progressive web

apps) and share them offline in a peer-to-peer fashion. Recipients of these packages

could then use them without going online, with an expectation that if they did go online,

the content would seamlessly transition to a fully connected experience.

Though the use of sites offline is a worthy goal, a more modest goal of making content

available offline, but in a separate origin - and therefore without a story for transitioning

to an online experience - is likely to be a more fruitful approach in the short term, even if

it is only incremental.

This aspect of the feature is advertised as enabling distribution of censored or illegal

1

content. Given that this use case generally doesn’t depend on attribution to an origin, an

incremental approach seems most likely to be more effective.

Third-party distribution
The second use case is “content distribution”. This is a far more difficult use case to

understand, because it involves the complex relationship between entities that serve

pages that link out to content (aggregators, like search engines and social networks), and

those that publish that content (publishers, like journalism sites). Google’s ​Accelerated

Mobile Pages​ (AMP), Facebook’s ​Instant Articles​, Baidu’s ​MIP​, and Apple’s ​News Format

are all examples of aggregators that use similar techniques. All of these services

aggregate content published by others.

1

 Just in case anyone thinks that the inclusion of signature might dissuade someone from providing illegal

content in this form, remember that signatures don’t provide non-repudiation. The coupling of bundles to

signatures therefore provides no meaningful attribution of illegal content to its source.

https://wicg.github.io/webpackage/draft-yasskin-webpackage-use-cases.html
https://www.ampproject.org/
https://www.ampproject.org/
https://instantarticles.fb.com/
https://github.com/mipengine/mip
https://developer.apple.com/news-publisher/

Aggregators have encouraged publishers to provide content that the aggregator can serve

through the use of certain inducements like better search placement or presentation

options. This provides the aggregator with some significant advantages.

Outbound links that might otherwise reference a publisher instead reference content

hosted by the aggregator. This allows the aggregator to serve that content to users,

without those users having to contact the publisher. The aggregator typically constrains

the type and format of content that they will accept so that they can more effectively

process and host the content. For instance, this allows the aggregator to verify that

content does not contain malicious Javascript that could be a risk to their service.

For users of the aggregator, all of this means that content loads more quickly. It also

means that information about their activities on the aggregator is only released to

publishers when a link is followed. Technically, the aggregator has complete discretion

about what information is released, but withholding capabilities like analytics could

make any technology like this completely non-viable. The performance and privacy gains

are significant, but the cost is that the origin of the final content is one controlled by the

aggregator and not the publisher.

The main drawback of these techniques is that the destination of a link is a page on the

origin of the aggregator. This results in a mismatch between the source of the content

and the identity of the host. Web packaging aims to address this by providing a

standardized way in which this content can be hosted by an aggregator, but presented in

the origin of the publisher.

While browsers could in theory preload directly from the publisher to realize the same

performance gains, there are several reasons why preloading might be difficult or less

efficient. Preloading content from a publisher is less efficient than loading from the

aggregator as it requires new connections, which can add significant latency. Browsers

are also less able to automatically identify candidates for preloading from the many links

that might be presented on a page.

More seriously, a browser would be forced to trade performance gains for privacy. If

browsers preload without releasing information about the source of a link, the

preloading could be invalid and unusable. Attempting to ensure that the information is

accurate could trigger unwanted side effects, such as what might happen when clicking a

link from an advertisement. Preventing leakage to the same degree as provided by having

content hosted on the aggregator is impossible, as even the most limited form of

preloading exposes information about the browser including an IP address and

characteristics of its networking stack.

Web packaging aims to provide the performance and privacy benefits without shifting

the origin of content to that of the aggregator. It does that by having a publisher sign

content that the aggregator can deliver. That content is attributed to the publisher, but

the publisher does not need to be involved in the delivery of the content.

It’s not clear what the publisher gains from this arrangement, other than a reduction in

bandwidth costs. We’ll deal with this question in more detail below.

Advantages of web packaging
The ​use cases document​ lists a range of interesting applications of bundling and origin

substitution, both as individual primitives or composed as a whole. The biggest

advantages are those that address the use cases already discussed, though there are some

potential secondary properties that could be beneficial.

The ability to bundle a snapshot of the state of HTTP exchanges suggests interesting

applications for archival, but ​existing​ ​tools​ provide this capability. Similar criticisms can

be levelled at the bulk of the proposed use cases.

The individual primitives, origin substitution and bundling, are powerful tools. These

tools can be composed in many ways that might provide advantages. For instance, the

ability to have origins collectively ​attest to a single shared controller​ without first

contacting every shared origin provides some interesting properties .

2

From the perspective of site architecture, the requirement to identify and separate static

and customized content could have secondary benefits for sites that take on the work of

providing signed packages. A cleaner separation of static, user-generated, and

personalized content might improve resilience against a range of attacks, including

cross-site request forgery and ​attacks on compression contexts​.

Concerns about web packaging
Mozilla’s initial concerns with web packaging were focused on the security aspects of

origin substitution. That is, the ability of an origin to provide a blob that could be

obtained from anywhere, but be attributed to that origin.

Origin substitution is the key piece of this technology. It is what enables offline content

to seamlessly transition into online content and it is what allows an aggregator to host

content for another origin.

2

 These properties seem limited to an attempt to convince browsers not to restrict access to certain

capabilities, so a lot depends on to what extent cross-origin content is necessary for legitimate sites, as

opposed to things like tracking.

https://wicg.github.io/webpackage/draft-yasskin-webpackage-use-cases.html
https://w3c.github.io/web-performance/specs/HAR/Overview.html
https://www.iso.org/standard/68004.html
https://github.com/mikewest/first-party-sets
https://tools.ietf.org/html/draft-kucherawy-httpbis-dict-sec

At its core, origin substitution enables a fundamental change to the way the web works.

Content is no longer constrained to follow connections to origins, where that content is

produced and where it is obtained can become completely decoupled.

Origin substitution can be an appealing proposition as it enables new and interesting

deployment topologies. Though CDNs have generally shown more disdain than interest

in the idea, it might be possible for a CDN to host content for customers without also

being able to impersonate those customers. Limiting the privileges a CDN gains in this

way might be appealing to customers who might wish to use technical measures to

retain close control over their origins.

Concentrating on security issues is relatively easy. Coming to terms with a fundamental

change to the security and content delivery model of the web is a more difficult task. This

document tries to go further and explore other potentially problematic parts in the

technology.

Attacker compromise of signed exchanges
The potential for an attacker to compromise a server key or fraudulently obtain a

certificate and use that to produce fake content for the victim origin is a new risk this

design adds.

The current design stipulates that only certain certificates can be used to sign exchanges.

This means that a site that does not choose to use web packaging does not need to worry

about attacks that use web packaging, outside of the possibility of misissuance of a

certificate that has the certificate extension.

The intent of these defenses is to not significantly change the risk profile for sites, except

for those sites that opt in to this mechanism. The certificate used to generate signed

exchanges can be separate from online keys used to terminate connections , meaning

3

that stronger protections might be feasible for those certificates. Whether this will be

useful is hard to know, as operational practices around the use of these keys and

certificates are not settled.

The only offered defense against compromise or misissuance is certificate revocation.

For an offline consumer of this content, this is unlikely to reach them, but then there is

fundamentally nothing that can be done without a means of communication. The same

problem exists for service workers, or any other technology that might be used to take

content offline.

3

 Nothing prevents that certificate being used to terminate a connection as the extension is non-critical.

In general terms, should an attacker gain the ability to compromise packages, the validity

period of the package bounds any exposure. Web caching and the aforementioned

service workers can already be used to effect similar persistent attacks. There however,

requirements for constant revalidation limit the duration of attacks. In this case, attacks

might be persisted for as long as the recipient remains unaware of the certificate

revocation. The 7 day limit on the validity period, which corresponds with current advice

on OCSP lifetimes, would seem to limit this, but not necessarily for the purely offline

case, where the effective duration might be the OCSP validity period plus the package

validity period (assuming use of stapling).

Note that the same considerations apply to attempts to misrepresent old content as

being current. This might be used to have compromised content, such as content that

contains a vulnerability for which a fix has been deployed, accepted by recipients.

In all these cases, online recipients might be able to check with the origin, but that either

negates the performance and security advantages, or presents an attacker with an

opportunity to race that validation attempt with their attack. An important consideration

here is that a transient exposure to attack can be turned into a persistent threat by an

attacker. An origin can terminate persistent attacks if they are aware of the need, but it

requires that they be contacted by the browser.

For these security issues, while the measures offered are effective within the constraints

imposed by the requirements, this represents a small regression in effective security.

Recipients of packages will be vulnerable for longer than they would when using direct

connections to origins, but the effect is largely consistent with the effect of caching or

service workers. Sites that don’t opt to use the mechanism are not affected by key

compromise, but remain at risk from errors in misissuance. The CAA extension defined

in the specification mitigates this partially by forcing an attacker to overwrite a CAA

record.

These weaknesses are all relatively minor. The mitigations that are proposed go a long

way to limiting the potential scope and severity of attacks, ensuring that problems are

roughly equivalent to other technologies that are either pre-existing or in development.

As a whole, these might reasonably be presented as a trade-off. Sites opt-in to using this

mechanism, and in doing so need to be aware that this comes with some risks, but in

doing so they enable a new feature.

For security then, a lot depends on the value proposition. If the value that might be

realized by using web packaging were significant, that might outweigh these

disadvantages.

Content customization
Web packaging depends on a view of content that is relatively static. Ideally, a single

page can be represented by a single static bundle of content. For a completely offline

case, this is a hard requirement, the package has to be ready for use by all potential

audiences.

Reduced personalization
Sites routinely customize content to individuals. Many sites produce different content

based on the browser used, the form factor of the device, the estimated location of the

requester, and things like pixel density of the screen. It’s possible to build packages with

all possible variations of content and to use browser-based mechanisms like CSS media

queries, the <picture> element, or script to manage selecting the right variants of content.

However, this could increase the size of the package, which might reduce or reverse any

potential performance benefit.

The extent to which a single package can support personalization will depend on the

quantity and variety that can be bundled into the package without causing it to expand

too much in size. If the goal is to minimize package size for performance reasons, then

the degree of variation that a bundle can support will be limited. More expansive

personalization might require the use of multiple bundles. However, using multiple

bundles limits the scope of client-side content adaptation techniques in negative ways.

This presents publishers with trade-offs in how they construct bundles.

Keeping the number of package variants small will be a goal for several reasons. Every

variant has to be generated and signed separately. This constrains the number of variants

that can be generated, stored, and served. The provider of a web package therefore is

limited in what sorts of customizations are possible. While certain customizations are

possible through accessing browser storage and providing the logic and resources

necessary in every package, the model for customization changes.

For instance, a publisher might ordinarily provide differing content for different screen

sizes. If a single bundle cannot support client-side adaptation, the packages that are

provided to an aggregator need to be constructed based on how the aggregator serves

content based on screen size. The aggregator needs to be able to both acquire

information about screen size from clients and apply that information in selecting the

right package. If the publisher interacts with multiple publishers, then it needs to ensure

that it provides a different set of packages for each publisher, based on publisher

capabilities.

For scalable resources, like images, bundling the highest quality and relying on clients

being able to scale the resource for more limited devices is probably superior to

providing multiple copies of the same content. There are performance costs for doing so

if the largest size is not needed.

Flash of unpersonalized content
It is possible that the personalization problem can be partly addressed by avoiding

packaging content that might be personalized. Online resources are used to provide

personalized content when possible and fallback objects are used when offline. For

instance, a small version of an image might be provided, with any larger variant being

requested later if possible. The same might be done for the sorts of customization we see

in advertising: stubbed content can be provided, with active connections being used to

emplace custom advertising.

The risk with creating views of pages without customization is that adding

personalization after page load can be jarring. Restoring details about a user that is

logged in to the site might result in a need to add and remove page elements or provide

new styling. Upgrading images to those suitable is probably less disruptive.

There are many tools that might be used to manage a transition from generic content to

a personalized page, but that represents a complexity burden for those that provide a

web package.

Minority interests
The pressure to reduce the number of variants of content could produce deleterious

secondary effects. Of most concern is the accommodations sites might make for minority

users. For instance, until recently the WEBP image format wasn’t widely supported by

browsers, but it was supported by browsers with a significant portion of the market. Sites

producing web packages in that sort of environment might decide that providing JPEG

images is inconvenient on the basis that most users can read the more efficient WEBP.

To some extent, this is no different to the existing pressure on minorities to conform, but

the constraints of the format make the pressure more acute. Like other areas, to the

extent that these drawbacks are relevant depends in part on the value we might attribute

to the benefits from packaging. An additional observation in this case, this is a situation

where the calculus for browsers with market dominance is very different than for others.

Producing and consuming content variants
There is a challenge in deciding what to select when presented with alternative

representations of resources, or even if the provided representation is acceptable at all.

HTTP/2 server push suffers from a lesser version of the same problem. In HTTP/2, a

server decides what a request might look like when it generates a server push. There, the

server has other requests on the same connection to model this information on, so the

guess can be tuned.

The creator of a web package has no such information, and so needs to rely on

predictions of its expected recipients. Thus sites cannot be reactive in their

decision-making, greater awareness of the technical capabilities of their target audience

is necessary.

In accepting content, a browser that finds that a packaged exchange contains a request

that is sufficiently different than what it might have generated is forced to make a

difficult choice: make a new request, or find ways to be more lenient in its acceptance

criteria. The ​variants​ work should help this, by carrying information that might allow a

browser to determine if a different request would produce a different response.

The operational complexity of this aspect is hard to assess without experience. In that it

is similar to the challenges in HTTP/2 server push deployment, it’s likely that the

industry will struggle with this aspect.

Privacy
An interaction over HTTPS provides confidentiality for both the identity of a resource and

the content that is ultimately provided. This property does not hold for web packaging.

The entity that provides a web package gains both pieces of information.

The obvious limitation is that the provider of content in many cases is also the one

providing the link. On that basis, the provider of the content is no more privileged than

they would otherwise be. It is already possible, through the use of onclick handlers, link

target rewriting, redirection, and the sendBeacon API to collect information about which

links on a page are being followed. The content that they learn would then be the same

content that they would obtain if they followed the link themselves.

There is a small risk of leakage from personalized and confidential content, but the

specifications place constraints on the use of signed exchanges that limit this.

Importantly, they ​prohibit the use of cookies​, which is the most obvious way in which

confidential content is requested. They also advise servers to only use responses that

have a Cache-Control header field value of public. Here, the biggest risk is likely from

inline generation of packages, that is, the spontaneous generation of packages in

response to requests that contain personal content. Problems like this only arise if sites

fail to implement fairly obvious and well-documented safeguards.

https://httpwg.org/http-extensions/draft-ietf-httpbis-variants.html
https://wicg.github.io/webpackage/draft-yasskin-http-origin-signed-responses.html#stateful-headers

On this basis, the use of web packaging doesn’t present a significantly enhanced risk to

privacy if implemented moderately carefully by publishers.

Complexity
Significant effort has been invested into making web packaging simple, and that shows

in the designs. The designs are in many ways improved over earlier iterations.

However, this represents a completely parallel system for securing web content. While

this uses the Web PKI infrastructure for authentication, the means by which content is

delivered is entirely new. That naturally means additional platform complexity.

This general design space is not new. ​SHTTP​ was proposed at around the same time as

HTTPS. Though there are aspects of the SHTTP design that are likely now redundant (like

leaving certain metadata unprotected), it bears a degree of similarity to web packaging.

Part of the appeal of HTTPS over SHTTP was the simplicity of HTTPS: you just added a

TLS (or SSL) layer to the stack that handled all the difficult security bits, like

authentication, encryption, anti-replay, liveness checks, and all of that.

Web packaging aims for a more limited set of security properties than SHTTP, but it

nonetheless inherits much of its complexity.

As with other considerations, complexity is not a strong basis for rejecting a feature. But

it does speak to a need for careful consideration. Complex features produce more bugs

and expand the risk profile for security problems.

Performance
Signed exchanges require significantly more computational effort to consume than a

typical resource. In general, the cost of the more expensive cryptographic operations, like

signing and key exchange are amortized across multiple exchanges. Here, every resource

requires an independent signature verification.

Signatures also add a non-trivial number of bytes to each signed exchange. The smallest

known signature scheme adds 32 bytes to every exchange, though most are at least twice

that, plus overheads. For content that is suitable for signing, it is possible to assume that

it is all public content, and so the usual concerns about mixing public data with secret

data under compression do not apply. This allows compression to be used across the

exchanges in a bundle, so fixed overheads can be greatly reduced.

It is anticipated that signing will be infrequent and offline. Performance costs for a

publisher are therefore amortized over many uses of the same package and so the added

https://tools.ietf.org/html/rfc2660

cost is tolerable. The only potential source of additional computational cost is in signing

and maintaining different variants of bundles.

More significant is the storage overhead for publishers and aggregators. Where there are

multiple pages, each page will require one or more packages, depending on the number

of variants the site provides, potentially increased for aggregators that have different

capabilities. Each bundle will contain copies of common resources, like CSS, script and

images. Without deduplication, this could amplify storage costs for content. The

advantage of the design here is that it is relatively straightforward to do this sort of

deduplication, and the cost in additional complexity is largely borne by aggregators.

Overall, the increase in computational cost for clients is likely tolerable, but would need

to be tested. The increase in the size of resources might be counteracted by more

effective use of compression. The cost to publishers is negligible, and we will assume for

these purposes that participation is discretionary.

Origin uniformity
The design of web packaging assumes that origins are uniform. It is not possible to

deploy signed exchanges with a key that only attests to a subset of the resources on an

origin. This might be incompatible with site deployment strategies, that rely on a

centralized controller (the entity that runs the HTTP server) to manage who gets to sign

for different resources.

If there are mutually distrustful entities that share the same origin - a bad idea, but

nevertheless still practiced - then there are no controls on signed exchanges that would

prevent entities from making claims about resources they don’t control. This is probably

a matter for server operators to manage; if there are mutual distrustful entities sharing

an origin, then it would be unwise to enable signed exchanges. An offline signing key

might still be used for some resources.

Centralization and control
It is possible that this technology gives aggregators better means of controlling content.

The existing technologies demonstrate that this power already exists, so the question is

whether this would in any way alter the power dynamics.

It might be argued that the existing use of aggregator hosting is strictly worse than the

proposed system. The proposed system might allow aggregators to impose fewer

limitations on what they might host because content is no longer hosted on their

domain. This might give publishers more control over what content gains access to

better treatment from aggregators.

It is unlikely that aggregators will host arbitrary content for this purpose for reasons of

security (for instance, ​content sniffing​ presents some risks), reputation, or more practical

concerns like the amount of storage required.

This is perhaps the hardest question to assess in this entire space. Does this technology

represent a benefit to publishers? Or does the benefit they might receive come from the

inducements that aggregators might offer (like improved placement or visibility)?

To what extent then is this the application of a power that aggregators possess, a power

that is derived from their ability to control whether and how their audience sees a link,

over publishers?

Clearly, aggregators have the power of refusal. They can refuse to link to a site, or they

can refuse to host content that does not meet their standards. Without web packaging,

this refusal might be based on a need to prevent malicious content from interfering with

the origin of the aggregator, and the origin of other publishers. But can an aggregator

refuse to serve content that does not meet certain performance criteria, for example?

What controls ensure that this power is used responsibly? We already see ways in which

search engines exercise political power, reducing visibility of certain results or

eliminating them entirely. For instance, sites that have poor performance or security are

deprioritized in results. While we might see these particular choices as virtuous, they are

not value-neutral. They are a manifestation of power over other web users.

We don’t know what people think about this particular aspect of this technology. A lot

may depend on how it is used.

Resource composition attacks
A fundamental change to the security architecture of the web changes the way in which

systems need to be built. The addition of this feature requires that sites consider new

permutations of attack.

Control over the composition of resources creates some opportunities for attackers that

don’t exist in the current system.

Consider the case where a critical security check is moved from resource A to resource B

as part of a change to the system. As a result, there exists a composition of resources

where the security check doesn’t exist at all (version 2 of A with version 1 of B). If these

resources are part of signed exchanges, an attacker can cause that system configuration

to be used by a browser.

https://wicg.github.io/webpackage/draft-yasskin-http-origin-signed-responses.html#seccons-content-sniffing

Similarly, content with security vulnerabilities that is signed can be provided to clients

past the time that the problem is fixed. This allows attackers to extend the availability of

zero-day bugs, allowing exploitation of that bug for the entire validity period of the

content.

For these, the response of proponents of web packaging has generally been to identify

ways in which these problems exist in the current system. For instance, incompatible

versions of resources could be served by existing systems during upgrades. Caching

might make this more than a transitory situation. It is also possible for caching to cause

content that includes security vulnerabilities to persist for longer than is ideal.

The critical distinction between the existing system and the proposed system of signed

exchanges is in the degree to which an attacker has influence over a situation. In the

current Web, the origin can control the rollout timing and cache settings to avoid having

inconsistent/mismatched resources. Signed exchanges gives an attacker complete

control over the composition of resources, whereas the degree to which an attacker can

influence resource composition is limited.

Importantly, an offline recipient has no recourse when consuming signed content.

Revocation systems only work for online clients. The argument presented is that caching

- and service workers in particular - can cause this situation to persist in ways that are

very similar to web packaging. This argument suggests that limits on validity for caching

and service workers are looser than in the proposed system, so it is potentially worse.

The theory is that the opt-in characteristics are substantially similar if an attacker is able

to deny active access to servers.

Web packaging enables a shift from largely accidental exposure to attacker control. For a

client with an active connection, security vulnerabilities persist only until the affected

resources are revalidated (or ​clear site data​ is invoked). Thus, we conclude that this

changes the risk profile for sites that opt in to signing of resources.

This style of attack might provide motivation for sites to move to a stronger model for

managing the composition of resources. For instance, moving new versions of content to

new URLs prevents an attacker from controlling composition as described. Though that

could require a significant restructuring of sites and it contravenes long-standing ​advice

about identifier stability​, it has some advantages for ​performance​ and security even when

signed exchanges are not used.

Is web packaging good for the web?
There is a lot to consider with web packaging. Many of the technical concerns are

relatively minor. There are security problems, but most are well managed. There are

http://www.w3.org/TR/clear-site-data/
https://www.w3.org/Provider/Style/URI
https://www.w3.org/Provider/Style/URI
https://tools.ietf.org/html/rfc8246

operational concerns, but those can be overcome. It’s a complex addition to the platform,

but we can justify complication in exchange for significant benefits.

The question remains about whether this fundamental change to the way that content is

delivered on the web represents a problematic shift in the power balance between actors.

We have to consider whether aggregators could use this technology to impose their will

on publishers.

Web packaging certainly has the effect of applying pressure toward consolidation of

market share in a few worrying ways. It provides an incentive to support majority client

populations at the expense of minorities. It increases the cost of providing outbound

links at smaller sites by improving the performance and privacy of outbound links on

sites that perform package-based aggregation.

Sites are being given significant incentive to deploy the technology. However, this

incentive downplays the accompanying costs and increased exposure to new security

problems that comes with deployment. There are some ​tools​ that help in making web

packaging function, but these are incapable of also providing any structural changes to

site architecture that would be needed to support a transition to securely providing origin

substitution.

Big changes need strong justification and support. This particular change is bigger than

most and presents a number of challenges. The increased exposure to security problems

and the unknown effects of this on power dynamics is significant enough that we have to

regard this as ​harmful​ until more information is available.

We’re actively working to understand this technology better. The Internet Architecture

Board are ​organizing a workshop​ that aims to gather information about the bigger

questions. That workshop is specifically structured to collect input from the publishing

community. The technical details of the proposal will also be discussed at upcoming IETF

meetings. Based on what we learn through these processes and our own investigation, we

might be able to revise this position.

In addition to this, any assessment needs to look at not just harm, but weigh the benefits

against costs. This is a technically complex set of changes to the web platform. In

making an assessment about value, we have to see what benefits are realized, by whom,

and to better understand who bears the costs.

https://github.com/ampproject/amppackager
https://github.com/mozilla/standards-positions
https://www.iab.org/activities/workshops/escape-workshop/

