|OTDB - Interoperability through
Semantic Metastandards

David Janes (davidjanes@davidjanes.com)
February 2016

Abstract

This document proposes a system for enabling 10T Interoperability by semantically describing
loT-related actions and sensing. It also proposes that almost all 10T actions can be describing in
terms of manipulating JSON-like data structures, mirroring the RESTful concepts of PUT and
GET.

1. Terminology

Band: a JSON Obiject of related data
Composition: individual “attributes” of a Thing are described, and Things are described in
terms of those attributes. See also’.
IOTDB: a project implementing what is described in this document
JSON Object / Dictionary: an object that fits into the “JSON” model, that is, being
comprised of dictionaries and arrays, a simpler atomic types. The serialization does not
necessarily have to be JSON.
JSON-LD?% a way of encoding semantic triples using JSON.
Linked Data®: IDs are expressed using dereferencable URIs rather terms or numbers,
the cornerstone concept of the Semantic Web.

e QNames*: a way of shorting URIs to make them less unwieldy.

2. Approach

Broadly speaking, our approach is to take what already exists today in the world of Things, find
commonalities and patterns, regularize them, and then codify them.

' https://en.wikipedia.org/wiki/Composition_over_inheritance
2 http://json-Id.org/

3 http://linkeddata.org/

4 https://en.wikipedia.org/wiki/QName



mailto:davidjanes@davidjanes.com
https://en.wikipedia.org/wiki/Composition_over_inheritance
http://json-ld.org/
http://linkeddata.org/
https://en.wikipedia.org/wiki/QName

Prescriptive vs. Descriptive Standards

This proposal takes a radically different approach for how we should create interoperability
amongst Things. The traditional idea is that we should have prescriptive standards, e.g. “here’s
how you do X”. Instead, the “Semantic Metastandard” approach says we should create
descriptive standards, that is, let’s create terminology and processes that describes how Things
are manipulated, and then leave the mapping of that to “real Things” as an implementation
detail.

Classes vs. Composition

This article also proposes that we do away the concept of “classes” in terms of defining the loT,

e.g. “here’s the definition of a light”, “here’s the definition of a washing machine”, and so on.
Instead, we propose two simple principles:

e Things are what they say they are
e Things do what they say the do

A Thing is a Light because it says it is a light. There is no common definition of what a Light
must do, but by nature this just falls out of how lights actually work:

e it may be turned on and off (iot-purpose:on’)
e it may be dimmed (iot-purpose:brightness®)
e it may have its color changed (iot-purpose:color’)

When a client wants to manipulate the Lights, it finds all the Things that say they are lights, then
introspects the attributes it exposes do decide how to manipulate them.

Actions, Events, Properties vs. Simple REST

We will argue that almost everything that needs to be done in the 10T is, can, and should be
modeled by reading and writing to JSON dictionaries; or in REST terms, GET and PUT.
Complicated prescriptive models, such as the W3C'’s Actions, Events, Properties® are
unnecessary, unparsimonious and don’t reflect how most Things today actually work.

5 https://iotdb.org/publ/iot-purpose.html#on

8 https://iotdb.org/publ/iot-purpose.html#brightness
7 https://iotdb.org/publ/iot-purpose.html#color

8 https://www.w3.0rg/2015/05/wot-framework.pdf



https://iotdb.org/pub/iot-purpose.html#on
https://iotdb.org/pub/iot-purpose.html#brightness
https://iotdb.org/pub/iot-purpose.html#color
https://www.w3.org/2015/05/wot-framework.pdf

3. Semantics

The core of the our approach is we semantically describe all the terms in our state. Consider the
brightness of a light:

what’s the minimum brightness?

what’s the maximum brightness?

what’s the granularity - how many steps are there?

do we express brightness as an integer, a number or even a string - e.g. “low”, “medium”
and “high”?

Or even just in general, if we have the term “b”, or “br” or “brightness”, how do we know that this
means “adjust the brightness”?

We believe that it's not practical (or wise) to come up with a “universal” concept of brightness,
as for example the Open Connectivity Foundation does®. Instead, for all terms associated with a
Thing we let the Thing itself describe what it does, defining for example:

its purpose (in IOTDB: iot-purpose:brightness)
its minimum value

its maximum value

the units it is measured in

the type of value it takes

its precision

and so forth.

Our observation is that in fact there isn’t that many things you need to define to create a rich
and powerful language that can describe almost all things. We will describe this further below,
but for example here’s the “purposes” we've defined at the footnote°.

4. Bands

Our key insight is that it's better to view a Thing as a cloud of related but independent JSON
objects, rather than say, as a single object that one manipulates in various ways.

The number of bands is potentially unlimited, but the core ones identified are:

® jstate - the Input State: the actual state of thing

9 http://www.oneiota.org/revisions/324
19 hitps://iotdb.org/publ/iot-purpose/



http://www.oneiota.org/revisions/324
https://iotdb.org/pub/iot-purpose/

® ostate - the Output State: the state we want the thing to become
® meta - the Thing's metadata
® model - the Thing's JSON-LD Model

Furthermore - and this is very important - is that almost every manipulation one needs to do
involves simply writing (PUT) to these objects or reading (GET) from them. The exception is
“actions” where long running state may be need to be tracked: we deal with this in the footnoted
post'.

Most Things today don’t cleanly separate these concepts, but do have many elements that
correspond to them. Besides the obvious conceptual advantages of breaking up a Thing’s data
this way, it has massive implementation advantages, as (say) the same code the moves istate
data around can also be reused for ostate, meta and model.

Interstitial State

The interstitial state is the period of time between when a command is issued to a Thing to
when the Thing actually completes the commands.

Consider the WeMo Switch, a popular "starter" IoT device. Turning a light from off to on looks
like this.

the switch is off

the user sends “turn on” command
the WeMo receives the command
about 300ms passes

the switch actually becomes on

asrLDbd -~

The interstitial is at step 4, where there on=t rue'” in terms of what the user is asking but the
Thing is actually on=false. This is noticeable to the user and has to be modelled by our
Things in order to create effective interfaces.

The long and short is that we propose that the state be formally by broken into two parallel
states: the ostate and the istate, that share a common set of semantic definitions. Things are
manipulated by writing to the ostate, and the actual state of a Thing is discovered by reading
the istate.

" https://iotdb.org/social/imadeit/post/139237 158604/5-actions-should-be-used-lightly-and-should

2 Note how we’re manipulating the state of the Thing by writing to a JSON object, as explained in the
previous section.


https://iotdb.org/social/imadeit/post/139237158604/5-actions-should-be-used-lightly-and-should

Note that this is not a theoretical concept: many devices have something like this today, such as
the Philips Hue', though in a much more ad-hoc fashion. By explicitly spelling this out, we
greatly simplify specifying how Things work, as the ostate and the istate get to share a
common set of semantic definitions (called the model, explained below).

Coordinating Updates and Errors

In our reference implementation we use timestamps to coordinate updates. “Deep errors” are
detected the same way users do on the web today: if something didn’t work (which can be seen
by the timestamps), the command can be resent.

However, we are not making this part of this proposal as the semantics and band concepts are
more important.

Band Definitions

istate

The “input state”, the actual state of a Thing. For example, consider a LIFX “White” Light, which
has an on-off state and a brightness state.

The istate for this looks like

{

"on": true,
"brightness": 100

}

Note that the terms on and brightness are not standardized: they are defined in the model.
This gives us a massive amount of flexibility of what can be defined in the ostate and istate, as
they can be customized on a model-by-model basis.

ostate

The “output state”, the state we want the Thing to transition to. By convention', the values are
always null unless it’s actually transitioning, i.e. in the interstitial state.

The ostate looks like this when nothing is going on

'3 http://www.developers.meethue.com/documentation/lights-api
4 yes, this is defining a standard to some degree but in practice it is quite reasonable



http://www.developers.meethue.com/documentation/lights-api

{
"on": null,
"brightness": null

}

and e.g. like this when we are turning it off

{
"on": false,
"brightness": null

}

meta

The meta band stores data about the Thing note directly related to the state: e.g. its name, its
description, its manufacturer, its reachability, its facets (what it claims it can do), or anything else
you may want.

Additional reading about the meta band can be found at the footnote'.

model

The model band stores the semantic information associated with the Thing and especially the
Thing’s istate and ostate.

In IOTDB we use a domain language called loTQL® for defining the models. We are including
this here because it is understandable and terse, but do not consider this part of our proposal.
loTQL compiles into JSON-LD.

Here’s the IoTQL for the LIFX White Light. The JSON-LD corresponding to this can be seen at
the footnote'”.

CREATE MODEL LifxWhite WITH

schema:name = "LIFX White",

iot:facet = iot-facet:lighting.light,
ATTRIBUTE on WITH

schema:name = "on",

iot:purpose = iot-purpose:on,

iot:type = iot:type.boolean
ATTRIBUTE brightness WITH

15 https://iotdb.org/social/imadeit/post/138157 191389/3-wot-thing-needs-to-have-meta-band
16 https://github.com/dpjanes/iotdb-iotql
7 hitps://github.com/dpjanes/homestar-lifx/blob/master/models/lifx-white.json



https://iotdb.org/social/imadeit/post/138157191389/3-wot-thing-needs-to-have-meta-band
https://github.com/dpjanes/iotdb-iotql
https://github.com/dpjanes/homestar-lifx/blob/master/models/lifx-white.json

schema:name = "brightness",

iot:purpose = iot-purpose:brightness,
iot:type = iot:type.integer,

iot:unit = iot-unit:math.fraction.percent

The important parts of this Model are highlighted, namely how we define the terms on and
brightness seen in the istate and ostate.

So here’s how we use Semantic Metastandards to turn off a LIFX Light:

1. let’'s assume that istate (actual state) of the thing is on=true, the light is on

2. the client looks for an attribute with the purpose iot-purpose:on

3. the client see that this is the term on, note however that this name could have been
anything, e.g. “on-off”, “powered” or whatever

4. the client sees that it is a boolean and so writes on=false to the ostate (the output state,
the state we want to go to) of the light

5. the LIFX light turns off

6. the ostate reverts to on=null and the istate becomes on=false.

5. Implied Interface

Our proposal implies a very natural hierarchical interface for Things:

e things/

o thing1/
m istate
m ostate
m model
m meta

o thing2/
m istate
m ostate
m model
m meta

This can be seen below in the live demo.



6. Implementation

This proposal is backed by a well-tested implementation in Node.JS that has integration with
over 50 different “real” Things and Platforms, such as WeMos, Hue Lights, LIFX, KNX,
SmartThings, and so forth.

Semantic Definitions

Our Semantic Definitions are built as an extension to Schema.org’s system. They can browsed
here: https://iotdb.org/pub/ and the GitHub source can be found here
https://qgithub.com/dpjanes/iotdb-vocabulary.

The vocabulary is divided into four different sections, the first two being most interesting in terms
of this paper: iot, iot-purpose, iot-facet, and iot-unit.

iot

These are the core definitions, including our major types.

https://iotdb.org/pub/iot.html

iot-purpose

This is how Things declare “what they say they do”. Semantic definitions of how things are
manipulated / how sensors report data. These are the most important definitions in terms of this
paper.

https://iotdb.org/pub/iot-purpose.html

iot-facet

This is how Things can declare “what they say they are
informative, it is not a core part of our proposal.

. In terms of this paper, consider this

Consider a WeMo Switch. Independent of its Model, what it is depends on what it's connected
to. If it's connected to a light bulb, we can attach iot-facet:lighting.light to the metadata. If it's a
space heater, perhaps iot-facet:climate.heating.

https://iotdb.org/pub/iot-facet.html



https://iotdb.org/pub/
https://github.com/dpjanes/iotdb-vocabulary
https://iotdb.org/pub/iot.html
https://iotdb.org/pub/iot-attribute.html
https://iotdb.org/pub/iot-facet.html

iot-unit

This is our "units / weights / measure" definitions. In terms of this paper, consider this
informative, it is not a core part of our proposal. Likely a formal spec would prefer something like
QUDT™,

https://iotdb.org/pub/iot-unit.html

Code Base

For installation instructions, see https://homestar.io/about.

The source code is all Apache 2.0 and available at https://github.com/dpjanes in repositories
named with “iotdb” or “homestar”.

Live Demo

Note that there is no security turned on in this demo, but it is possible. This paper does not
suggest a security model, except that as with the web itself, it has the flexibility to layer strong
versions on top.

You can more info about the demo here:
https://github.com/dpjanes/homestar-coap/blob/master/docs/plugfest/entry-points.md

HTML

The user interface presented here is built entirely through introspection of the Things. Note that
the Things are all simulators for practical reasons.

http://homestar.io:20000

HTTP

HTTP API presented for Things. Note RESTful and HATEOAS. State can be read via GET, and
the meta and ostate can be also manipulated via PUT. Note the simplicity and naturalness of
the API.

http://homestar.io:20000/api/things

18

http://qudt.org/


https://iotdb.org/pub/iot-unit.html
https://homestar.io/about
https://github.com/dpjanes
https://github.com/dpjanes/homestar-coap/blob/master/docs/plugfest/entry-points.md
http://t.umblr.com/redirect?z=http%3A%2F%2Fhomestar.io%3A20000%2Fapi%2Fthings%2Furn%3Aiotdb%3Athing%3AREST%3A6acd18449fe571d3a1d12ef66aa443dd%3Arest-dimmer-light&t=MjgyODY5YzM0YWNhYjAyNzAxMjRhOTFiMDE3ZjczMDlmZTJjNTEwNSxhU0U5STJlag%3D%3D
http://t.umblr.com/redirect?z=http%3A%2F%2Fhomestar.io%3A20000%2Fapi%2Fthings%2Furn%3Aiotdb%3Athing%3AREST%3A6acd18449fe571d3a1d12ef66aa443dd%3Arest-dimmer-light&t=MjgyODY5YzM0YWNhYjAyNzAxMjRhOTFiMDE3ZjczMDlmZTJjNTEwNSxhU0U5STJlag%3D%3D
http://qudt.org/

CoAP
Similar to the HTTP API, but via CoAP. It would probably be better if we exposed all the Things

via /.well-known/core.

coap://184.107.137.234:22001/ts

MQTT

This broadcasts all manipulations of Things. Manipulating Things via MQTT is turned off in this
demo (though it is possible).

mqtt://homestar.io:20001/runners/0a6ad141-e2f2-407e-a4a3-e0403821b6e9/api/things
If you have an MQTT client installed, you can follow along with

mgtt subscribe --host homestar.io --port 20001 --topic '#' --verbose

7. Useful Links

Semantic Definitions

e https://iotdb.org/pub
e https://github.com/dpjanes/iotdb-vocabulary

Source Code

e https://github.com/dpjanes

Presentations / Slideshows

e Semantic Metastandards
http://www.slideshare.net/dpjanes/semantic-metastandards-will-unlock-iot-interoperabilit
\'A

e Semantics and the lot
http://www.slideshare.net/dpjanes/semantic-and-the-internet-of-things



https://iotdb.org/pub
https://github.com/dpjanes/iotdb-vocabulary
https://github.com/dpjanes
http://www.slideshare.net/dpjanes/semantic-metastandards-will-unlock-iot-interoperability
http://www.slideshare.net/dpjanes/semantic-metastandards-will-unlock-iot-interoperability
http://www.slideshare.net/dpjanes/semantic-and-the-internet-of-things

e Standardless loT / Interoperability
http://www.slideshare.net/dpjanes/2015-04-global-io-t-day-wien-interoperability-with-stan
ardless-iot

e What a Thing API should look like
http://www.slideshare.net/dpjanes/what-a-thing-api-should-look-like-global-iot-day



http://www.slideshare.net/dpjanes/2015-04-global-io-t-day-wien-interoperability-with-stanardless-iot
http://www.slideshare.net/dpjanes/2015-04-global-io-t-day-wien-interoperability-with-stanardless-iot
http://www.slideshare.net/dpjanes/what-a-thing-api-should-look-like-global-iot-day

