
The Future of IoT Software Must be Updated

FJ Acosta Padilla, E. Baccelli, T. Eichinger and K. Schleiser

Abstract – Decades of software engineering shows
that updating deployed software is not a nice-to-have,
but a must-have. Deployed software (e.g. an IP pro-
tocol stack) is never bug free, and these bugs must be
patched to increase its robustness and security, and
as communication standards and application logic
evolve, deployed software typically needs to evolve
in parallel. As the IoT emerges, the same will apply
to deployed IoT software.

1 The Future of IoT Software

The IoT interconnects software running on low-end
devices [1] via Internet protocol standards. Hence,
IoT software resembles more and more software run-
ning on other machines on the Internet in that it can
be roughly decomposed in:

1. a software platform e.g. a small footprint OS
kernel [2] and hardware drivers,

2. a network stack e.g. based on IPv6 (and 6LoW-
PAN, CoAP...),

3. application(s) logic running on top of the net-
work stack.

Concerns [3] were recently voiced, pointing out that
many IoT devices deployed so far are liabilities be-
cause their firmware is flashed once-for-all, without
means or plans to update it, thus left as potential
prey for bugs [10] or attacks [11].

IoT software update 6= Full Firmware Update.
While it is paramount to provide firmware updates to
IoT devices, it is important to realize that updating
IoT software cannot be limited to full firmware up-
dates. Transmitting minimum-sized binaries updates
(less than full firmware) is desirable to fit extreme
lack of (energy, throughput, memory) resources on
IoT device networks. On one hand, compared to the
rest of the Internet, the current state of the IoT is

fragmented in that a plethora of heterogeneous hard-
ware and network technologies deserve support (more
or less) equally. Yet, on the other hand, the IoT is
more captive in that silos dominate, whereby vendors
typically sell turn-key bundles gathering proprietary
IoT hardware, software, gateway and network tech-
nology (and even sometimes cloud services) in the
same package. However, in the near future we can ex-
pect the market to resemble the Internet: basic-level
interoperability requirements will break silos, consol-
idate IoT hardware and network technologies into
fewer, dominant approaches. In particular, a natural
consequence on IoT software will be the emergence
of a market for hardware-independent IoT software,
and thus lead to a state where different stake holders
could originate and modify different parts of the IoT
software on devices (e.g. application separately from
software platform).

Updates with Multi-User Device Ownership.
Another important point to realize is that, while
IoT software updates might be considered a ”solved”
problem in proprietary contexts with homogeneous
IoT devices (signed images distributed using some
flavor of multicast, safe upgrading with roll-back
through ping-pong), future IoT software updates will
be more complex. Future IoT software updates
will have to accommodate configurable, multi-user
ownership, administrative groups etc. For exam-
ple, a smart house or parts of an apartment com-
plex equipped with IoT devices will frequently change
owners, or host short-term leases with only restricted
access rights. Standard protocols and software will be
needed for grouping IoT devices and handling own-
ership in a flexible manner.

Standards for Community IoT Software.
Once silos are broken, IoT hardware heterogene-
ity and open source IoT device software stacks will
change the way IoT software is conceived. Future
IoT software will be composed of a vendor-specific
part (potentially proprietary and closed-source) de-

1



veloped independently from another part pulled from
community-driven, open source IoT software develop-
ment (e.g. RIOT [8][6]). These two parts will typi-
cally be updated independently, potentially using dif-
ferent means for this update. The main advantages of
such software platforms [2] is to spread IoT software
development/maintenance costs, and decrease time-
to-market for IoT products. For example, one can
envision an IoT product (e.g. the infamous Smart
Coffee Machine) using RIOT combined with specific
low-level drivers and application code, resulting in
the ability to update each part independently of the
others.

Standard mechanisms and protocols are desirable
for the update of the open-source, community-driven
part of IoT software. Currently, vendors update
devices only when obliged by law (warranty) or
through customer pressure, as keeping devices up-to-
date is expensive. Many device types (e.g. washing
machines) have lifetime expectancy exceeding war-
ranties. Nevertheless, fast-evolving Internet and re-
lated threats make updates imperative even after ven-
dor obligations run out (e.g. a functional washing
machine with an expired warranty is wasted if its
IoT component leaks a user’s wifi credentials). With
standard mechanisms and protocols as well as open-
source community-driven IoT software platforms, the
bulk of IoT software may thus be kept up-to-date,
without significant burden nor obstacle related to
vendors.

In the following, we focus mostly on updates
of the open-source community-driven part of
IoT software. Note however that the below consid-
erations may also be applicable to other parts of IoT
software (i.e. the proprietary part).

2 IoT Software Updates

The typical life-cycle of an IoT device is shown in
Figure 1. Once the initial firmware is flashed and the
device boots, a commissioning phase starts whereby
the device joins the IoT network, comes online and
may register with remote servers (e.g. a cloud ser-
vice). After that, the life of the IoT device starts,
during which software updates will be needed from

Flashing Commissioning

In service 
/

 online

offline
/

 de-commissioning

Software 
Update

Figure 1: IoT device life-cycle.

time to time. Finally, it is decommissioned (this may
require explicit signaling to deregister the device).

We can distinguish 3 levels of IoT software updates:

• Full firmware update. An entirely new ROM
image is fetched and installed.

• Platform update. ROM is partially updated,
e.g. a peripheral driver module, or part(s) of the
network stack.

• Application update. ROM is partially up-
dated, to replace e.g. higher level, application
logic, which can originate either from native code
[9], or from interpreters [4][7].

Some parts of the ROM may be updated much more
often (e.g. fixing critical network stack bugs, or slight
modifications of application logic), compared to other
parts of the ROM, hence the advantage of a modular
approach (e.g. using a micro-kernel architecture such
as RIOT’s [8]) and not systematically resorting to
full-firmware updates.

Basic software updates can be coarsely decomposed
in the following phases.

1. IoT software repositories push meta-data infor-
mation about software updates to the IoT de-
vice, when newer updates become available

2. The IoT device selects what updates it
should/can accommodate

2



3. The IoT device pulls selected updates from a
repository

4. The IoT device proceeds to verify and install re-
ceived update(s)

5. If the installation fails, roll-back to previous ver-
sion

At first sight, establishing standards would be use-
ful for (i) meta-data information, (ii) communication
protocols between IoT devices and repositories, (iii)
authentication of updates, and (iv) potentially, also
for in-network caching or proxying of repository role
and contents. Some further considerations below.

2.1 When to update?

Some logic is needed on the IoT device to evaluate
if conditions for the software update are satisfied lo-
cally (checking parameters such as: battery level, ra-
dio signal strength, free storage memory to store the
update, enough memory to run it, sanity/signature
checks...). However, updates always imply (even if
minimal) downtime. Some level of human control
may thus be desirable to ensure downtime does not
happen at a critical time (e.g. rebooting smart lights
go off during a speech of the Queen of England). The
criticality of the update depends both on (i) how cen-
tral the module is, e.g. if it affects online status for
the device, and (ii) how central the IoT device is, e.g.
updating and rebooting intermediate, upstream de-
vices may induce failed connectivity for down-stream
devices. For large IoT deployments, standard IoT
software update strategies may need to capture the
system as a whole, instead of per-device.

2.2 Who updates?

Humans involvement should be limited to pushing
(properly signed) new versions of IoT software to a
well-known IoT software repository. The rest should
be automatic. However, as mentioned in Section
2.1, authorized humans should also be able to signal
”please don’t update within this time window” to their
IoT devices. Furthermore, as mentioned in Section
1, different authorities may update different parts of
IoT software on the same device, independently.

2.3 What to update?

Standardization of IoT software name-space and
meta-data is needed to identify what to update.
These standards will be necessary both for IoT soft-
ware repository management, and for IoT device sys-
tem aspects e.g. representing on the device current
modules, kernel, applications and detecting new com-
ponents and versions on the fly. Prior work in this
area includes for instance adapting to resource con-
straints of low-end IoT devices the model@runtime
paradigm [13] which provides a systematic represen-
tation of repository locations, software module spec-
ifications, communication bindings between IoT de-
vices. In the future, IoT software will be in large
part hardware independent, and may also be software
platform independent (e.g similar to POSIX compli-
ant software, outside of IoT), which highlights further
the need for standardization in this domain.

2.4 How to distribute updates?

There are two aspects to distribution of software up-
dates, (i) where the software updates are stored and
(ii) how the software updates are accessed.

Where are software updates stored? Updates
may be in a single repository, or may be replicated
in several places in the network. Replication ”some-
where on the Internet” is a well-known field and out
of scope of this paper. On the contrary, replication
(or cache/proxy) of software update contents within
the LoWPAN is in scope a priori. The wireless sen-
sor network research community worked on this topic,
and new approaches such as Information Centric Net-
working (ICN) in IoT contexts may also be consid-
ered to manage in-network caching of software update
contents.

How are software updates accessed? The part
of the communication outside the LoWPAN is a well-
known field, out of scope of this paper. Inside the
LoWPAN, one must distinguish two cases: single-hop
scenarios and multi-hop scenarios.

The single-hop scenario typically consists in a star-
shaped topology, centered on a gateway to the Inter-

3



net. In this case distribution of updates is straightfor-
ward through the gateway’s point-to-point link with
each IoT device, typically over standard protocols
including UDP, IPv6, 6LoWPAN and a low-power
MAC (optimizations using broadcast from the gate-
way are of course possible, e.g. to announce the avail-
ability of new updates).

The multi-hop scenario is more diverse, and re-
quires routing inside the LoWPAN, and may ben-
efit of in-network caching of software components.
Approaches were proposed such as Deluge[15] and
FiGaRo[16] for software update distribution algo-
rithms on multi-hop networks, to all devices (Deluge),
or to a subset fo devices (FiGaRo).

In all cases, simpler logic on IoT devices may be
possible if one assumes the gateway is a trusted proxy
and takes some tasks from the IoT devices (The up-
date process could also benefit from its potential
knowledge of the LoWPAN e.g. duty cycles of de-
vices, parameters on MAC layer level, routing infor-
mation etc.).

2.5 How to update securely?

Aside of network-level security (securing communi-
cation channels to transmit the update binary etc.)
security is typically provided by checks based on sign-
ing [14] the binary (or a hash, the signature check of
which is lighter work for small processors). A trend
is developing whereby IoT hardware embarks secu-
rity chips [17][18] to speed up cryptographic compu-
tations, and that provide means to store keys securely
(such hardware also provide means to store keys se-
curely and aim to make it impossible to install up-
dates when the signature does not match a stored
key). Alternatively, the gateway (or home router)
might take over some security overhead by checking
signatures on behalf of IoT devices etc.

Limits of security through updates? On one
hand, the unavailability of updates can be destruc-
tive: early adopters of smart home hub Wink were
frustrated [5] when their devices could not be re-
motely updated to fix a critical bug. On the other
hand, forced updates can also be destructive. For

example, Nest reportedly decided to remotely ”up-
date” IoT software on home automation hubs, in ef-
fect bricking [12] them intentionally, apparently with-
out consent of users...

References
[1] C. Bormann, M. Ersue, A Keranen. ”Terminology for constrained-node

networks.” Internet Engineering Task Force (IETF), RFC 7228, May
2014.

[2] O. Hahm, E. Baccelli, H. Petersen, N. Tsiftes, ”Operating Systems for
Low-End Devices in the Internet of Things : a Survey,” in IEEE Internet
of Things Journal, Dec. 2015.

[3] B. Schneier. ”The Internet of things is wildly insecure – and often un-
patchable.” Schneier on Security https://www.schneier.com/essays/archives/

2014/01/the_internet_of_thin.html January 2014.

[4] Brouwers, N., Langendoen, K., & Corke, P. ”Darjeeling, a feature-rich
VM for the resource poor.” In Proceedings of ACM SenSys. Nov. 2009.

[5] B. Barrett, ”Wink?s Outage Shows Us How Frustrating Smart
Homes Could Be.” WIRED, April 2015. http://www.wired.com/2015/04/

smart-home-headaches/

[6] E. Baccelli, O. Hahm, H. Petersen, and K. Schleiser. ”RIOT and the
Evolution of IoT Operating Systems and Applications.” ERCIM News
no. 101, April 2015.

[7] Solorzano, J. ”leJOS: Java based OS for Lego RCX.” Online at: http:

//lejos.sourceforge.net

[8] E. Baccelli, O. Hahm, M. Wählisch, M. Günes, T. Schmidt, ”RIOT OS:
Towards an OS for the Internet of Things,” in Proceedings of IEEE
INFOCOM, April 2013.

[9] Oliver, R., Wilde, A., & Zaluska, E. (2014). ”Reprogramming embedded
systems at run-time.” In Proceedings of IEEE ICST, Sept. 2014

[10] H. Tanriverdi, ”Als eine Glühbirne das Smart Home lahmlegte.”
Süddeutsche Zeitung, March 2015. http://www.sueddeutsche.de/digital/

dos-attacke-als-eine-gluehbirne-das-smart-home-lahmlegte-1.2380844

[11] Trend Micro Report, ”Researchers Discover a Not-So-Smart Flaw
In Smart Toy Bear”, February 2016 http://www.trendmicro.com/vinfo/us/

security/news/internet-of-things/researchers-discover-flaw-in-smart-toy-bear

[12] A. Gilbert. ”The time that Tony Fadell sold
me a container of hummus”. https://arlogilbert.com/

the-time-that-tony-fadell-sold-me-a-container-of-hummus-cb0941c762c1

[13] FJ. Acosta Padilla, F. Weis, J. Bourcier. ”Towards a model@ runtime
middleware for cyber physical systems.” Proceedings of ACM / USENIX
DeDiSys, 2014.

[14] Why You Want Firmware Updates, ThingSquare Blog, http://www.

thingsquare.com/blog/articles/firmware-updates/

[15] Hui, Jonathan W., and David Culler. ”The dynamic behavior of a data
dissemination protocol for network programming at scale.” Proceedings
of the 2nd international conference on Embedded networked sensor sys-
tems. ACM, 2004.

[16] Mottola, Luca, Gian Pietro Picco, and Adil Amjad Sheikh. ”FiGaRo:
fine-grained software reconfiguration for wireless sensor networks.”
Wireless Sensor Networks. Springer Berlin Heidelberg, 2008. 286-304.

[17] NXP, ”A710x family: Secure authentication microcontroller”, May
2016 http://www.nxp.com/products/identification-and-security/authentication/

secure-authentication-microcontroller:A710X_FAMILY

[18] Infineon Technologies AG, ”OPTIGA TRUST P SLJ 52ACA”,
May 2016 http://www.infineon.com/cms/en/product/productType.html?productType=

5546d4624f205c9a014f6eec8c007b9a

4

https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.html
https://www.schneier.com/essays/archives/2014/01/the_internet_of_thin.html
http://www.wired.com/2015/04/smart-home-headaches/
http://www.wired.com/2015/04/smart-home-headaches/
http://lejos.sourceforge.net
http://lejos.sourceforge.net
http://www.sueddeutsche.de/digital/dos-attacke-als-eine-gluehbirne-das-smart-home-lahmlegte-1.2380844
http://www.sueddeutsche.de/digital/dos-attacke-als-eine-gluehbirne-das-smart-home-lahmlegte-1.2380844
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/researchers-discover-flaw-in-smart-toy-bear
http://www.trendmicro.com/vinfo/us/security/news/internet-of-things/researchers-discover-flaw-in-smart-toy-bear
https://arlogilbert.com/the-time-that-tony-fadell-sold-me-a-container-of-hummus-cb0941c762c1
https://arlogilbert.com/the-time-that-tony-fadell-sold-me-a-container-of-hummus-cb0941c762c1
http://www.thingsquare.com/blog/articles/firmware-updates/
http://www.thingsquare.com/blog/articles/firmware-updates/
http://www.nxp.com/products/identification-and-security/authentication/secure-authentication-microcontroller:A710X_FAMILY
http://www.nxp.com/products/identification-and-security/authentication/secure-authentication-microcontroller:A710X_FAMILY
http://www.infineon.com/cms/en/product/productType.html?productType=5546d4624f205c9a014f6eec8c007b9a
http://www.infineon.com/cms/en/product/productType.html?productType=5546d4624f205c9a014f6eec8c007b9a

	The Future of IoT Software
	IoT Software Updates
	When to update?
	Who updates?
	What to update?
	How to distribute updates?
	How to update securely?


