The "best effort” service as a deployment success factor
Michael Welzl

Abstract

The "best effort" service model has certainly played a significant role for the
success of the Internet — but in fact, the Internet only partially follows this model,
and this has become a limiting factor for protocol deployment today.

Introduction: the importance of "best effort"

Internet routers "do their best" to deliver packets towards a destination, without
making any promises about e.g. the delivery time or service rate. This behavior,
which has been coined "best effort”, allows for great flexibility - almost arbitrary
strategies regarding e.g. routing, queuing, scheduling etc. can be locally chosen
for each individual router without violating a service contract. This has given
participants of the telecommunications market the necessary freedom in product
differentiation ("my router is better than your router because it can do X-routing
and Y-queuing"), resulting in the heterogeneous nature of today's Internet.
However, certain parts of the Internet architecture have never followed the "best
effort" model.

Case 1: Quality of Service (QoS)

QoS, by its very nature, is about giving promises. From the perspective of packets
traversing the Internet, QoS mechanisms have been reasonably well defined.
However, quoting [RFC 2990], "for end-to-end service delivery it does appear that
QoS architectures will need to extend to the level of the application requesting the
service profile."”

Such extensions have not been standardized, which may be attributed to a
general hesitance when it comes to APIs in the IETF. Had this work been done,
the following dilemma would have become clear: either QoS usage is restrained
to certain environments only, or - for the public "big I" Internet - the service
model has to be "best effort". Here, "best effort” means that the system (e.g., the
transport socket to which a request is made) can try to establish a certain form
of QoS, but applications must be able to cope with a "no, QoS doesn't work, only
best effort is available" situation.

With such an API that provides QoS services on a best effort basis, application
programmers could (if the API is simple enough to use) make use of QoS straight
away, when and where it is available. Possibly, providing such an API, and
making it attractive enough by 1) keeping it simple and 2) demonstrating the
benefits that can be attained with it, the following chicken-and-egg deployment
problem from [RFC 2990] could have been prevented:

"No network operator will make the significant investment in deployment and
support of distinguished service infrastructure unless there is a set of clients and
applications available to make immediate use of such facilities. Clients will not
make the investment in enhanced services unless they see performance gains in



applications that are designed to take advantage of such enhanced services. No
application designer will attempt to integrate service quality features into the
application unless there is a model of operation supported by widespread
deployment that makes the additional investment in application complexity
worthwhile and clients who are willing to purchase such applications.”

It is interesting to note that now, some 15 years after the first QoS RFCs were
published, application designers begin to realize "best effort QoS provisioning"
themselves as they reach down to raw IP sockets and set a DSCP value directly,
in the hope that certain routers or middle-boxes would somehow give them a
slightly better service while not much harm would happen otherwise [draft-
dhesikan-tsvwg-rtcweb-qos].

Case 2: transport protocols

Despite the design and deployment of a number of other transport protocols
(SCTP, DCCP, UDP-Lite, ..), the transport service that application programmers
can rely on has always been defined by two protocols: TCP and UDP. Most if not
all of the services of the newer protocols are in fact semantically compatible with
TCP and UDP. For example, SCTP provides faster data delivery for applications
that can accept out-of-order chunk arrivals; certainly, such applications can also
handle the ideal case of in-order delivery, which is provided by TCP at the
expense of performance. Hence, if the transport API would provide a slightly
more abstract service than what it offers today, offering out-of-order data
delivery among other things, the operating system could provide these services
"on a best effort basis" by trying to use e.g. SCTP and falling back to TCP or UDP
(e.g. with a method like "Happy Eyeballs" [draft-wing-http-new-tech]) in case of
failure.

Nowadays, such an API is not provided, and it is up to application programmers
to implement such a fall-back mechanism themselves. This is not easy to do. It is
also not necessarily clear that the potential gains would outweigh the effort, and
hence SCTP is only used in special conditions where it is known that the protocol
will work - or, as in rtcweb, it is applied in user space, over UDP, at the cost of
application complexity and performance. A common alternative to such usage of
e.g. SCTP is to simply construct the required service directly over UDP, inside the
application - clearly, it would be a better situation if the right services would be
made accessible via the transport API whenever they are available.

Conclusion: the way ahead

The "best effort" service model should be extended all the way to the application,
by enriching the transport API with services of various transport protocols as
well as QoS mechanisms on a best effort basis (i.e. with the possibility for the OS
to fall back to standard TCP and UDP in case of a QoS-free Internet path). This
would not only have the potential to improve the Internet's service via
deployment of standards that are nowadays virtually unused, but also give OS
deverlopers the freedom to implement complex service provisioning systems
underneath the transport API. This would, in turn, allow for greater product




differentiation among OS vendors, with potentially positive impacts on the OS
market.

How to make this change happen is a bit harder to imagine. The idea is not new;
the academic literature is full of similar suggestions, commonly following a "top
down" approach where one starts with the question "what are the services that
applications need?". The fact that so many different suggestions exist and
nothing has led to a real change for the transport API that our applications use
today indicates that such a "top down" approach may not be fruitful - making a
real change needs a standard and implementations, and this requires an API
design method that is based on strong consensus.

The author's suggestion is therefore to go "bottom up", i.e. starting with services
that already standardized protocols and QoS mechanisms provide. The fact that
these services exist means that there must have been preceding discussion about
their need. For transport protocols, an example design based on such an
approach is presented in [api], indicating that it is indeed possible to
systematically arrive at a more generic, protocol-independent transport API. It is
now about time to address this problem on a larger scale, in the IETF.

References

[RFC 2990]
G. Huston: "Next Steps for the IP QoS Architecture”, RFC 2990, November 2000.

[draft-dhesikan-tsvwg-rtcweb-qos]
S. Dhesikan, D. Druta (ed.), P. Jones, ]. Polk: "DSCP and other packet markings for
RTCWeb QoS", Internet-draft draft-dhesikan-tsvwg-rtcweb-qos-02, 14 July 2013.

[draft-wing-http-new-tech]

D. Wing, A. Yourtchenko, P. Natarajan: "Happy Eyeballs: Trending Towards
Success (IPv6 and SCTP)", Internet-draft draft-wing-http-new-tech-01, 20 August
2010.

[api]

Michael Welzl, Stefan Jorer, Stein Gjessing: "Towards a Protocol-Independent
Internet Transport API", FutureNet IV workshop in conjunction with of IEEE ICC
2011, 5-9 June 2011, Kyoto, Japan.



