Indirection Stating the Obvious?

David Conrad david.conrad@icann.org

Quote 1

"There is no problem in computer science that cannot be solved by an extra level of indirection."

Why?

- Problem: Scaling
 - Everybody wants PI
 - If they know enough to choose
 - Multi-homing, renumbering, etc. all made easier
 - RIRs are responding to community demands
 - E.g., ARIN policy 2005-1, RIPE proposed policy 2006-1
 - Nobody wants to change
 - Business models ("geo-addressing is bad")
 - Technologies and techniques (BGP, traffic engineering, etc.)
- Common proposed solution: Information hiding
 - Oh, how about adding a layer of indirection?

By Way of Example

- Indirection via ID/locator mapping
 - Map ID to locator at source edge/core boundary, remap locator to ID at destination core/edge boundary
 - How mapping/re-mapping is done is an implementation detail
 - Tunnels, address rewriting, etc.
 - How the map is propagated is an implementation detail
 Pull (e.g., DNS), push (e.g., via routing system flooding)
- End points only know about IDs
- Routing system only knows about locators
 - No more layer violations at layer 3 and 4

Simple Multi-Homing Example

Potential Benefits

- More scalable multi-homing
 - ID maps into multiple locators
 - Selection of which locator to choose is a policy decision
 - Potentially allow multi-homed site to specify preferences

- Scales to number of ISPs, not number of sites

- Renumbering/Nomadicity/Mobility
 - ID to locator map changes over time
 - "Time" depends on how long it takes to propagate the map change
 - If time is very short (e.g., planes transitioning ISP boundaries), the previous locator endpoint forwards to the next locator endpoint ("handover forwarding")
 - No end system changes

More Benefits

- Change only at the edge/core boundary
 - No change to end user deployed base
 - No application or end device IP stack changes required
 - No change to ISP core infrastructure
 - No change to ISP business models
 - No forced peering/settlements necessary
- Can be used for IPv4 to IPv6 migration
 - Or rather, IPv4 sites communicating with other IPv4 sites over an IPv6 infrastructure

Yet More Benefits(?)

- No change to most ISP routing technology or techniques
 - Still BGP/CIDR within the routing system
- IDs do not need to be allocated hierarchically
 - No hierarchy waste
 - Geo-political address allocation would be fine
 - Get the ITU folks off our back
- Locators can continue to be allocated by the existing players (RIRs/LIRs)
 - Geoff's job is safe!

Mapping

- Common question: How do you do the mapping between locator and ID?
 - Plenty of ways, all have cost/benefit tradeoffs, e.g.:
- Pull (e.g., DNS)
 - "Indirector" looks up ID gets back "LOCATOR" RRs, caches them
 - No new protocol need
 - First indirection at edge takes longer than subsequent but only useful data is fetched
- Push (e.g., Routing system-like flood)
 - "Indirector" receives updates propagated like any other routing update
 - Probably need new protocol
 - No delays for first indirection, but more memory and bandwidth required, even though most data not used

Quote 2

"Any performance problem can be solved by removing a level of indirection"

Drawbacks

- Loss of information
 - To scale, information is hidden
 - Some of this information can be valuable
- Performance
 - Resolving the indirection takes time
- Increased complexity
 - How much depends on how the indirection is implemented
 - Additional network element (the "indirector")
- Security?
 - Does it make spoofing easier?
 - Does that matter?
 - What do you filter on?

Simple Multi-Homing Example

More Drawbacks

- No change to ISP routing technology or techniques
 Still BGP/CIDR
- Map maintenance
 - Reachability notification
 - When should a mapping change?
 - How is the change propagated?
- Increased address space usage as compared to PI
 - In the example, each homing requires separate locator prefix to be mapped to a single ID prefix
 - 2x address space consumption at a minimum
 - If this matters in IPv6 (probably not)

Observations

- Indirection isn't new
 - RFC 1955 (IP Encaps), CRIO (Paul Francis, et al), among many, many others
 - All indirection of one form or another
 - We already have locator/ID splits
 - Domain names \rightarrow IP addresses (when HTTP is the new IP)
 - Network part \rightarrow host part
- Any solution is a cost/benefit tradeoff
 - What are customers/ISPs willing to give up vs. what are they willing to pay for.
- The solution **will** involve information hiding
 - What do you want to lose today?