
In-Network Processing, User-Level Stacks and the Future
of Internet Evolution

Felipe Huici∗, Michio Honda∗, Costin Raiciu†
NEC Europe Ltd.∗, University of Bucharest†

{felipe.huici, michio.honda}@neclab.eu
costin.raiciu@cs.pub.ro

1. INTRODUCTION
In past years, it has become increasingly evident that

the venerable end-to-end model often taught in networking
courses has more to do with Internet lore than with the real-
ity of the network today. Over time, operators have deployed
a vast array of middleboxes to enhance the capabilities of
the network, ranging from security (firewalls, IDSes, traf-
fic scrubbers), traffic shaping (rate limiters, load balancers),
dealing with address space exhaustion (NATs) or improving
performance (traffic accelerators, caches, proxies), to name
a few. Middleboxes are ubiquitous: a third of access net-
works show symptoms of stateful middlebox processing [4]
and in enterprise networks there are as many middleboxes
deployed as routers and switches [6].

Middleboxes are here to stay, and their usefulness, at least
to operators, is beyond question. However, their existence
restricts, in an often opaque way, what is considered ”cor-
rect” traffic: packets that do not use common protocols or
that use unusual header field values risk being modified or
dropped altogether. This inevitably forces applications to
use a few (sometimes inadequate) protocols such as HTTP
or worse, HTTPS, to ensure that traffic makes it to their
destination.

It might be tempting to single out middleboxes as the root
of the Internet’s ossification problem, but their existence is
not a fundamental show stopper. Rather, the issue lies in
the fact that their presence in a path is often unknown to
the end points, that some of them may modify or filter pro-
tocols in ways unexpected to end points, and that there is
no mechanism to explicitly address them in order to negoti-
ate and resolve the tussle between what the operator needs
in order to ensure the correct functioning of its network and
what end users would expect in terms of the service they
would like to experience.

Middleboxes are not the only factor contributing to the
Internet’s ossification. A recent study [2] has shown that as
many as 86% of Internet paths still allow TCP extensions
despite the existence of a large number of middleboxes. In-
deed, over the past years a respectable number of new pro-
tocols have surfaced (e.g., SCTP, DCCP, MPTCP, improved
versions of TCP), many of which have become part of main-
stream OSes and distributions. However, making into an OS
does not imply the immediate availability of a protocol: OS
upgrades can take years to trickle down to end user devices,
and even when they do, they are sometimes not automat-
ically enabled [3]. In short, it is rather difficult to deploy
novel network stacks and their corresponding protocols on
end user devices, compounding the previously mentioned

App 1

Stack 1

MultiStackNIC

Netmap API

Multiplex / Demultiplex packets

Kernel

Userlegacy apps

OS's stack

Virtual ports

App N

Stack N
Socket API

. . .

. . .

Figure 1: MultiStack software architecture.

tendency towards using a select few protocols.
How do we get ourselves out of this mess and incremen-

tally into a world that strikes a balance between the oper-
ational realities of end-to-end paths in today’s Internet and
the Internet’s intended, original end-to-end model? Fixing
the Internet’s ossification is a tall order, but incremental
progress can be made by focusing on specific issues and their
potential solutions.

In this position paper we take such an approach, and dis-
cuss two components we believe to be crucial to the future
evolution of the Internet. First, we argue for user-level net-
work stacks as a means to allow quicker and easier deploy-
ment of novel protocols. Second, we introduce the concept
of in-network processing, whereby an operator deploys a set
of (virtualized) platforms able to run their middlebox soft-
ware as well as that of its customers and third-parties. Such
platforms can be addressed explicitly, and allow the opera-
tors and end users to reason about the interaction between
traffic, the middleboxes and network policies.

In the rest of this short paper we outline the main princi-
ples behind each of these two proposals and our implemen-
tation of them. We finish by addressing potential ways of
going forward in order to improve the current state of affairs.

2. USER-LEVEL NETWORK STACKS
Placing network stacks in user space would have the clear

advantage of not having to wait for OS upgrades for new pro-
tocols to reach the general public. But can this be achieved
without sacrificing the performance and security afforded by
traditional, in-kernel stacks?

In previous work [3], we presented MultiStack, operat-
ing system support for user-level network stacks (figure 1).
MultiStack’s implementation revolves around four design



Controller	
  

Nat&firewall	
  

Web	
  Cache	
  
HTTP	
  Op5mizer	
  

Pla+orm	
  2	
  

Pla+orm	
  3	
  
Internet	
  

End-­‐users	
  
Pla+orm1	
  	
  

Nat&firewall	
  

Legend	
  
Operator	
  middlebox	
  

Web	
  Cache	
   Third-­‐party	
  middlebox	
  
Available	
  processing	
  	
  

Figure 2: CHANGE Architecture: Access operators
deploy processing platforms (micro-datacenters)
where they run their own middleboxes and process-
ing from third parties. A controller deployed by
the operator knows the network topology, router
and middlebox configurations. Client requests are
deployed by the controller after they are statically
checked for safety.

principles. First, MultiStack supports a large number of
dedicated stacks, to allow for having per-application stacks.
Second, each stack has isolated access to the NIC, prevent-
ing stacks, some of which may contain untested or beta
code, from interfering with each other. Third, MultiStack
provides supports namespace isolation, whereby stacks reg-
ister <src IP, dst port, protocol type> 3-tuples which
are then used to multiple incoming packets and to validate
outgoing traffic for each application/stack instance. Finally,
the system is able to accommodate legacy (in-kernel) stacks
and application, providing an incremental deployment path.
In terms of performance, our tests show that MultiStack is
able to achieve 10Gb/s line rate for almost all packet sizes
with a single CPU core, and line rate for minimum-sized
ones when using 2 CPU cores.

Clearly, MultiStack would require changes to the kernel.
However, these changes would only need to happen once,
after which novel stacks could be deployed without requir-
ing the long deployment cycles related with OS upgrades.
Further, because it is implemented as a module, MultiStack
does not need changes to the kernel itself. We believe that
MultiStack shows the viability of user-level network stacks
as a means to re-invigorate network stack development.

3. IN-NETWORK PROCESSING
The availability of a new stack on end user devices is not

sufficient for its successful deployment. As discussed earlier,
the ubiquitous presence of middleboxes means that pack-
ets belonging to a new protocol will often be modified or
dropped, affecting the behavior or performance of the appli-
cations that make use of it.

While we cannot easily modify existing hardware-based
middleboxes, there is a current trend by major operators
and vendors towards turning them into software-based boxes
running on inexpensive x86 servers, including turning them
into virtualized instances [1]. The trend goes further, with
operators like Deutsche Telekom deploying racks of x86
servers in their core and at regional POPs in order to deploy
their (virtualized) middleboxes, but also with views towards
offering such servers as a platform for middlebox deployment
by third parties.

1 10 20 30 40 50 60 70 80 90 100
Number of VMs

0

2

4

6

8

10

C
um

ul
at

iv
e

th
ro

ug
hp

ut
(G

bi
ts

/s
)

nat
iprouter
firewall
flowmeter

Figure 3: High throughput when running 100 mid-
dlebox VMs on a single CPU core

In a technical report [CITE], we make the case for IN-
NET, an architecture to enable such in-network processing
(figure 2). IN-NET provides (1) a set of security rules that
ensure that the middleboxes are safe to run in terms of
the operator’s network, other middleboxes and the Inter-
net at large; (2) an API that allows operators and users to
specify and negotiate policy; (3) the use of static analysis
tools to automatically check whether client processing satis-
fies provider policy and security requirements, and whether
the client’s own requirements are met; and (4) a high per-
formance, virtualized middlebox platform.

To show the platform’s feasibility, we implemented it using
ClickOS [5]. As an example of the sort of performance that
can be expected from a IN-NET platform, we ran a test with
up to 100 VMs configured as different kinds of middleboxes.
As shown in figure 3, a IN-NET platform can achieve rates
of up to about 8 Gb/s when running 100 VMs (for more
extensive test results, we refer the reader to [CITE]).

While IN-NET is no more than a research prototype at
this stage, we claim that an architecture of its sort would
foster a more open environment for middlebox deployment,
and would allow for negotiation between what end clients (or
their stacks) expect and what the network can or is willing
to provide, leading to win-win situations.

4. CONCLUSION
In this short paper we have discussed the concept of user-

level network stacks and in-network processing, along with
prototypical implementations of each. The former lowers the
barrier for deploying novel protocols in end user devices,
while the latter does so for the middleboxes along those
protocols’ paths. Both are incrementally deployable, and
we believe that while they are at this stage only prototypes,
they represent a first step towards the future evolution of
protocols on the Internet.

5. REFERENCES
[1] ETSI Portal. Network Functions Virtualisation: An

Introduction, Benefits, Enablers, Challenges and Call
for Action .
http://portal.etsi.org/NFV/NFV_White_Paper.pdf,
October 2012.

[2] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. Is it Still Possible to
Extend TCP? In Proc. ACM IMC, pages 181–192, 2011.



[3] Michio Honda, Felipe Huici, Costin Raiciu, Joao
Araujo, and Luigi Rizzo. Rekindling network protocol
innovation with user-level stacks. SIGCOMM Comput.
Commun. Rev., 44(2):52–58, April 2014.

[4] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam
Greenhalgh, Mark Handley, and Hideyuki Tokuda. Is it
still possible to extend tcp? In Proc. ACM IMC, 2011.

[5] Joao Martins, Mohamed Ahmed, Costin Raiciu, and
Felipe Huici. Enabling fast, dynamic network
processing with clickos. In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software
defined networking, HotSDN ’13, pages 67–72, New
York, NY, USA, 2013. ACM.

[6] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S Ratsanamy, and V Sekarl. Making middleboxes
someone else’s problem: Network processing as a cloud
service. In Proc. ACM SIGCOMM, 2012.


