Note: This change is intended to clarify that MPLS-TP service is not provided to a CE.

3.4.3. MPLS-TP Transport Service Interfaces

An MPLS-TP PE node can provide two types of interface to the Transport Service layer. The MPLS-TP User-Network Interface (UNI) provides the interface between a CE and the MPLS-TP network. The MPLS-TP Network-Network Interface (NNI) provides the interface between two MPLS-TP PEs in different administrative domains. Note that the term MPLS UNI is to be interpreted as UNI to an MPLS-TP network and does not refer to the protocol transiting the UNI.

When MPLS-TP is used to provide a transport service for e.g. IP services that are a part of a Layer 3 VPN, then packets are transported in the same manner as specified in [RFC4364].
Replace figure 3 with:

```
UNI
:       MPLS-TP
:----------:       -------------------
:|        |        : | Transport |
:|        |        : | Path |
:|        |        : | Mux/Demux |
:|        |        : | Control |
:----------:       -------------------
<br/>
```

UNI-C Customer side of UNI
UNI-N Network side of UNI

Figure 3: UNI between Customer Edge node and MPLS-TP PE Node

Note: This change corrects some typographical errors and identifies the UNI (User Network Interface) as an interface (or reference point) instead of a set of distributed functions.
Figure 5: NNI between MPLS-TP PE Nodes

Note: This change identifies the NNI as an interface (or reference point) instead of a set of distributed functions.
Note: The Encapsulation Label may be omitted when the service LSP is supporting only one network layer protocol payload type. For example, if only MPLS labeled packets are carried over a service, then the Service Label (stack entry) provides both the payload type indication and service identification. The Encapsulation Label cannot be any of the reserved labels [RFC 3032].

Note: This change clarifies that the encapsulation label must be a “normal” MPLS label.

A MEG may also include a set of Maintenance Entity Group Intermediate Points (MIPs). MEPs are capable of sourcing and sinking OAM flows, while MIPs can both react to OAM flows received from within a MEG and originate notifications to the MEPs as a result of specific network conditions.

Note: This change avoids a conflict with the description in the OAM framework draft.

Hierarchical label stacking, in a similar manner to that described above, can be used to implement sub-path maintenance entities for pseudowires, as described in [I-D.ietf-mpls-tp-oam-framework].

Note: This change provides a reference to the full description.