
Question(s): 9, 10, 12, 14 Meeting, date: Beijing, September 5 – 9, 2011 

Study Group: 15 Working Party: 3 Intended type of document(R-C-TD) : WD45r14 

Source: Editors G.8121 

Title:  Draft new G.8121.2 

Contact: Yuji Tochio 

Fujitsu 

Japan 

Tel: +81-44-754-8829 

Fax: +81-44-754-2741 

Email: tochio@jp.fujitsu.com 

Contact: 
Huub van Helvoort 

Huawei Technologies Co., Ltd. 

P.R.China 

Tel: +31 649248936 

Fax: 

Email: hhelvoort@huawei.com 

Please don’t change the structure of this table, just insert the necessary information. 

Abstract 

This document contains the consolidation of all WDs to new G.8121.2 as proposed in WD04. 

Drafting status 
Clause Title (as proposed in WD04) Input WDs, note, and updates 

1 Scope 
 

2 References 
 

3 Definitions 
 

4 Abbreviations WD24 

5 Conventions 
 

6 Supervision WD25 updated to refer G.8121 

7 Information flow across reference points 
 

8 MPLS-TP processes 

updated to refer G.8121 from 8.1 to 8.5 and 8.7 

 

WD26 (Note:The  Proposed structure differs 

from WD04 and seems to be based on current 

G.8121 (TD458/3)) 

 
WD26WD45r1 mapping defined as: 

8.1.1 to 8.1 

8.1.2  to 8.8.1 

8.1.3 to 8.6.2 

8.1.4 to 8.8.2 

8.1.5 to new clause 8.8.x 

8.1.6 remove (or FFS) 
 

8.1 G-ACh Process 

8.2 TC/Label processes 

8.3 Queuing process 

8.4 MPLS-TP-specific GFP-F processes 

8.5 Control Word (CW) processes 

8.6 
OAM related Processes used by Server adaptation 

functions 

8.6.1 Selector Process 

8.6.2 Fault Management Insert Process 

8.7 OAM related Processes used by adaptation functions 

8.7.1 MCC/SCC Insert Process 

8.7.2  MCC/SCC Extract Process 

8.7.3 APS Insert Process 

8.7.4 APS Extract Process 

8.7.5 CSF Insert Process 

8.7.6 CSF Extract Process 

8.8 Pro-active and on-demand OAM related Processes 

8.8.1 CC-CV-RDI Process 

8.8.2 On-demand CV Process 

8.8.3 Loss Measurement (LM) Process 

8.8.4 Delay Measurement (DM) Process 

8.8.5 One Way Delay Measurement (1DM) Process 

8.8.6 Test (TST) Process 

9 MPLS-TP layer functions WD27 + some clauses updated to red G.8121 

10 MPLS-TP to Non-MPLS-TP client adaptation functions   updated to refer G.8121 

11 Non-MPLS-TP Server to MPLS-TP adaptation functions   updated to refer G.8121 

Formatted: Font: (Asian) MS Mincho

Formatted: Highlight

Formatted: Font: 10 pt, Highlight

Formatted: Font: 10 pt, Highlight

Formatted: Font: 10 pt, Highlight

Formatted: Font: 10 pt, Highlight

Formatted: Font: 10 pt

Formatted: Font: (Asian) MS Mincho, (Asian)
Japanese



 



 

G.8121.2/Y.1382.2 

Characteristics of MPLS-TP equipment functional blocks supporting 

G.8113.2/Y.1373.2 

Summary 

<Mandatory material> 

Keywords 

<Optional> 

1 Scope 

This recommendation describes…  

2 References 

The following ITU-T Recommendations and other references contain provisions, which, through 

reference in this text, constitute provisions of this Recommendation. At the time of publication, the 

editions indicated were valid. All Recommendations and other references are subject to revision; 

users of this Recommendation are therefore encouraged to investigate the possibility of applying the 

most recent edition of the Recommendations and other references listed below. A list of the currently 

valid ITU-T Recommendations is regularly published. 

The reference to a document within this Recommendation does not give it, as a stand-alone 

document, the status of a Recommendation. 

 

3 Definitions 

<Check in the ITU-T Terms and definitions database on the public website whether the term is 

already defined in another Recommendation. It may be more consistent to refer to such a definition 

rather than redefine it> 

3.1 Terms defined elsewhere: 

This Recommendation uses the following terms defined elsewhere: 

3.1.1 <Term 1> [Reference]: <optional quoted definition> 

3.2 Terms defined in this Recommendation 

This Recommendation defines the following terms: 

3.2.1 <Term 3>: <definition> 

 

4 Abbreviations and acronyms 

This Recommendation uses the following abbreviations and acronyms: 

BFD  Bidirectional Forwarding Detection 

CC  Continuity Check 



CV  Continuity Verification 

DLM  Direct Loss Measurement 

DM  Delay Measurement 

DSMap  Downstream Mapping 

FEC  Forwarding Equivalence Class 

GAL  Generic Associated Channel Label 

G-ACh  Generic Associated Channel 

ILM  Inferred Loss Measurement 

LBI  Loopback Instruct 

LDI  Local Down Indication 

LKI  Lock Instruct 

LKR  Lock Report 

TC  Traffic Class 

VCCV  Virtual Circuit Connectivity Verification 

 

5 Conventions 

6 Supervision  

6.1 Defects 

6.1.1 Summary of Entry/Exit conditions for defects 

The defect Entry and Exit conditions are based on events. Occurrence or absence of specific events 

may raise or reset specific defects.  

The events used by this recommendation are defined in Table 6-1/G.8121. 

[Ed Note – check that all the events in G.8121 are used or no missing events]  

 

7 Information flow across reference points   

8 MPLS-TP processes  

8.1 G-ACh Process 

See the clause 8.1in [ITU-T G.8121] 

8.1.1 OAM Insertion and Extraction Processes 

The OAM Insertion and Extraction processes insert OAM packets into the data stream, or extract 

OAM packets from it, respectively.  OAM packets are identified by a GAL and G-ACh header as 

described in [RFC5586]. 

NOTE:  In the case of PW, the GAL is not used (see RFC5586 Section 4.2 GAL Applicability and 

Usage). Encapsulation of OAM packets using IP/UDP, PW VCCV or other mechanisms are FFS. 



There are OAM Insertion Processes in the MEP and MIP termination functions (MT_TT and 

MTDi_TT), and in the adaptation functions (MT/MT_A) – these differ in that the adaptation function 

version also handles selection of packets based on the MI_Admin_State. 

The OAM Extraction Process only exists in the termination functions, but there are some differences 

in behaviour between the MEP and MIP as described below. 

8.1.1.1 Termination Function OAM Insertion Process 

The figure below shows the Termination Function OAM Insertion Process 

The Termination Function OAM insertion process encapsulates OAM packets and multiplexes 

received data packets with inserted OAM packets.  The data packets are passed through unchanged, 

while the OAM packets are encapsulated as follows: 

AG-ACh header is prepended to the OAM PDU, with the Channel Type field set to the appropriate 

value depending on the protocol port, as described in [IANA “PW Associated Channel Type” 

registry].  The function then further prepends a G-ACh Label (GAL) as described in [RFC5586].  If 

no TTL signal is received, the TTL field in the GAL is set to 255; otherwise it is set to the value in 

the TTL signal. 

Encapsulation of OAM packets using IP/UDP, PW VCCV or other mechanisms are FFS. 

8.1.1.2Adaptation Function OAM Insertion Process 



The figure below shows the Adaptation Function OAM Insertion Process. 

The Adaptation Function OAM Insertion process encapsulates OAM packets and inserts them into 

the data stream.  The Encap block behaves as for the Termination Function OAM Insertion process 

described above.  The behaviour of the Selector block is shown on the figure below – this passes 

normal traffic and AIS messages when MI_Admin_State is unlocked, and passes the LKR messages 

when it is locked. 



 

8.1.1.3 OAM Extraction Processes 

The figure below shows the OAM Extraction Processes: 



The OAM extraction process extracts packets containing OAM information from the data stream.  

Other packets are passed through unmodified.  The Demux stage identifies OAM packets, and differs 

between the MEP OAM Extraction process and the MIP OAM Extraction process.  The Decap stage 

removes the GAL and G-ACh headers from the OAM PDU. 

In the MEP OAM Extraction Process, the Demuxstage processes the packet according to the 

following pseudocode: 

if (MT-label(D) == GAL) { 

switch (ChannelType(G-ACh(D))) { 

case <BFD-CC>: Extract BFD-CC traffic unit and forward to BFD-CC port 

case <BFD-CV>: Extract BFD-CV traffic unit and forward to BFD-CV port 

case <AIS/LKR>: Extract AIS/LKR traffic unit and forward to AIS/LKR port 

case <LSP-ping>: Extract LSP-ping traffic unit and forward to LSP-ping port 

case <LBI/LKI>: Extract LBI/LKI traffic unit and forward to LBI/LKI port 

    case <DLM>: Extract DLM traffic unit and forward to DLM port 

    case <ILM>: Extract ILM traffic unit and forward to ILM port 

    case <DM>: Extract DM traffic unit and forward to DM port 

    case <DLM+DM>: Extract DLM+DM traffic unit and forward to DLM+DM port 

    case <ILM+DM>: Extract ILM+DM traffic unit and forward to ILM+DM port 

    default: forward to data port 

} 

} else { 

    forward to data port 

} 

 



In the MIP OAM Extraction Process, the Demux stage processes the packet according to the 

following pseudocode: 

if (Ttl(MT-label(D)) == 0) { 

    if (MT-label(D) == GAL) { 

switch (ChannelType(G-ACh(D))) { 

        case <LSP-ping>: Extract LSP-ping traffic unit and forward 

 to LSP-ping port 

   case <LBI/LKI>: Extract LBI/LKI traffic unit and forward to LBI/LKI port 

   default: drop the packet 

        } 

    } else { 

        drop the packet 

    } 

} else { 

    forward to data port 

} 

Decapsulation and extraction of OAM packets using IP/UDP, PW VCCV or other mechanisms are 

FFS.  Processing of performance-measurement packets at MIPs is also FFS. 

 

8.2 TC/Label processes  

See the clause 8.2in [ITU-T G.8121] 

8.3 Queuing process  

See the clause 8.3in [ITU-T G.8121] 

8.4 MPLS-TP-specific GFP-F processes  

See the clause 8.4in [ITU-T G.8121] 

8.5 Control Word (CW) processes  

See the clause 8.5in [ITU-T G.8121] 

 

 

8.6 OAM related Processes used by Server adaptation functions  

8.6.1 Selector Process 

See the clause 8.6.1[ITU-T G.8121] 

8.6.2 Fault Management Insert Process 

[note: check if it is possible to align with G.8121 structure(splitting into AIS and LCK)] 

The LKR generation, AIS Insertion and LKR/AIS Reception processes are described below. 

 

 



8.7 OAM related Processes used by adaptation functions 

8.7.1 MCC/SCC Mapping Insert and De-mapping Process 

See the clause 8.7.1in [ITU-T G.8121] 

8.7.2 APS Insert and ExtractProcess  

See the clause 8.7.2 in [ITU-T G.8121] 

8.7.3 CSF Insert and Extract Process  

See the clause 8.7.3 in [ITU-T G.8121] 

8.8 Pro-active and on-demand OAM related Processes 

8.8.1 CC/CV Processes 

An overview of the CC/CV processes is shown in the figure below: 

The CCCV reception process controls the operation of the CCCV protocol.  It operates when 

MI_CCCV_Enable is TRUE, according to the value of MI_CCCV_Mode.  MI_CCCV_Mode takes 

one of the following values: 

Comment [DB1]: Diagram updated 



 COORD – Co-ordinated mode; operate a single co-ordinated BFD session 

 SRC – Independent Source; operate as the source MEP in an independent BFD session 

 SINK – Independent Sink; operate as the sink MEP in an independent BFD session 

Multiple instances of the CCCV reception process may be created for multiple BFD sessions; when 

operating in independent mode, it is expected that a pair of instances are created, one acting as the 

source and one as the sink. 

MI_CC_Period specifies the desired period between successive BFD-CC messages, and 

MI_Peer_MEPID specifies the MEP ID value to expect in received messages, in one of the formats 

described in [draft-ietf-mpls-tp-cc-cv-rdi]. 

The CCCV generation process sends periodic BFD-CC and BFD-CV messages, when 

MI_CCCV_Enable is TRUE.  There is a separate instance of the process for each corresponding 

instance of the CCCV reception process.  MI_Local_MEPID and MI_Local_Discr specify the local 

MEP ID and session discriminator values to send in the packets. 

The Session Demux process demultiplexes received BFD-CC and BFD-CV messages to the correct 

instance of the CCCV reception process, based on the “Your discriminator” field in the received 

BFD-CC or BFD-CV packet.Demultiplexing of received packets where the “Your discriminator” 

field is 0 is FFS. 

8.8.1.1 CCCV Reception Process 



The CCCV Reception Process controls the operation of the BFD protocol, according to 



MI_CCCV_Enable and MI_CCCV_Mode.  Multiple instances of the CCCV Reception Process can 

be instantiated.  Each one has a corresponding instance of the CCCV Generation Process; the 

contents and period for sending CCCV packets are controlled via the RI_CCCV_Params() signal. 

The CCCV Reception Process is described in the following figures.  In Disabled state, all received 

BFD-CC and BFD-CV packets are discarded and no packets are sent.  In Enabled state, received 

BFD-CC packets are processed, and received BFD-CV packets are processed when the BFD state 

machine is UP.  BFD-CC and BFD-CV packets are sent, except if the process is operating in SINK 

mode.  When MI_CCCV_Enabled is set to FALSE, the process moves to Disabling state so that the 

ADMIN_DOWN diagnostic code can be signalled to the peer MEP.  The process stays in Disabling 

state for three times the transmit interval, before moving to Disabled state.  In Disabling state, BFD-

CC packets are sent, but received BFD-CC and BFD-CV packets are used only for updating the 

timer. 

 

Note:  unexpPriority does not appear in draft-ietf-cc-cv-rdi, or in G.8121 (this event is FFS) 
Comment [DB2]: Diagram updated. 



 

The values of State and Diag correspond with those in [RFC5880] and [draft-ietf-mpls-tp-cc-cv-rdi]. 

The functions ‘SetDown’, ‘UpdateState’ and ‘UpdateTimes’ are described by the following 

pseudocode: 

SetDown(new_diag) { 

    if (Local_State != DOWN) { 

Local_State = DOWN 

        if (Local_Diag != PATH_DOWN || new_diag != TIMEOUT) { 

Local_Diag = new_diag 

        } 

        if (MI_CCCV_Mode = SINK) { 

TxIntl = 1s 

        } 

    } 

} 

 

UpdateState(OAM) { 

    if (State(OAM) = ADMINDOWN) { 

SetDown(NBR_DOWN) 

} else { 

        if (Local_State = DOWN) { 

         if (State(OAM) = DOWN) { 

Local_State = INIT 



Local_Diag = NOERROR 

} else if (State(OAM) = INIT || 

       (MI_CCCV_Mode = SINK && State(OAM) = UP)) { 

Local_State = UP 

Local_Diag = NOERROR 

            } 

} else if (Local_State = INIT) { 

            if (State(OAM) = INIT || State(OAM) = UP) { 

Local_State = UP 

Local_Diag = NOERROR 

            } 

} else { 

            // Local_State must be UP 

            if (state(OAM) = DOWN &&MI_CCCV_Mode != SRC) { 

SetDown(NBR_DOWN) 

            } 

        } 

    } 

} 

 

UpdateTimes(OAM) { 

    if (MI_CCCV_Mode = SRC) { 

DetectTime = 0 

} else { 

DetectTime = 3 x max(MI_CC_Period, DesiredMinTxInterval(OAM)) 

    } 

    if (MI_CCCV_Mode = SINK) { 

  if (State(OAM) != LocalState) { 

TxIntl = 1s 

} else { 

TxIntl = 0 

        } 

} else { 

TxIntl = max(MI_CC_Period, RequiredMinRxInterval(OAM)) 

    } 

} 

 

Use of authentication for CC/CV is FFS. 

Use of the BFD Poll/Final mechanism for changing the value of TxIntlis FFS. 



8.8.1.2 CCCV Generation Process 

The CCCV Generation Process is responsible for generating BFD-CC and BFD-CV packets, 

according to the parameters set by the corresponding CCCV Reception Process in the 

RI_CCCV_Params(state, diag, TX-interval,your-discriminator) signal.  When the TX-interval is set 

to 0, no BFD-CC or BFD-CV packets are generated.  Otherwise, BFD-CC packets are generated at 

the specified interval, and BFD-CV packets are generated if the state is up, at an interval of 1s. 

The CCCV Generation Process is described in the following figure: 

The BFD_CC function creates a BFD control packet according to the format described in 

[RFC5880].  The fields are filled in as follows: 

 Vers: set to 1 

 Diag: set to the value of Diag 

 Sta: set to the value of State 

 P, F, A, D, M flags: set to 0 

 C flag: set appropriately dependent on the implementation 

 Detect Mult: set to 3 



 Length: set to 24 

 My Discriminator: set to MI_Local_Discr 

 Your Discriminator: set to YourDiscr 

 Desired Min Tx Interval: set to 0 if MI_CCCV_Mode is SINK, otherwise set to 

MI_CC_Period 

 Required Min Rx Interval: set to 0 if MI_CCCV_Mode is SRC, otherwise set to 

MI_CC_Period 

 Required Min Echo Rx Interval: set to 0 

No Authentication Section is added.  Use of Authentication is FFS. 

The BFD_CV function creates a BFD control packet in the same way as the BFD_CC function, and 

then appends a MEP Source ID TLV as described in [draft-ietf-mpls-tp-cc-cv-rdi], containing the 

value of MI_Local_MEPID. 

8.8.1.3 Session Demux Process 

The session demux process receives BFD-CC and BFD-CV packets from the MEP OAM Extraction 

process.  It performs the following checks on the packet: 

 If the version number is not 1, the packet is discarded 

 If  the length is less than 24, the packet is discarded 

 If the Detect Mult field is 0, the packet is discarded 

 If any of the P, F, A, D, or M flags are set, the packet is discarded 

 If the My Discriminator field is 0, the packet is discarded 

 If the Required Min Echo Rx Interval is not 0, the packet is discarded 

 If the Your Discriminator field is 0 and the State is not DOWN or ADMINDOWN, the 

packet is discarded. 

 If the Your Discriminator field is not 0 and no corresponding session can be found based on 

MI_Local_Discr[], the packet is discarded. 

If the checks pass, the packet is passed to the instance of the CCCV Reception process whose 

MI_Local_Discr is equal to the Your Discriminator field.  Packets received on the BFD-CC port 

from the OAM Extraction process are passed on to the BFD-CC port in the CCCV Reception 

process, and packets received on the BFD-CV port from the OAM Extraction process are passed on 

to the BFD-CV port in the CCCV Reception process. 

Selection of the correct CCCV Reception process when the Your Discriminator field is 0 is FFS. 

 

8.8.2 On-demand CV Processes 

An overview of the On-demand CV Processes is shown on the figure below. 



The On-demand CV protocol is controlled by the On-demand CV Control process.  An on-demand 

session starts when the MI_ODCV_Ping() or MI_ODCV_Trace() signal is called.  Multiple instances 
of the On-demand CV Control process can be used to run multiple on-demand CV sessions 

concurrently, provided each instance has a different session ID. 

The On-demand CV Control process sends LSPPing Request packets via the On-Demand CV 

Request Generation Process, and receives LSPPing Responses via the On-Demand CV Reception 

process.  Received responses may be checked for errors, if requested in the MI_ODCV_Ping() or 

MI_ODCV_Trace() signal. 

The On-demand CV Control process reports errors in the forward direction via the 

MI_ODCV_FWErr() signal, and in the backward direction via the MI_ODCV_BWErr() signal.  

Results are reported via the MI_ODCV_Ping_Result() and MI_ODCV_Trace_Result() signals. 

The MEP On-demand CV Responder and MIP On-demand CV Responder processes are responsible 

for checking received LSPPing Requests for errors, and sending responses via the On-demand CV 

Response Generation process. 

The On-demand CV Request Generation and On-demand CV Response Generation processes 

generate LSPPing request and response packets in conformance with [RFC4379] and [draft-ietf-

mpls-tp-on-demand-cv]. 

The MEP On-demand CV Responder, MIP On-demand CV Responder, and On-demand CV Control 

processes all perform similar steps to check received packets for errors.  This checking uses the copy 

of the original label stack that is carried as part of the MT_CI.  This common validation is described 

further below, followed by descriptions of each of the On-demand CV processes. 



8.8.2.1  Common Validation 

In the description below, label stacks and FEC stacks are denoted as arrays (Stack[]), where: 

 Stack[1] is the bottom (innermost) label/FEC 

 Stack[Count(Stack)] is the top (outermost) label/FEC 

 Stack[0] is invalid 

Count(Stack) returns the number of labels or FECs in the stack. 

The validation is described by the following pseudocode.  The values assigned to ‘rc’ are as 

described in [RFC4379]. 

ODCV_Validate (OAM, LStack_in[], FECStack[], MP_Type) { 

rc = 0 

sub_rc = 0 

err_TLV = NULL 

    done = FALSE 

include_ifstack = FALSE 

include_dsmap = FALSE 

ldepth = 0 

LStack = LStack_in 

    if (malformed(OAM)) { 

rc = 1 

        done = TRUE 

    } else if (OAM contains TLVs with types 4, 6, 8 or 10-32767) { 

rc = 2 

err_TLV = make_err_TLV(bad TLVs) 

        done = TRUE 

    } else { 

        if (LStack[1] = GAL) { 

remove_GAL_from_LStack() 

        } 

ldepth = count(LStack) 

        while (!done &&ldepth> 0) { 

            if (!label_known(LStack[ldepth]) { 

rc = 11 

sub_rc = ldepth 

                done = TRUE 

            } 

ldepth-- 

        } 

    } 

    if (MP_Type = MEP) { 

        if (!done) { 



FECdepth = 1 

            L = IMPLICIT_NULL 

rc = 3 

sub_rc = 1 

            if (DSMAP(OAM) != NULL &&Ingress_Ifnum(DSMAP(OAM)) != 0) { 

                if (DownstreamLabels(DSMAP(OAM)) != LStack) { 

rc = 5 

include_ifstack = TRUE 

                    done = TRUE 

                } 

            } 

        } 

        while (!done) { 

            (FECstatus, FECrc) = checkFEC(FECStack[FECdepth], L) 

rc = FECrc 

sub_rc = FECdepth 

            if (FECstatus = 1) { 

                done = TRUE 

            } else { 

FECdepth++ 

                if (FECdepth> count(FECStack)) { 

                    done = TRUE 

                } 

            } 

            if (!done) { 

                if (FECstatus = 0) { 

ldepth++ 

                    if (ldepth> count(LStack)) { 

                        done = TRUE 

                    } else { 

                        L = LStack[ldepth] 

                    } 

                } 

            } 

        } 

    } else { 

        // MP_Type = MIP 

        if (!done) { 

rc = 8 

sub_rc = 1 

            if (DSMAP(OAM) != NULL) { 



                if (Ingress_Ifnum(DSMAP(OAM)) = 0) { 

rc = 6 

include_ifstack = TRUE 

                } else { 

                    if (DownstreamLabels(DSMAP(OAM)) != LStack) { 

rc = 5 

include_ifstack = TRUE 

                        done = TRUE 

                    } 

                } 

            } 

        } 

        if (!done) 

Egress_Ifnum = get_egress_interface() 

            if (Egress_Ifnum = 0) { 

rc = 9 

                done = TRUE 

            } 

        } 

        if (!done) { 

            if (DSMAP(OAM) != NULL) { 

include_dsmap = TRUE 

            } else { 

                done = TRUE 

            } 

        } 

        if (!done) { 

if (V(OAM) == 0 &&MI_FEC_Checking = 0) { 

                done = TRUE 

            } 

        } 

        if (!done) { 

FECdepth = 0 

            i = 1 

            while (i > 0) { 

FECdepth++ 

                if (DownstreamLabels(DSMAP(OAM))[FECdepth] != IMPLICIT_NULL) { 

                   i-- 

                } 

            } 

            if (count(FECStack) >= FECdepth) { 



(FECstatus, FECrc) = checkFEC(FECStack[FECdepth], 

LStack[1]) 

                if (FECstatus = 2) { 

rc = 10 

                } else if (FECstatus = 1) { 

rc = FECrc 

sub_rc = FECdepth 

                } 

            } 

        } 

    } 

    return(rc, sub_rc, err_TLV, include_ifstack, include_dsmap) 

} 

The utility functions used in the pseudocode above are described below: 

 malformed(OAM) checks that the packet is in accordance with the format described in 

[RFC4379] and [draft-ietf-mpls-tp-on-demand-cv].  It also checks that: 

o If the packet is a request, it contains a Target FEC Stack TLV 

o If the packet is a reply and the R flag is set, it contains a Reverse Target FEC Stack 
TLV 

o The Target FEC Stack or Reverse Target FEC Stack TLVs contain only sub-types 

‘Static LSP’, ‘Static Pseudowire’ and ‘Nil FEC’.  Use of other subtypes are FFS. 

o If the packet contains a Downstream Mapping TLV, the address type is ‘Non-IP’.  

Use of other address types is FFS. 

 make_err_TLV(TLVs) creates an ‘Errored TLVs’ TLV according to [RFC4379] and copies 

the bad TLVs into it. 

 remove_GAL_from_LStack removes the GAL from the bottom of the label stack, so that 
LStack[1] now refers to the label that immediately preceded the GAL. 

 label_known(Label) checks whether the Label value is known and can be processed. 

 checkFEC(FEC, Label) implements the FEC checking procedure described in [RFC4379] 

section 4.4.1. 

 get_egress_interface() returns MI_Ifnum if this is the egress interface, otherwise it uses 

forwarding information to find the egress interface and returns its interface number, or 0 if no 

egress interface was found or it is not MPLS-enabled. 

8.8.2.2 On-demand CV Control process 

The On-demand CV Control process operates the LSPPing on-demand CV protocol.  An LSPPing 
session is started by the MI_ODCV_Ping() or MI_ODCV_Trace() signals.  In either case, a Session 

ID is supplied;  multiple instances of the On-demand CV Control process can be created, provided 

each has a unique Session ID. 

The Target FEC Stack to be checked by the peer device is specified in the MI_ODCV_Ping() or 

MI_ODCV_Trace() signal.  Other mechanisms for deriving the Target FEC Stack, for example if 

dynamic signalling protocols are in use, are FFS.  The Target FEC Stack passed in the 



MI_ODCV_Ping() or MI_ODCV_Trace() signals must only contain FECs with subtypes ‘Static 

LSP’, ‘Static Pseudowire’ or ‘Nil FEC’. 

Results are reported by the On-demand CV Control process using the MI_ODCV_Ping_Result() or 

MI_ODCV_Trace_Result() signals when the session ends.  In addition, any errors detected while the 

session is running are reported by using the MI_ODCV_FWErr() signal (for errors in the Control-to-

Responder direction) or MI_ODCV_BWErr() signal (for errors on the Responder-to-Control 

direction).  Note that errors in the Responder-to-Control direction are only detected if 

ValidateReverse is set to TRUE in the MI_ODCV_Ping() or MI_ODCV_Trace() signal. 

The behaviour of the On-demand CV Control process is shown in the figures below.  In PingRunning 

state, the process sends LSPPing Requests periodically, and handles any received replies by counting 

them and checking for any errors.  In TraceRunning state, an initial LSPPing Request is sent with 

TTL 1, so that it is intercepted by the first MIP (or MEP) reached.  When a response is received, it is 

first checked for any errors.  Then, if the response was from a MIP (ie it contains a DSMap TLV), 

the TTL is incremented and a new LSPPing request is sent.  Incrementing the TTL ensures the 

request is intercepted by the next MIP (or MEP).  If no response is received, 3 attempts are made to 

resend the request, before giving up and reporting any results collected so far. 

 

 



 



 



 

The make_DSMap(ingress_ifnum, egress_ifnum, ds_lstack) function creates a Downstream Mapping 

TLV according to [RFC4379] and [draft-ietf-mpls-tp-on-demand-cv].  The fields are filled in as 

follows: 

 MTU: Set to MI_MTU 

 Address Type: set to 5 (Non IP).  Use of other address types is FFS. 

 DS Flags: The I flag is set to 1, all other flags are set to 0. 



 Ingress Ifnum: set to ingress_ifnum 

 Egress Ifnum: set to egress_ifnum 

 Multipath Type: set to 0 (no Multipath) 

 Depth Limit: set to 0 

 Multipath Length: set to 0 

 Downstream Labels: derived from ds_lstack as described in [RFC4379].  The protocol is set 

to 1 (Static).  Use of other values are FFS. 

8.8.2.3 On-demand CV Request Generation process 

The On-demand CV Request Generation process is shown in the following figure: 



The make_Pad_TLV(Size) function creates a Pad TLV in accordance with [RFC4379].  The Length 
field is set to Size.  The first octet of the value field is set to 2 (Copy Pad TLV) if ValiadateReverse 

is FALSE, and 1 (Drop Pad TLV) if ValidateReverse is TRUE. 

Note: Size is only non-zero in Ping mode, when no DSMap TLV is included.  In this case, the 

responder will not add any additional TLVs (eg an interface and label stack TLV) to the reply unless 

the ‘R’ (ValidateReverse) flag is set, and so the Pad TLV can be safely copied into the reply. 

The LSPPing_Rq function creates an LSPPing Echo Request packet in accordance with [RFC4379] 

and [draft-ietf-mpls-tp-on-demand-cv].  The fields are filled in as follows: 

 Version Number: set to 1 

 Global Flags: if ValidateFEC is TRUE, the V flag is set to 1; if ValidateReverse is TRUE, 

the R flag is set to 1;  all other flags are set to 0. 

 Message Type: set to MPLS Echo Request 

 Reply Mode: set to 4 (reply via application control channel) 



 Return Code: set to 0 

 Return Subcode: set to 0 

 Sender’s Handle: set to the value of Session_ID 

 Sequence Number: set to the value of Seq 

 Timestamp Sent: set to LocalTime. 

 Timestamp Received: set to 0. 

The following TLVs are added: 

 A Target FEC Stack TLV is added containing the contents of TargetFECStack. 

 If Pad_TLV is not NULL, a Pad TLV is added containing the contents of Pad_TLV. 

 If DSMap is not NULL, a Downstream Mapping TLV is added containing the contents of 

DSMap. 

8.8.2.4  On-demand CV Reception process 

The On-demand CV Reception process demultiplexes received LSPPing packets as follows: 

 If the Message Type is MPLS Echo Request, the packet is passed to the MIP On-demand CV 
Responder or MEP On-demand CV Responder process as appropriate 

 Otherwise, if this is a MIP the packet is discarded. 

 If this is a MEP and the Message Type is MPLS Echo Reply, the On-demand CV Reception 

process passes the packet to the instance of the On-demand CV Control process whose 

Session ID is equal to the “Sender’s handle” in the received packet.  If there is no such 

instance of the On-demand CV Control process, the packet is discarded. 

8.8.2.5 MIP On-demand CV Responder process 

The MIP On-demand CV Responder process is described in the figure below. 



 

The get_egress_interface() function is described in section 8.1.4.1 above. 

The get_ingress_interface() function returns MI_Ifnum if this is the ingress interface, otherwise it 

returns the interface number of the interface where the packet arrived. 

The get_downsteam_lstack() returns the label stack that would be attached to the packet if it were to 

be forwarded out of the egress interface, derived as described in [RFC4379]. 

8.8.2.6  MEP On-demand CV Responder process 

The MEP On-demand CV Responder process is described in the figure below. 



 

8.8.2.7 On-demand CV Response Generation process 

The On-demand CV Response Generation process is shown in the following figure: 



The make_Ifstack_TLV(LStack) function creates an Interface and Label Stack TLV according to 

[RFC4379] and [draft-ietf-mpls-tp-on-demand-cv].  The fields are filled in as follows: 

 Address Type: set to IPv4 Unnumbered 

 IP Address: set to 0 



 Interface: set to MI_Ifnum 

 Label Stack: Copied from LStack. 

Use of other values in the Interface and Label Stack TLV is FFS. 

[Editor’s note: this use of MI_Ifnum should align with [draft-ietf-mpls-tp-mib-management-

overview]]. 

The make_DSMap(ingress_ifnum, egress_ifnum, ds_lstack) function is described in section 8.1.4.2 

above. 

The LSPPing_Rsp function creates an LSPPing Echo Reply packet in accordance with [RFC4379] 

and [draft-ietf-mpls-tp-on-demand-cv].  The fields are filled in as follows: 

 Version Number: set to 1. 

 Global Flags: copied from the received Echo Request. 

 Message Type: set to MPLS Echo Reply. 

 Reply Mode: set to 0 (do not reply). 

 Return Code: set to RC. 

 Return Subcode: set to SubRC. 

 Sender’s Handle: copied from the received Echo Request. 

 Sequence Number: copied from the received Echo Request. 

 Timestamp Sent: copied from the received Echo Request. 

 Timestamp Received: set to LocalTime. 

If reverse FEC checking was requested in the LSPPing request (ie, the R flag was set), a Reverse 

Target FEC Stack is created based on MI_Target_FEC.  Other mechanisms for deriving the FEC 

stack, for example if dynamic signalling protocols are in use, are FFS. 

The following TLVs are added: 

 The TargetFECStack TLV is copied from the received packet. 

 If Err_TLV is not NULL, an Errored TLVs TLV is added containing the contents of 

Err_TLV 

 If Ifstack_TLV is not NULL, an Interface and Label Stack TLV is added containing the 

contents of Ifstack_TLV 

 If DSMap is not NULL, a Downstream Mapping TLV is added containing the contents of 
DSMap. 

 If Pad_TLV is not NULL, a Pad TLV is added containing the contents of Pad_TLV. 

 If ReverseTgtFEC is not NULL, a Reverse-path Target FEC Stack TLV is added containing 

the contents of ReverseTgtFEC. 

 

8.8.3 Performance Monitoring Processes 

FFS 

8.8.4 Lock/Loopback Instruct Processes 

FFS 



  

9 MPLS-TP layer functions  

9.1 Connection Functions (MT_C) 

Connection Functions are described in [G.8121] 

9.2 Termination Functions 

9.2.1 MPLS-TP Trail Termination function (MT_TT) 

The bidirectional MPLS-TP Trail Termination (MT_TT) function terminates the MPLS-TP OAM to 

determine the status of the MPLS-TP (sub)layer trail. The MT_TT function is performed by a co-

located pair of the MPLS-TP trail termination source (MT_TT_So) and sink (MT_TT_Sk) functions 

as shown in the figure below. 

 

9.2.1.1 MPLS-TP Trail Termination Source function (MT_TT_So) 

The MT_TT_So function determines and inserts the TTL value in the shim header TTL field and 

adds MPLS-TP OAM to the MT_AI signal at its MT_AP. 

The information flow and processing of the MT_TT_So function is defined with reference to the 

figure below. 

• Symbol: 

 

• Interfaces: 

Table 9-*/G.8121.2/Y.1381.2 – MT_TT_So inputs and outputs 

 



Input(s) Output(s) 

MT_AP: 
MT_AI_D 

MT_AI_PHB 

MT_AI_MCC 

MT_AI_SCC 

MT_RP: 

MT_RI_CCCV_Params 

MT_RI_LSPPing_Rq 

MT_RI_LSPPing_Rsp 
 

MT_TT_So_MP: 
MT_TT_So_MI_TTLValue 

MT_TT_So_MI_CCCV_Mode[]  

MT_TT_So_MI_Local_MEPID[]  

MT_TT_So_MI_Local_Discr[]  

MT_TT_So_MI_CC_Period  

MT_TT_So_MI_CCCV_Pri[]  

MT_TT_So_MI_Target_FEC  

MT_TT_So_MI_Ifnum  

MT_TT_So_MI_MTU  

 

MT_CP: 
MT_CI_D 

MT_CI_oPHB 

MT_CI_iPHB 

 

• Processes: 

The processes associated with the MT_TT_So function are as depicted in the Figure below. 



[Performance Monitoring process are FFS and are not depicted] 

PHB: The AI_PHB signal is assigned to both the CI_iPHB and CI_oPHB signals at the MT_TCP 

reference point. 

Insert TTL: The Time To Live value is inserted in the outer shim header's TTL field within the 

MT_AI traffic unit  

Temination Function OAM Insertion: See 8.1.1.1 

CCCV Generation Process: See 8.1.2.2 

On-demand CV Request Generation: See8.1.4.3 

On-demand CV Response Generation: See 8.1.4.7 



 

• Defects: 

None.  

• Consequent actions: 

None. 

• Defect correlations: 

None. 

• Performance monitoring: 

None. 

9.2.1.2 MPLS-TP Trail Termination Sink function (MT_TT_Sk) 

The MT_TT_Sk function reports the state of the MPLS-TP Trail (Network Connection). It extracts 

MPLS-TP trail OAM from the MPLS-TP signal at its MT_TCP, detects defects, counts during 1-

second periods errors and defects to feed Performance Monitoring when connected and forwards the 

defect information as backward indications to the companion MT_TT_So function.  

Note – The MT_TT_Sk function extracts and processes one level of MPLS-TP OAM irrespective of 

the presence of more levels. 

The information flow and processing of the MT_TT_Sk function is defined with reference to the 

Figure below. 

• Symbol: 

 

• Interfaces: 

Table x/G.8121.2/Y.1381.2 – MT_TT_Sk inputs and outputs 

Input(s) Output(s) 

MT_TCP: 

MT_CI_D 

MT_CI_iPHB 

MT_CI_oPHB 
MT_CI_SSF 

MT_CI_LStack 

 

MT_TT_Sk_MP: 

MT_TT_Sk_MI_CCCV_Enable[]  

MT_TT_Sk_MI_CCCV_Mode[]  

MT_AP: 

MT_AI_D 

MT_AI_PHB 

MT_AI_TSF 

MT_AI_AIS 

MT_AI_MCC 

MT_AI_SCC 

MT_AI_LStack 

 



Input(s) Output(s) 

MT_TT_Sk_MI_CC_Period  

MT_TT_Sk_MI_Peer_MEPID[]  

MT_TT_Sk_MI_Remote_Discr[]  

MT_TT_Sk_MI_CCCV_Pri[]  

MT_TT_Sk_MI_Local_Discr[] 

MT_TT_Sk_MI_ODCV_Ping  

MT_TT_Sk_MI_ODCV_Trace  

MT_TT_Sk_MI_FEC_Checking  

MT_TT_Sk_MI_Ifnum  

MT_TT_Sk_MI_MTU  

 

MT_RP: 

MT_RI_CCCV_Params 

MT_RI_LSPPing_Rq 

MT_RI_LSPPing_Rsp 
 

MT_TT_Sk_MP: 

MT_TT_Sk_MI_cSSF 

MT_TT_Sk_MI_cLCK 

MT_TT_Sk_MI_cLOC[] 

MT_TT_Sk_MI_cMMG 

MT_TT_Sk_MI_cUNL 

MT_TT_Sk_MI_cUNM 

MT_TT_Sk_MI_cUNP 

MT_TT_Sk_MI_cUNPhb 

MT_TT_Sk_MI_cDEG 

MT_TT_Sk_MI_cRDI 

MT_TT_Sk_MI_pN_LF 

MT_TT_Sk_MI_pN_TF 

MT_TT_Sk_MI_pF_LF 

MT_TT_Sk_MI_pF_TF 

MT_TT_Sk_MI_pF_DS 

MT_TT_Sk_MI_pN_DS 

MT_TT_Sk_MI_ODCV_Ping_Result 

MT_TT_Sk_MI_ODCV_Trace_Result  

MT_TT_Sk_MI_ODCV_FWErr  
MT_TT_Sk_MI_ODCV_BWErr 

• Processes: 

The processes associated with the MT_TT_Sk function are as depicted in the figure Figure below. 



[Performance Monitoring process are FFS and are not depicted] 



Note:  unexpPriority (dUNPr) does not appear in draft-ietf-cc-cv-rdi, or in G.8121 (this event is FFS) 

PHB: The CI_oPHB signal is assigned to the AI_PHB signal at the reference point MT_AP.  

Note that the CI_iPHB signal is not used by any of the processes in the function. 

Extract TTL: The Time To Live value is extracted from the outer shim header's TTL field within 

the MT_CI traffic unit  

Block: When the aBlock consequent action is asserted, this process drops all traffic units arriving at 

its input. 

MEP OAM Extraction: see 8.1.1.3 

Session Demux: see 8.1.2.3 

CCCV Reception: see 8.1.2.1 

LKR/AIS Reception: see 8.1.3.3 

On-demand CV Reception: see 8.1.4.4 

On-demand CV Control: see 8.1.4.2 

MEP On-demand CV Responder: see 8.1.4.6 

Performance Counter Process: This process is for further study. 

Defect Generation: This process raises and clears the defects as defined in clause 6.1. 

[Note: the defects, consequent actions, performance monitoring etc are common and can be 

described in G.8121 and referred to by G.8121.1 and G.8121.2] 

• Defects:  

See [G.8121] 

• Consequent actions: 

See [G.8121] 

• Defect correlations:  

See [G.8121] 

• Performance monitoring:  

See [G.8121] 

9.3 Adaptation Functions 

9.3.1 MPLS-TP to MPLS-TP Adaptation function (MT/MT_A) 

This atomic functions are defined in clause 9.3.1  in G.8121. They use the OAM protocol specific 

AIS insertion process and LCK generation process as defined in clause 8.6.2. 

9.3.1  

9.4 Diagnostic Functions 

This clause describes Termination Functions and Adaptation Functions relating to OAM. 

Formatted: Font: (Asian) MS Mincho, (Asian)
Japanese

Formatted: Normal



9.4.1 Diagnostic Functions for MEPs 

Diagnostic functions for MEPs are includes in the MPLS-TP Trail Termination function (see 9.2.1) 

and MPLS-TP to MPLS-TP Adaptation function (see 9.3.1). 

9.4.2 Diagnostic Functions for MIPs 

9.4.2.1 MPLS-TP MIP Diagnostic Trail Termination function (MTDi_TT) 

The bidirectional MPLS-TP MIP DiagnosticTrail Termination (MTDi_TT) function is performed by 

a co-located pair of the MPLS-TP trail termination source (MTDi_TT_So) and sink (MTDi_TT_Sk) 

functions as shown in the figure below. 

 

9.4.2.1.1  MPLS-TP MIP Diagnostic Trail Termination Source function (MTDi_TT_So) 

The MTDi_TT_So function adds MPLS-TP OAM to the MT_AI signal at its MT_AP. 

The information flow and processing of the MTDi_TT_So function is defined with reference to the 

figure below. 

• Symbol: 



 

• Interfaces: 

Table 9-*/G.8121.2/Y.1381.2 – MTDi_TT_So inputs and outputs 

 

Input(s) Output(s) 

MT_AP: 
MT_AI_D 

MT_AI_PHB 

 

MTDi_RP: 

MTDi_RI_LSPPing_Rsp 

 

MTDi_TT_So_MP: 
MTDi_TT_So_MI_Target_FEC  

MTDi_TT_So_MI_Ifnum  

MTDi_TT_So_MI_MTU  

 

MT_CP: 
MT_CI_D 

MT_CI_oPHB 

MT_CI_iPHB 

 

• Processes: 

The processes associated with the MTDi_TT_So function are as depicted in the Figure below. 



 

PHB: The AI_PHB signal is assigned to both the CI_iPHB and CI_oPHB signals at the MT_TCP 

reference point. 

Insert TTL: The Time To Live value is inserted in the outer shim header's TTL field within the 

MT_AI traffic unit  

Temination Function OAM Insertion: See 8.1.1.1 

On-demand CV Response Generation: See 8.1.4.7 

• Defects: 

None.  

• Consequent actions: 

None. 

• Defect correlations: 

None. 

• Performance monitoring: 

None. 

9.4.2.1.2  MPLS-TP MIP Diagnostic Trail Termination Sink function (MTDi_TT_Sk) 

The information flow and processing of the MTDi_TT_Sk function is defined with reference to the 

Figure below. 

• Symbol: 



 

• Interfaces: 

Table x/G.8121.2/Y.1381.2 – MTDi_TT_Sk inputs and outputs 

Input(s) Output(s) 

MT_TCP: 

MT_CI_D 

MT_CI_iPHB 

MT_CI_oPHB 

MT_CI_LStack 
 

MTDi_TT_Sk_MP: 

MTDi_TT_Sk_MI_FEC_Checking  

 

MT_AP: 

MT_AI_D 

MT_AI_PHB 

MT_AI_LStack 

 

MTDi_RP: 

MTDi_RI_LSPPing_Rsp 

 

• Processes: 

The processes associated with the MTDi_TT_Sk function are as depicted in the figure below. 



 

PHB: The CI_oPHB signal is assigned to the AI_PHB signal at the reference point MT_AP.  

Note that the CI_iPHB signal is not used by any of the processes in the function. 

MIP OAM Extraction: see 8.1.1.3 

On-demand CV Reception: see 8.1.4.4 

MIP On-demand CV Responder: see 8.1.4.5 

• Defects:  

None 

• Consequent actions: 

None 

• Defect correlations:  

None 

• Performance monitoring:  

None 

 

9.4.2.2 MPLS-TP MIP Diagnostic Adaptation function (MTDi/MT_A) 

9.4.2.2.1 MPLS-TP to MPLS-TP adaptation source function (MTDi/MT_A_So) 

This function maps client MT_CI traffic units into server MT_AI traffic units. 



  

MT_AI 

MT_CI 

MTDi/MT _A_So 

… 

 

 

• Interfaces: 

Table x/G.8121.2/Y.1381.2 – MTDi/MT_A_So interfaces 

Inputs Outputs 

Each MT_CP: 

MT_CI_Data 

MT_CI_iPHB 

MT_CI_oPHB 

 

MT_AP: 

MT_AI_Data 

MT_AI_PHB 

 

• Processes: 

The MTDi/MT_A_So function maps MT_CI_Data to MT_AI_Data and MT_CI_oPHB to 

MT_AI_PHB. 

• Defects: 

None. 

• Consequent actions: 

None. 

• Defect correlations: 

None. 

• Performance monitoring: 

None. 

9.4.2.2.2 MPLS-TP to MPLS-TP adaptation sink function (MTDi/MT_A_Sk) 

This function retrieves client MT_CI traffic units from server MT_AI traffic units. 

  

MT_AI 

MT_CI 

MTDi/MT _A_Sk 

… 

 



• Interfaces: 

Table x/G.8121.2/Y.1381.2 – MTDi/MT_A_Sk interfaces 

Inputs Outputs 

MT_AP: 

MT_AI_Data 

MT_AI_PHB 

MT_AI_LStack 

 

Each MT_CP: 

MT_CI_Data 

MT_CI_iPHB 

MT_CI_oPHB 
MT_CI_LStack 

• Processes: 

The MTDi/MT_A_Sk function maps MT_AI_Data to MT_CI_Data, MT_AI_PHB to MT_CI_oPHB 

and MT_CI_iPHB, and MT_AI_LStack to MT_CT_LStack. 

• Defects: 

None. 

• Consequent actions: 

None. 

 • Defect correlations: 

None. 

• Performance monitoring: 

None. 

 

 

10 MPLS-TP to Non-MPLS-TP client adaptation functions  

This atomic functions are defined in clause 10  in G.8121.  

 

11 Non-MPLS-TP Server to MPLS-TP adaptation functions  

These atomic functions are defined in clause 11 in G.8121. They use the OAM protocol specific AIS 

insertion process and LCK generation process as defined in clause 8.6.2 and 8.6.3. 

 


