INTERNATIONAL TELECOMMUNICATION UNION

STUDY GROUP 15

TD 540 Rev.1 (PLEN/15)

TELECOMMUNICATION STANDARDIZATION SECTOR

STUDY PERIOD 2009-2012

English only

Original: English

Question(s): 9/15 Geneva, 5-16 December 2011

TEMPORARY DOCUMENT

Source: Editor G.8121/Y.1381

Title: Draft revised Recommendation ITU-T G.8121/Y.1381 (for Consent)

Abstract

This document contains the latest draft of G.8121 for consent, after a number of drafting sessions in this meeing.

ITU-T Recommendation G.8121/Y.1381

Characteristics of MPLS-TP equipment functional blocks

Summary

This Recommendation specifies both the functional components and the methodology that should be used in order to specify MPLS-TP layer network functionality of network elements; it does not specify individual MPLS-TP network equipment as such.

Source

ITU-T Recommendation G.8121/Y.1381 was approved on 29 March 2006 by ITU-T Study Group 15 (2005-2008) under the ITU-T Recommendation A.8 procedure.

Keywords

Atomic functions, equipment functional blocks, MPLS-TP layer network, MPLS-TP.

- ii -TD 540 Rev.1 (PLEN/15)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

© ITU 2006

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

- iii -TD 540 Rev.1 (PLEN/15)

CONTENTS

1	Scope		
2	Refere	nces	8
3	Defini	tions	9
4	Abbre	viations	11
5	Conve	ntions	12
6	Superv	vision	12
	6.1	Defects	
	6.2	Consequent actions	19
	6.3	Defect correlations	19
	6.4	Performance filters	19
7	Inform	nation flow across reference points	19
8	MPLS	-TP processes	19
	8.1	G-ACh Process	20
	8.1.1	Overview	20
	8.1.2	G-ACh Insertion Process	20
	8.1.3	G-Ach Reception Process	21
	8.2	TC/Label processes	22
	8.2.1	TC/Label source processes	22
	8.2.2	TC/Label Sink Processes	23
	8.2.3	Label Stack Copy Process	24
	8.3	Queuing process	24
	8.4	MPLS-TP-specific GFP-F processes	25
	8.4.1	MPLS-TP-specific GFP-F source processes	25
	8.4.2	MPLS-TP-specific GFP-F sink processes	26
	8.5	Control Word (CW) processes	27
	8.5.1	CW source process	27
	8.5.2	CII Sink Process	27
	8.6	OAM related Processes used by Server adaptation functions	28
	8.6.1	Selector Process	
	8.6.2	AIS Insert Process	
	8.6.3	LCK Generate process	29
	8.7	OAM related Processes used by adaptation functions	
		MCC and SCC Mapping and DeMapping	
	8.7.2 APS Insert and Extract Processes		
	8.7.3	CSF Insert and Extract Processes	34

- iv -TD 540 Rev.1 (PLEN/15)

	8.8	Pro-active and on-demand OAM related Processes	36
	8.8.1	Pro-active Continuity Check and Connectivity Verification (CC/CV)	38
	8.8.2	Remote Defect Indication (RDI)	39
	8.8.3	On-demand Connectivity Verification (CV)	39
	8.8.4	Pro-active Packet Loss Measurement (LMp)	40
	8.8.5	On-demand Packet Loss Measurement (LMo)	41
	8.8.6	Pro-active Packet Delay Measurement (DMp)	42
	8.8.7	On-demand Packet Delay Measurement (DMo)	43
	8.8.8	Diagnostic Test (DT)	44
	8.8.9	Route Tracing (RT)	44
9	MPLS-	TP layer functions	44
	9.1	Connection Functions (MT_C)	45
	9.1.1	Sub-network connection protection process	47
	9.2	Termination functions	48
	9.2.1	MPLS-TP Trail Termination function (MT_TT)	48
	9.3	Adaptation functions	
	9.3.1	MPLS-TP to MPLS-TP adaptation function (MT/MT_A)	55
	9.4	MT Diagnostic Function	
	9.4.1	MT Diagnostic Trail Termination Functions for MEPs (MTDe)	60
	9.4.2	MT Diagnostic Flow Termination Functions for MIPs (MTDi_TT)	65
10	MPLS-	TP to Non-MPLS-TP client adaptation functions	72
	10.1	MPLS-TP to ETH adaptation function (MT/ETH_A)	72
	10.2	MPLS-TP to SCC and MCC Adaptation functions	
	10.2.1	MT/SCC_A Adaptation Function	
	10.2.2	MT/MCC_A Adaptation Function	83
11	Non-M	PLS-TP Server to MPLS-TP adaptation functions	
	11.1	SDH to MPLS-TP adaptation function (S/MT A)	
	11.1.1	VC-n to MPLS-TP adaptation functions (Sn/MT A; n=3, 3-X, 4, 4-X)	
	11.1.2	LCAS-capable VC-n to MPLS-TP adaptation functions (Sn-X-L/MT_A;	
		<i>n</i> =3, 4)	93
	11.1.3	VC-m to MPLS-TP adaptation functions (Sm/MT_A; m=11, 11-X, 12, 12 X)	
	11.1.4	LCAS-capable VC-m to MPLS-TP adaptation functions (Sm-X-L/MT_A;	,
	11.2	<i>m</i> =11, 12) OTH to MPLS-TP Adaptation function (O/MT_A)	
	11.2.1	ODUk to MPLS-TP Adaptation functions	
	11.2.1	LCAS-capable ODUk to MPLS-TP Adaptation functions (ODUkP-X-	109
	11.2.2	L/MT_A; k=1,2,3)	116
	11.3	PDH to MPLS-TP adaptation function (P/MT_A)	123

- v -TD 540 Rev.1 (PLEN/15)

	11.3.1	Pq to MPLS-TP Adaptation functions (Pq/MT_A; $q = 11s, 12s, 31s, 32e$)	123
	11.3.2	LCAS-capable P q to MPLS-TP Adaptation functions (P q -X-L/MT_A; q =11s, 12s, 31s, 32e)	130
11.4	Etherne	et to MPLS-TP adaptation function	136
	11.4.1	ETY to MPLS-TP adaptation function (ETY/MT_A)	Error! Bookmark not defined.
	11.4.1.1	ETY to MPLS-TP adaptation function (ETY/MT_A)	Error! Bookmark not defined.
	11 4 1 2	2 ETY to MPLS-TP adaptation function (ETY/MT_A)	Error! Bookmark not defined.

ITU-T Recommendation G.8121/Y.1381

Characteristics of MPLS-TP equipment functional blocks

1 Scope

This Recommendation describes both the functional components and the methodology that should be used in order to describes MPLS-TP layer network functionality of network elements; it does not describe individual MPLS-TP network equipment as such. This Recommendation provides a description of the MPLS-TP functional components using the same methodology that has been used for other transport technologies (e.g. SDH, OTN and Ethernet). This Recommendation is compliant with the transport profile of MPLS as defined by the IETF. In the event of a discrepancy between the MPLS-TP architecture or protocols described in this ITU-T Recommendation and the base definitions provided by the IETF RFCs that are normatively referenced from this ITU-T Recommendation, the IETF RFCs will take precedence. This Recommendation forms part of a suite of Recommendations covering the full functionality of network equipment. These Recommendations are [ITU-T G.806], [ITU-T G.798], [ITU-T G.783], [ITU-T G.705] and [ITU-T G.8021/Y.1341]. This Recommendation also follows the principles defined in [ITU-T G.805].

These Recommendations specify a library of basic building blocks and a set of rules by which they may be combined in order to describe digital transmission equipment. The library comprises the functional building blocks needed to specify completely the generic functional structure of the MPLS-TP layer network. In order to be compliant with this Recommendation, equipment needs to be describable as an interconnection of a subset of these functional blocks contained within this Recommendation. The interconnections of these blocks should obey the combination rules given.

Not every atomic function defined in this Recommendation is required for every application. Different subsets of atomic functions may be assembled in different ways according to the combination rules given in this Recommendation to provide a variety of different capabilities. Network operators and equipment suppliers may choose which functions must be implemented for each application.

Figure 1 presents the set of atomic functions associated with the traffic signal transport. The functions are based on the tunctional architecture as described in [ITU-T G.8110.1]. It is noted that this recommendation only defines Ethernet for the client of MPLS-TP as MT/ETH adaptation function

The representation of MPLS-TP provided in this ITU-T Recommendation is not intended to modify MPLS as defined by the IETF RFCs normatively referenced by this Recommendation.

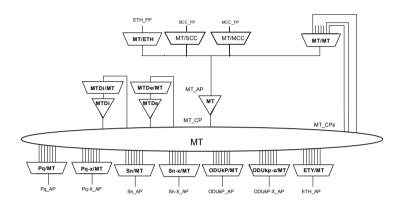


Figure 1/G.8121/Y.1381 - MPLS-TP atomic functions

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T G.705]	ITU-T Recommendation G.705 (2000), Characteristics of plesiochronous digital hierarchy (PDH) equipment functional blocks.
[ITU-T G.707]	ITU-T Recommendation G.707/Y.1322 (2003), Network node interface for the synchronous digital hierarchy (SDH).
[ITU-T G.709]	ITU-T Recommendation G.709/Y.1331 (2009), <i>Interfaces for the Optical Transport Network (OTN)</i> .
[ITU-T G.780]	G.780/Y.1351 (2004), Terms and definitions for synchronous digital hierarchy (SDH) networks.
[ITU-T G.783]	ITU-T Recommendation G.783 (2006), Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks.
[ITU-T G.798]	ITU-T Recommendation G.798 (2010), Characteristics of optical transport network hierarchy equipment functional blocks

- 9 -TD 540 Rev.1 (PLEN/15)

[ITU-T G.805]	ITU-T Recommendation G.805 (2000), Generic functional architecture of transport networks.
[ITU-T G.806]	ITU-T Recommendation G.806 (2009), <i>Characteristics of transport equipment</i> – <i>Description methodology and generic functionality</i> .
[ITU-T G.832]	ITU-T Recommendation G.832 (1998), Transport of SDH elements on PDHnetworks –Frame and multiplexing structures.
[ITU-T G.7041]	ITU-T Recommendation G.7041/Y.1303 (2011), <i>Generic framing procedure (GFP)</i> .
[ITU-T G.7043]	ITU-T Recommendation G.7043/Y.1343 (2004), Virtual Concatenation of Plesiochronous Digital Hierarchy (PDH) signals.
[ITU-T G.7712]	ITU-T Recommendation G.7712/Y.1703 (2010), Architecture and specification of data communication network
[ITU-T G.8021]	ITU-T G.8021/Y.1341 (2010), Characteristics of Ethernet transport network equipment functional blocks.
[ITU-T G.8101]	Recommendation G.8101/Y.1355 (2011), Terms and definitions for MPLS transport profile.
[ITU-T G.8110.1]	Recommendtion G.8110.1/Y.1370.1 (2011), Architecture of MPLS-TP (MPLS-TP) layer network.
[ITU-T G.8040]	ITU-T Recommendation G.8040/Y.1340 (2005), GFP frame mapping into Plesiochronous Digital Hierarchy (PDH)
[ITU-T G.8251]	ITU-T Recommendation G.8251 (2010), The control of jitter and wander within the optical transport network (OTN).
[ITU-T Y.1415]	ITU-T Recommendation Y.1415 (2005), <i>Ethernet-MPLS network interworking – User plane interworking</i> .
[IETF RFC 4448]	IETF RFC 4448 (2006), Encapsulation Methods for Transport of Ethernet over MPLS Networks.
[IETF RFC 4720]	IETF RFC 4720 (2006), Pseudowire Emulation Edge-to-Edge (PWE3) – Frame Check Sequence Retention.
[IETF RFC 5586]	IETF RFC 5586 (2009), MPLS Generic Associated Channel.
[IETF RFC 5718]	IETF RFC 5718 (2010), An Inband Data Communication Network For the MPLS Transport Profile.
[IETF RFC 6371]	IETF RFC 6371 (2011), Operations, Administration and Maintenance Framework for MPLS-based Transport Networks.

3 Definitions

3.1 Terms defined elsewhere:

- **3.1.1** access point: [ITU-T G.805]
- **3.1.2** adapted information: [ITU-T G.805]
- **3.1.3** characteristic information: [ITU-T G.805]
- **3.1.4** client/server relationship: [ITU-T G.805]

- 10 -TD 540 Rev.1 (PLEN/15)

3.1.5 connection: [ITU-T G.805] 3.1.6 connection point: [ITU-T G.805] 3.1.7 layer network: [ITU-T G.805] matrix: [ITU-T G.805] 3.1.8 3.1.9 network: [ITU-T G.805] **3.1.10** network connection: [ITU-T G.805] **3.1.11** reference point: [ITU-T G.805] **3.1.12** subnetwork: [ITU-T G.805] **3.1.13** subnetwork connection: [ITU-T G.805] **3.1.14** termination connection point: [ITU-T G.805] **3.1.15** trail: [ITU-T G.805] **3.1.16** trail termination: [ITU-T G.805] **3.1.17** transport: [ITU-T G.805] **3.1.18** transport entity: [ITU-T G.805] **3.1.19** transport processing function: [ITU-T G.805] **3.1.20** unidirectional connection: [ITU-T G.805] **3.1.21** unidirectional trail: [ITU-T G.805] **3.1.22** label: [ITU-T G.8101] **3.1.23** label stack: [ITU-T G.8101] 3.1.2 MPLS label stack: [ITU-T G.8101] **3.1.24** label switched path: [ITU-T G.8101] **3.1.25** Bottom of Stack: [ITU-T G.8101] **3.1.26** Time To Live: [ITU-T G.8101] **3.1.27** Label value: [ITU-T G.8101] **3.1.28** Per-Hop Behaviour: [ITU-T G.8101] 3.1.29 Associated Channel Header: [ITU-T G.8101] 3.1.30 Generic Associated Channel: [ITU-T G.8101] **3.1.31** G-ACh Label: [ITU-T G.8101] **3.1.32** traffic class: [ITU-T G.8101]

3.2 Terms defined elsewhere:

3.1.33 Explicitly TC-encoded-PSC LSP: [ITU-T G.8101]

3.1.14 label inferred PHB scheduling class LSP: [ITU-T G.8101]

None

- 11 -TD 540 Rev.1 (PLEN/15)

4 Ab	breviations This Recommendation uses the following abbreviations:
ACH	Associated Channel Header
AI	Adapted Information
AIS	Alarm indication signal
AP	Access Point
APS	Automatic protection switching
CC	Continuity Check
CI	Characteristic Information
CII	Common Interworking Indicator
CoS	Class of Service
CP	Connection Point
CV	Connectivity Verification
CW	Control Word
DM	Delay Measurement
DP	Drop Precedence
DT	Diagnostic Test
ETH	Ethernet MAC layer network
ETY	Ethernet PHY layer network
E-LSP	Explicitly TC-encoded-PSC LSP
FP	Flow Point
FTP	Flow termination point
G-ACh	Generic Associated Channel
GAL	G-ACh Label
GFP	Generic Framing Procedure
L-LSP	Label-Only-Inferred PSC LSP
L-LSI LCAS	Link Capacity Adjustment Scheme
LCAS	Locked
LCK LM	Loss Measurement
LSP	Label Switched Path
	Maintenance Communication Channel
MCC MDL C	
MPLS MPLS-TP	Multi-Protocol Label Switching
OAM	MPLS Transport Profile Operation Administration and Maintenance
-	Operation, Administration and Maintenance on-demand
0	
р	proactive Par Han Palaniana
PHB	Per Hop Behaviour
PSC	PHB Scheduling Class
RDI	Remote Detect Indidation
RT	Route Trace
S	Bottom of Stack
SCC	Signalling Communication Channel
TCP	Termination Connection Point
TFP	Termination Flow Point
TH	Throughput
TTL	Time-To-Live
TTSI	Trail Termination Source Identifier
ODUI	Optical Channel Data Unit
ODUk ODUk Vv	Optical Channel Data Unit – order k
ODUk-Xv	Virtual concatenated Optical Channel Data Unit – order k

- 12 -TD 540 Rev.1 (PLEN/15)

OPU OPUk OPUk-Xv OTH	Optical Payload Unit Optical Payload Unit of level k Virtually concatenated Optical Payload Unit of level k Optical Transport Hierarchy	
P11s	1544 kbit/s PDH path layer with synchronous 125 µs frame structure according to	
1115	ITU-T G.704	
P12s	2048 kbit/s PDH path layer with synchronous 125 μs frame structure according to	
	ITU-T G.704	
P31s	34368 kbit/s PDH path layer with synchronous 125 µs frame structure according to	
	ITU-T G.832	
P32e	44 736 kbit/s PDH path layer with frame structure according to ITU T G.704	
PM	Performance Monitoring	
PSI	Payload Structure Indication	
PT	Payload Type	
RES	Reserved overhead	
TC	Traffic Class	
TLV	Type Length Value	
vcPT	virtual concatenation Payload Type	
VcPLM	Virtual concatenation Payload Mismatch	

5 Conventions

The diagrammatic convention for connection-oriented layer networks described in this Recommendation is that of [ITU-T G.805].

6 Supervision

The generic supervision functions are defined in clause 6 of [ITU-T G.806]. Specific supervision functions for the MPLS-TP network are defined in this clause.

6.1 Defects 6.1.1 Summary of Entry/Exit conditions for defects

The defect Entry and Exit conditions are based on events. Occurrence or absence of specific events may raise or reset specific defects.

In the following:

Valid means a received value is *equal* to the value configured via the MI input interface(s).

Invalid means a received value is *not equal* to the value configured via the MI input interface(s).

The events defined for this Recommendation are summarized in Table 6-1 as a quick overview. Events, other than the protection switching events, are generated by processes in the MT_TT_Sk function as defined in clause 9.2. These processes define the exact conditions for these events; Table 6-1 only provides a quick overview.

Further details of the specific events relating to each protocol can be found in G.8121.1 and G.8121.2.

Table 6-1/G.8121/Y.1381 – Overview of Events

Event	Meaning
LVCIII	Wiedinig

- 13 -TD 540 Rev.1 (PLEN/15)

	-		
unexpMEG	Reception of a CV packet with an invalid MEG value.		
unexpMEP	Reception of a CV packet with an invalid MEP value, but with a valid MEG value.		
unexpCCPeriod	Reception of a CC packet with an invalid Periodicity value.		
unexpCVPeriod	Reception of a CV packet with an invalid Periodicity value, but with valid MEG and MEP values.		
unexpCoS-CC	Reception of a CC packet with an invalid TC value		
unexpCoS-CV	Reception of a CV packet with an invalid TC value, but with valid MEG and MEP values.		
expCC	Reception of a CC packet.		
expCV	Reception of a CV packet with valid MEG and MEP values.		
RDI=x	Reception of a CC packet for the peer MEP with the RDI information indicate to x; where x=0 (remote defect clear) and x=1 (remote defect set).		
LCK	Reception of a LCK packet. (Note 1)		
AIS	Reception of an AIS packet.		
BS	Bad Second, a second in which the Lost Frame Ratio exceeds the Bad Second Threshold (BS_THR).		
CSF-LOS	Reception of a CSF packet that indicates Client Loss of Signal.		
CSF-FDI	Reception of a CSF packet that indicates Client Forward Defect Indication.		
CSF-RDI	Reception of a CSF packet that indicates Client Reverse Defect Indication.		
Note 1: IETF uses this term	Note 1: IETF uses this term LCK as LKR and LKI in [IETF RFC 6371]		

The occurrence or absence of these events may detect or clear a defect. An overview of the conditions is given in Table 6-2. The notation "#event=x (K*period)" is used to indicate the occurrence of x events within the period as specified between the brackets.

Table 6-2 gives a quick overview of the types of defects for MPLS-TP layer and the raising and clearing conditions for the these defects as described in [IETF RFC 6371];.

Table 6-2/ G.8121/Y.1381 – Overview of Detection and Clearing Conditions

Defect	RFDIe Condition	Clearing Condition
dLOC	#expCC==0 (K*CC_Period)	expCC
dUNC-CC	unexpCoS-CC	#unexpCoS-CC==0 (K*CC_Period)
dUNC-CV	unexpCoS-CV	#unexpCoS-CV==0 (K*CV_Period)

- 14 -TD 540 Rev.1 (PLEN/15)

dMMG	unexpMEG	#unexpMEG==0 (K* CV_Period)
dUNM	unexpMEP	#unexpMEP==0 (K*CV_Period)
dUNP-CC	unexpCCPeriod	#unexpCCPeriod==0 (K*CC_Period)
dUNP-CV	unexpCVPeriod	#unexpCVPeriod==0 (K*CV_Period)
dRDI	RDI==1	RDI==0
dAIS	AIS	#AIS==0 (K*AIS_Period)
dLCK	LCK	#LCK==0 (K*LCK_Period)
dCSF-LOS	CSF-LOS	#CSF-LOS == 0 (K*CSF_Period or CSF-DCI)
dCSF-FDI	CSF-FDI	#CSF-FDI == 0 (K*CSF_Period or CSF-DCI)
dCSF-RDI	CSF-RDI	#CSF-RDI == 0 (K*CSF_Period or CSF-DCI)
dDEG	#BS==DEGM (DEGM*1second)	#BS==0 (M*1second)

6.1.2 Continuity Supervision

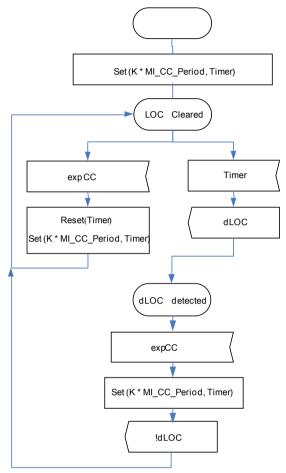


Figure 6-1/G.8121/Y.1381 - dLOC detection and clearance process

6.1.2.1 Loss Of Continuity defect (dLOC)

The Loss of Connectivity Verification defect is calculated at the MT layer. It monitors the presence of continuity in MT trails.

Its detection and clearance are defined in Figure 6-1. The 'period' in Figure 6-1 is set to $K*MI_CC_Period$, where MI_CC_Period corresponds to the configured CC Period and K is such that $3.25 \le K \le 3.5$.

6.1.3 Connectivity Supervision

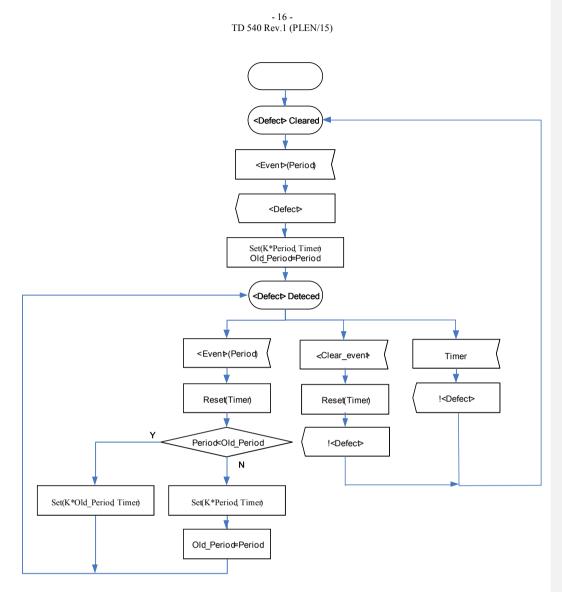


Figure 6-2/G.8021/Y.1341 – Defect detection and clearance process for dMMG, dUNM, dUNP, dUNPr, dAIS, dLCK and dCSF

Figure 6-2 shows a generic state diagram that is used to detect and clear the dMMG, dUNM, dUNP, dUNPr, dAIS, dLCK and dCSF defects. In this diagram <Defect> needs to be replaced with the specific defect and <Event> with the specific event related to this defect. Furthermore in Figure 6-2 $3.25 \le K \le 3.5$.

Figure 6-2 shows that the Timer is set based on the last received period value, unless an earlier OAM packet triggering <Event> (and therefore the detection of <Defect>) carried a longer period. As a consequence clearing certain defects may take more time than necessary.

6.1.3.1 Mismerge defect (dMMG)

The Mismerge defect detect is calculated at the MT layer. It monitors the connectivity in a Maintenance Entity Group.

Its detection and clearance are defined in Figure 6-2. The <Defect> in Figure 6-2 is dMMG. The <Event> in Figure 6-2 is the unexpectedMEG event and the Period is the Period carried in the CV packet that triggered the event, unless an earlier CV packet triggering an unexpectedMEG event carried a greater period.

6.1.3.2 Unexpected MEP defect (dUNM)

The Unexpected MEP defect is calculated at the MT layer. It monitors the connectivity in a Maintenance Entity Group.

Its detection and clearance are defined in Figure 6-2. The <Defect> in Figure 6-2 is dUNM. The <Event> in Figure 6-2 is the unexpectedMEP event and the Period is the Period carried in the CV packet that triggered the event, unless an earlier CV packet triggering an unexpectedMEP event carried a greater period.

6.1.3.3 Degraded Signal defect (dDEG)

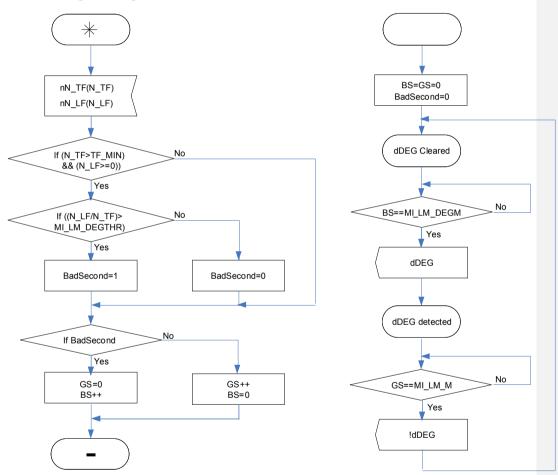


Figure 6-3/G.8121 – dDEG detection and clearance process

- 18 -TD 540 Rev.1 (PLEN/15)

The Degraded Signal defect is calculated at the MT layer. It monitors the connectivity of a MT Trail.

Its detection and clearance are defined Figure 6-3.

Every second the statemachine receives the 1 second counters for near end received and transmitted frames and determines whether the second was a Bad Second. The defect is detected if there are MI_LM_DEGM consecutive Bad Seconds and cleared if there are MI_LM_M consecutive Good Seconds.

In order to declare a Bad Second the number of transmitted frames must exceed a threshold (TF_MIN). If this is true then a Bad Second is declared if either the Frame Loss is negative (i.e. there are more frames received than transmitted) or the Frame Loss Ratio (lost frames/transmitted frames) is greater than MI LM DEGTHR.

6.1.4 Protocol Supervision

6.1.4.1 Unexpected Periodicity defect (dUNP-CC/dUNP-CV)

The Unexpected Periodicity defect is calculated at the MT layer. It detects the configuration of different periodicities at different MEPs belonging to the same MEG.

Its detection and clearance are defined Figure 6-2. The <Defect> in Figure 6-2 is dUNP-CC or dUNP-CV. The <Event> in Figure 6-2 is the unexpectedCCPeriod event or the unexpectedCVPeriod event and the Period is the Period carried in the CC or CV packet that triggered the event, unless an earlier CC or CV packet triggering an unexpectedCCPeriod event or the unexpectedCVPeriod event carried a greater period.

6.1.4.2 Unexpected CoS defect (dUNC-CC/dUNC-CV)

The Unexpected CoS defect is detected at the MT layer. It detects the configuration error of different CoS for CC or CV at different MEPs belonging to the same MEG.

Its detection and clearance are defined Figure 6-2.

The <Defect> in Figure 6-2 is dUNC-CC or dUNC-CV. The <Event> in Figure 6-2 is the unexpectedCoS-CC event or the unexpectedCoS-CV event and the Period is the Period accociated with the CC or CV packet that triggered the event, unless an earlier CC or CV packet triggering an unexpectedCoS-CC event or an unexpectedCoS-CV event accociated with a greater period.

6.1.4.3 Protection protocol supervision

For further study

6.1.5 Maintenance Signal Supervision

6.1.5.1 Remote Defect Indicator defect (dRDI)

The Remote Defect Indicator defect is detected at the MT layer. It monitors the presence of the RDI maintenance signal.

dRDI is detected on receipt of the RDI=1 event and cleared on receipt of the RDI=0 event.

- 19 -TD 540 Rev.1 (PLEN/15)

6.1.5.2 Alarm Indicate Signal defect (dAIS)

The Alarm Indicate Signal defect is detected at the MT layer. It monitors the presence of the AIS maintenance signal.

Its detection and clearance are defined Figure 6-2. The <Defect> in Figure 6-2 is dAIS. The <Event> in Figure 6-2 is the AIS event and the Period is the Period associated with the AIS packet unless an earlier AIS packet accordated with a greater period.

6.1.5.3 Locked Defect (dLCK)

The Locked defect is detected at the MT layer. It monitors the presence of the Locked maintenance signal.

Its detection and clearance are defined Figure 6-2. The <Defect> in Figure 6-2 is dLCK. The <Event> in Figure 6-2 is the LCK event and the Period is the Period associated with the LCK packet unless an earlier LCK packet accordated with a greater period.

6.1.5.4 Client Signal Fail defect (dCSF)

The CSF (CSF-LOS, CSF-FDI, and CSF-RDI) defect is detected at the MT layer. It monitors the presence of the CSF maintenance signal.

Its detection and clearance conditions are defined in Figure 6-2. The <Defect> in Figure 6-2 is dCSF-LOS, dCSF-FDI, or dCSF-RDI. The <Event> in Figure 6-2 is the CSF event (as generated by the CSF reception process in clause 8.7.6) and the Period is the Period associated with the CSF packet unless an earlier CSF packet accordated with a greater period

The <Clear_event> in Figure 6-2 is the CSF event which indicates Detect Clearance Indication (DCI).

6.2 Consequent actions

For generic consequent actions, see [ITU-T G.806]. For the specific consequent actions applicable to MPLS-TP, refer the specific atomic functions.

6.3 Defect correlations

For the defect correlations, see the specific atomic functions.

6.4 Performance filters

Ffs.

7 Information flow across reference points

Information flow for MPLS-TP functions is defined in clause 9. A generic description of information flow is defined in clause 7 of [ITU-T G.806].

8 MPLS-TP processes

This clause defines the specific processes for the MPLS-TP network. Generic processes are defined in clause 8 [ITU-TG.806].

8.1 G-ACh Process8.1.1 Overview

In order to ensure proper operational control, MPLS-TP network elements exchange OAM packets that strictly follow the same path as user traffic packets; that is, OAM packets are subject to the exact same forwarding schemes (e.g. fate sharing) as the user traffic packets. These OAM packets can be distinguished from the user traffic packets by using the G-ACh and GAL constructs.

The G-ACh is a generic associated control channel mechanism for Sections, LSPs and PWs, over which OAM and other control messages can be exchanged. The GAL is a label based exception mechanism to alert LERs/LSRs of the presence of an Associated Channel Header (ACH) after the bottom of the stack.

The format of GAL and ACH is described in [IETF RFC 5586].

8.1.2 G-ACh Insertion Process

Figure 8-1 describes G-ACh Insertion process.

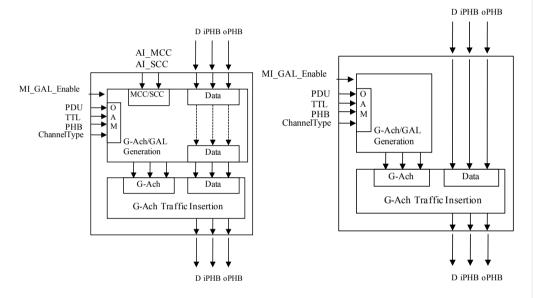


Figure 8-1 - G-ACh Insertion Process

The G-ACh Insertion process encapsulates OAM packets and multiplexes them with the data packets. The data packets are passed through unchanged, while the OAM packets are encapsulated as follows:

A G-ACh header is prepended to the OAM PDU, with the Channel Type . If MI_GAL_Enable is true, the process then further prepends a G-ACh Label (GAL) as described in [IETF RFC 5586]. If the TTL signal is not specified, the TTL field in the GAL is set to 255; otherwise it is set to the value in the TTL signal.Note: certain OAM packets can be addressed to a MIP and thus need to be inserted with a specific TTL to ensure that the TTL expires at the target MIP. OAM packets addressed to a MEP have the TTL set to 255.

Note: MI_GAL_Enable must be set to true on LSPs and to false on PWs. Setting it to true for PWs is FFS.

8.1.3 G-Ach Reception Process

Figure 8-2 describes G-ACh Reception process.

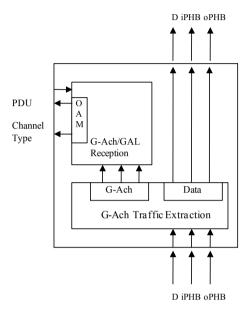


Figure 8-2 - G-ACh Reception Process

The G-ACh Traffic Unit will be extracted if it includes GAL and ACH in incoming Data when MI_GAL_Enable is set..

8.2 TC/Label processes

8.2.1 TC/Label source processes

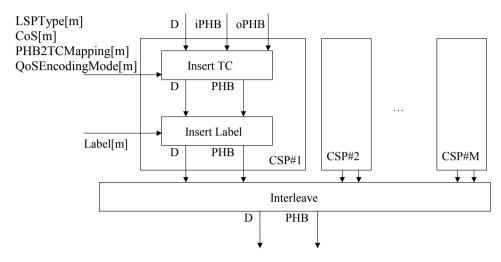


Figure 8-3/G.8121/Y.1381 – TC/Label source processes

Figure 3 shows the TC/Label source processes. These processes are performed on a frame-perframe basis.

Client Specific Processes: The function supports M (M $\leq 2^N - 16$, with N = 20 for MPLS label) client specific processes (CSP#1 to CSP#M), each connected to a single MPLS-TP connection point. CSP#m (1 \leq m \leq M) is active when Label[m] has a value in the range 16 to $2^N - 1$.

TC Insertion process: Insert the TC field encoding the PHB information according to the following rules:

- If LSPType[m] = L-LSP, the DP information is encoded into the TC field according to [RFC 3270] and CoS[m].
- If LSPType[m] = E-LSP, the PHB information is encoded into the TC field according to the 1:1 mapping configured in the PHB2TCMapping[m].

Note - E-LSP and L-LSP are refered to [ITU-T G.8110.1]

The PHB information to map into the TC field is selected according to the following rules:

- If QoSEncodingMode[m] = A, the iPHB information is mapped into the TC field.
- If QoSEncodingMode[m] = B, the oPHB information is mapped into the TC field.

Label Insertion process: Insert the 20-bit MPLS Label field with the value provided via Label[m].

Interleave process: Interleave the MPLS-TP traffic units from the client specific processes into a single stream.

8.2.2 TC/Label Sink Processes

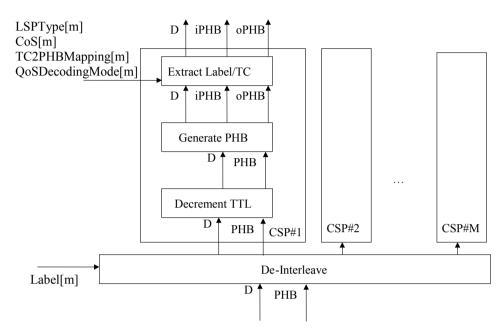


Figure 8-4/G.8121/Y.1381 – TC/Label sink processes

Figure 8-4 shows the TC/Label sink processes. These processes are performed on a frame-per-frame basis.

De-Interleave process: De-interleave the MPLS-TP traffic units and forwards each of its Client Specific Process #m based on the value in the Label field of the traffic unit. Relation between CSP and MPLS label value is provided by Label[1..M].

Traffic units received with a label value identifying a non-active CSP are dropped.

Client Specific Processes: The function supports M (M $\leq 2^N - 16$, with N = 20 for MPLS label) client specific processes (CSP#1 to CSP#M), each connected to a single MPLS-TP connection point. CSP#m (1 \leq m \leq M) is active when Label[m] has a value in the range 16 to $2^N - 1$.

Label and TC Extraction process: Extract the MPLS label and the TC fields from the traffic unit.

TTL Decrement Process: Decrements the TTL. If the MPLS-TP CP is not a TCP and the decremented TTL is less than or equal to zero, the traffic unit is dropped silently.

NOTE – MIPs and MEPs compound functions are connected to the Server/MT_A (or MT/MT_A) functions via an MPLS-TP TCP.

PHB Generation process: Processes the TC field.

The iPHB signal is generated according to the following rules:

• If LSPType[m] = L-LSP, the CoS information is equal to the CoS[m] while the DP information is decoded from the TC field according to RFC 3270 and the CoS[m].

• If LSPType[m] = E-LSP, the PHB information is decoded from the TC field according to the 1:1 mapping configured in the TC2PHBMapping[m].

Note - E-LSP and L-LSP are refered to [ITU-T G.8110.1]

The CI oPHB is generated according to the following rule:

- If QoSDecodingMode = A, the oPHB is equal to the generated iPHB.
- If QoSDecodingMode = B, the oPHB is equal to the received PHB.

8.2.3 Label Stack Copy Process

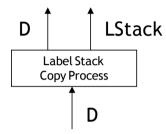


Figure 8-5/G.8121/Y.1381 - Label Stack Copy Process

Figure 8-5 shows Label Stack Copy Process. It passes through the CI_D unchanged and copies from the CI_D traffic unit the complete label stack.

8.3 Queuing process

The queuing process buffers received MPLS packets for output according to the CI_oPHB. Figure 8-6 shows Queuing process. The details of the queuing process implementation are out of the scope of this Recommendation.

The queuing process is also responsible for dropping frames if their rate at the MT_CI is higher than the <Srv> AI D can accommodate. Performance monitor counters are for further study.

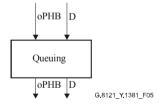


Figure 8-6/G.8121/Y.1381 - Queuing process

8.4 MPLS-TP-specific GFP-F processes

8.4.1 MPLS-TP-specific GFP-F source processes

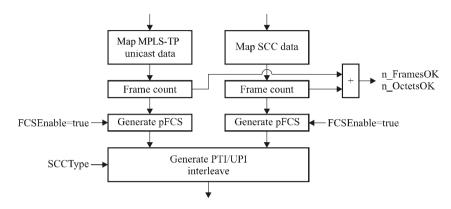


Figure 8-7/G.8121/Y.1381 - MPLS-TP-specific GFP-F source process

Figure 8-7 shows the MPLS-TP-specific GPF-F source processes. These processes are performed on a frame-per-frame basis.

Mapping of MPLS-TP data: The MPLS-TP packet is inserted into the client payload information field of the GFP frame as defined in 7.6 of [ITU-T G.7041]. One MPLS-TP packetresults in one GFP frame.

Mapping of SCC data: The SCC frame is inserted into the client payload information field of the GFP frame as defined in clause 7/G.7041/Y.1303. One SCC packet results in one GFP frame.

Frame Count: It counts the number of frames (n_FramesOK) and of octets (n_OctetsOK) that passes through.

pFCS generation: See 8.5.4.1.1 in [ITU-T G.806]. GFP FCS is always enabled (FCSEnable=true).

Generate PTI and UPI, Interleave: The PTI field of the GFP type header is set fixed to "000". The UPI field of the GFP type header is set to:

- the MPLS UPI (as defined in Table 6-3 of [ITU-T G.7041]), for frames coming from the Map MPLS-TP data process;
- the SCC UPI according to SCC Type for frames coming from the Map SCC data process.

The frames are then interleaved to form a single stream.

NOTE 2 – GFP Client Management frames are not defined for MPLS-TP over GFP-F mapping.

8.4.2 MPLS-TP-specific GFP-F sink processes

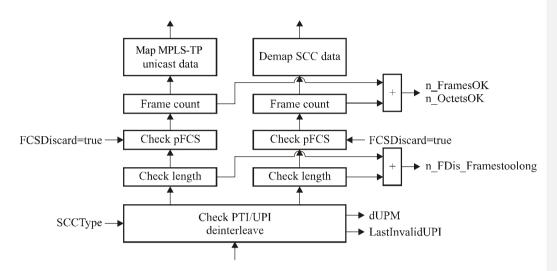


Figure8-8/G.8121/Y.1381 - MPLS-TP-specific GFP-F sink process

Figure 8-8 shows the MPLS-TP-specific GPF-F sink processes. These processes are performed on a frame-per-frame basis.

Check PTI and UPI, Deinterleave: GFP frames with an accepted PTI (AcPTI, see 8.5.1.1/G.806) of "000" are client data frames. All GFP frames with an accepted PTI (AcPTI, see 8.5.1.1/G.806) value other than "000" shall be discarded.

The UPI of client data frames is checked to generate dUPM as follows:

- a "valid-UPI frame" is a frame with a UPI that equals either the MPLS UPI (as defined in Table 6-3 of [ITU-T G.7041]) or the SCC UPI according to SCCType. All other frames are "invalid-UPI frames".
- dUPM is raised as soon as one "invalid-UPI frame" is received.
- dUPM is cleared if no "invalid-UPI frames" have been received for the last Tclear seconds.

Tclear is ffs. If dUPM is active, the latest received invalid UPI is available at LastInvalidUPI. If dUPM is not active, LastInvalidUPI is "n/a".

The UPI of client data frames is further used to deinterleave the frames:

- "valid-UPI frames" with UPI equalling the MPLS UPI (as defined in Table 6-3 of [ITU-T G.7041]) are sent towards the "Demap MPLS-TP data" process.
- "valid-UPI frames" with UPI equalling the SCC UPI according to SCCType (as defined in Table 6-3 of [ITU-T G.7041]) are sent towards the "Demap SCC data" process.
- "invalid-UPI frames" are discarded.

GFP-F frame length: It checks whether the length of the GFP-F frame is allowed. Frames longer than GFP_Length bytes are dropped and counted (n_FramesTooLong).

NOTE 1 – GFP Length is for further study.

pFCS Supervision: See 8.5.4.1.2/G.806. The discarding of errored frames is always enabled (FCSdiscard=true). If the accepted PFI is 0, the frame is dropped and counted (n FDis PFI).

Frame Count: It counts the number of frames (n_FramesOK) and of octets (n_OctetsOK) that passes through.

Demapping of SCC data: The SCC packet is extracted from the client payload information field of the GFP frame as defined in clause 7 of [ITU-T G.7041]. One GFP frame results in one SCC frame.

Demapping of unicast MPLS-TP data: The MPLS-TP upacket is extracted from the client payload information field of the GFP frame as defined in 7.6 of [ITU-T G.7041]. One GFP frame results in one MPLS-TP packet.

8.5 Control Word (CW) processes

This function performs the Control Word (CW) processing as described in [IETF RFC 4448]. The CW is known as the common interworking indicators (CII) in [ITU-T Y.1415].

8.5.1 CW source process

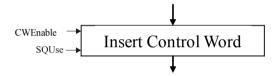


Figure 8-9/G.8121/Y.1381 - CW source process

Figure 8-9 shows CW source process. This function should generate and insert the CWas described in [IETF RFC 4448], in case the indication CIIEnable is true. Otherwise no insertion should be performed. If the indication SQUse is false, the sequence number field should be set at all zeroes.

8.5.2 CW Sink Process

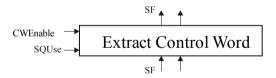


Figure 8-10/G.8121/Y.1381 - CW sink process

Figure 8-9 shows CW sink process. This function should process the Common Interworking Indicator as described in [ITU-T Y.1415], in case the indication CIIEnable is true. In this case, if the indication SQUse is true, the sequence number field should be processed and out-of-sequence packets dropped (no reordering is performed by this process).

In addition, the SF indication is passed through unaltered to the next process.

8.6 OAM related Processes used by Server adaptation functions

8.6.1 Selector Process

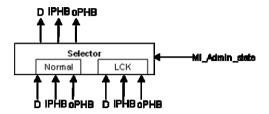


Figure 8-11/G.8121/Y.1381 - Selector process

Figure 8-11 shows the Selector Process Symbol. The Selector process selects the valid signal from the input of the normal MT_CI signal or the MT_CI LCK signal (as generated by the LCK Generation process in 8.6.3). The normal signal is blocked if MI_Admin_State is LOCKED. The behaviour is defined in Figure 8-12.

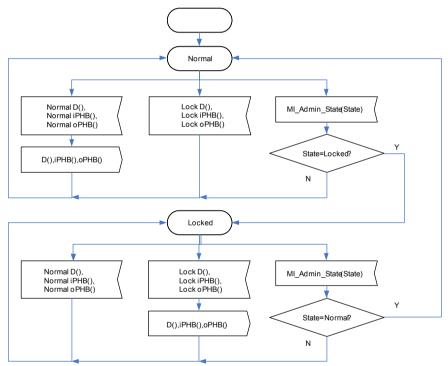
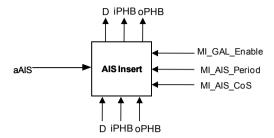



Figure 8-12/G.8121/Y.1381 - Selector Behaviour

8.6.2 AIS Insert Process

Figure 8-13/G.8121/Y.1381 – AIS Insert process

Figure 8-13 shows the AIS Insert Process Symbol. The generated AIS traffic units are inserted in the incoming stream, i.e., the output stream contains the incoming traffic units and the generated AIS traffic units that contains G-ACh traffic unit as described in Clause 8.1 which includes GAL or not depending on MI_GAL_Enable. The value of the MT_CI_CoS signal associated with the generated AIS traffic units is defined by the MI_AIS_CoS input parameter. As described in [IETF RFC 6371], AIS packets are transmitted with the "minimum loss probability PHB".

8.6.3 LCK Generate process

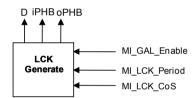


Figure 8-14/G.8121/Y.1381 – LCK Generation process

Figure 8-14 shows the LCK ¹ Insert Process Symbol. The LCK Generation Process generates MT_CI traffic units where the MT_CI_D signal contains the LCK signal. Figure 8-15 defines the behaviour of the LCK Generation Process.

¹ IETF uses the term LKR for this function

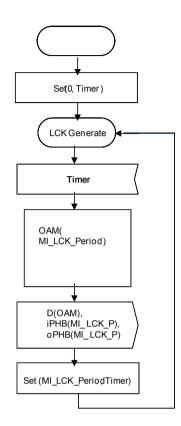


Figure 8-15/G.8121/Y.1381 – LCK Generation behaviour

The LCK Generation Process continuously generates LCK Traffic Units that contains G-ACh traffic unit as described in Clause 8.1 which includes GAL or not depending on MI_GAL_Enable.. The period between consecutive LCK traffic units is determined by the MI_LCK_Period parameter. The value of the MT_CI_PHB signal associated with the generated LCK traffic units is defined by the MI_LCK_CoS input parameter.

8.7 OAM related Processes used by adaptation functions

8.7.1 MCC and SCC Mapping and DeMapping

As defined in [ITU-T G.7712], an embedded communication channel (ECC) provides a logical operations channel between NEs that can be utilized by various applications. An MCC is an ECC dedicated for management plane communications. An SCC is an ECC dedicated for control plane communications.

The MCC mapping and de-mapping processes are provided to support the MT to MCC adaptation function for accessing to the MCC. The SCC mapping and de-mapping processes are provided to support the MT to SCC adaptation function for accessing to the SCC. The mapping and de-mapping processes for MCC is very similar to that of SCC. In the following description of this sub-clause and sub-clause 8.7.2, the term ECC will be used, which applies to both MCC and SCC.

8.7.1.1 ECC Mapping

The ECC mapping process is associated with the MT/MCC_A_So and MT/SCC_A_So functions, which are described in Clauses 10.2.2.1 and 10.2.1.1 respectively.

This process shall map the incoming ECC packet into G-ACh encapsulated ECC traffic unit (i.e., an MT AI D traffic units carrying an ECC packet).

The ECC traffic units generated by this process are encapsulated into the G_ACh , as defined in [IETF RFC5718], using or not the GAL depending on the MI_GAL_Enable configuration parameters. The value of the MT_AI_PHB associated with the generated ECC traffic units is defined by the MI_ECC_CoS input parameter.

8.7.1.2 ECC DeMapping

The ECC DeMapping process is associated with the MT/MCC_A_Sk and MT/MCC_A_Sk functions, which are described in Clauses 10.2.2.2 and 10.2.1.2 respectively.

This process shall extract the ECC packet from the G-ACh encapsulated ECC traffic unit (i.e., MT AI D traffic units carrying ECC packets).

The criteria for selecting ECC traffic units are based on the values of the fields within the MT_AI_D signal:

- GAL included to the MT_AI_D if GAL usage is enabled via MI_GAL_Enable
- The Channel type of G-ACh indicates an MCC packet (in MT/MCC_A_Sk) or an SCC packet (in MT/SCC_A_Sk), as defined in [IETF RFC 5718]

8.7.2 APS Insert and Extract Processes

Figure 8-16shows a protocol-neutral abstract model of the different processes inside MEPs and MIPs that are involved in APS² function. [to]

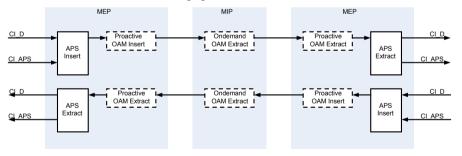


Figure 8-16/ – Overview of the processes involved with APS function

Formatted: (Asian) Japanese

APS Insert and Extract processes are located in MT/MT_Adaptation function. CI_APS signal carries APS specific information which is for further study. APS traffic units are inserted into and extracted from the stream of MT_CI_D traffic units.

8.7.2.1 APS Insert Process

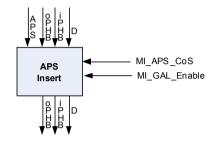


Figure 8-17/G.8121/Y.1381 - APS Insert process

Figure 8-17 shows the APS Insert process and Figure 8-18 defines the behaviour. The resulting APS traffic unit is inserted into the stream of incoming traffic units, i.e., the outgoing stream consists of the incoming traffic units and the inserted APS traffic units. The APS traffic unit contain G-ACh traffic unit as described in Clause 8.1 which includes GAL or not depending on MI_GAL_Enable.

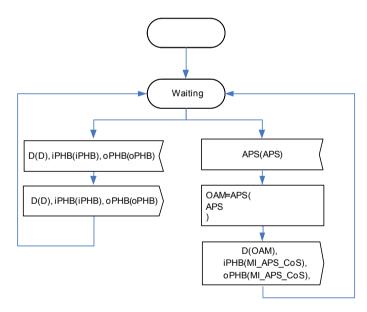


Figure 8-18/G.8121/Y.1381 - APS Insert Behaviour

8.7.2.2 APS Extract Process

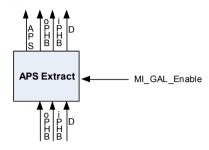


Figure 8-19/G.8121/Y.1381- APS Extract process

The APS Extract process extracts MT_CI_APS signals from the incoming stream of MT_CI traffic units.

The MT_CI_APS is the APS Specific Information contained in the received Traffic Unit. All other traffic units will be transparently forwarded.

The criteria for filtering are based on the values of the fields within the MT CI D signal:

- GAL included to the MT CI D if GAL usage is enabled via MI GAL Enable
- OAM type that is defined in Channel type of G-ACh indicates APS

This is defined in Figure 8-20. The function APS(D) extracts the APS specific information from the received Traffic Unit.



Figure 8-20/G.8121/Y.1381 - APS Extract Behaviour

8.7.3 CSF Insert and Extract Processes

Figure 8-21 shows the different processes inside MEPs and MIPs that are involved in the CSF ³Protocol.

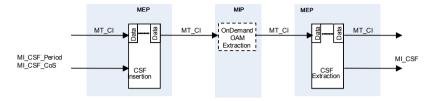


Figure 8-21/G.8121/Y.1381 - Overview of Processes involved with CSF Protocol

The MPLS-TP Client Signal Fail function (MT-CSF) is used by a MEP to propagate to a peer MEP the detection of a failure or defect event in an MPLS-TP client signal when the client itself does not support appropriate fault or defect detection or propagation mechanisms, such as MT-CC or MT-AIS. The MT-CSF messages propagate in the direction from MPLS-TP MEP function detecting the failure or defect event to the MPLS-TP sink-adaptation function associated with the peer MEP.

MT-CSF generation is located at MT/Client_A_So to insert CSF traffic unit and ProActive OAM Insertion is located at MT TT.

8.7.3.1 CSF Insert Process

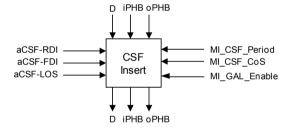


Figure 8-22/G.8121/Y.1381 - CSF Insert process

The CSF Insert Process is located at MT/Client_A_So as a part of CSF generation. Figure 8-22 shows the CSF Insert Process Symbol and Figure 8-23 defines the behaviour. If the aCSF signal is true, the CSF Insert process periodically generates MT_CI traffic units where the MT_CI_D signal contains the CSF signal until the aCSF signal is false. The generated CSF traffic units are inserted in the incoming stream, i.e., the output stream contains the incoming traffic units and the generated CSF traffic unit sthat contains G-ACh traffic unit as described in Clause 8.1 which includes GAL or

Formatted: Font: 10 pt

not depending on MI_GAL_Enable. The period between consecutive CSF traffic units is determined by the MI_CSF_Period parameter.

The specifc CSF traffic unit isfor further study.

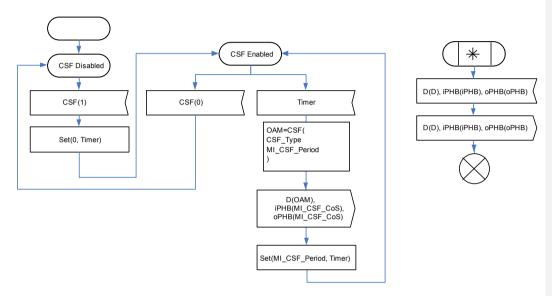


Figure 8-23/G.8121/Y.1381 - CSF Insert behaviour

Note: generation of CSF(0) and CSF(1) events as well as determination of CSF type is FFS

8.7.3.2 CSF Extract Process

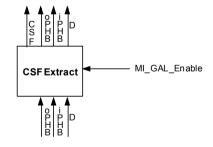


Figure 8-24/G.8121/Y.1381 – CSF Extract process

The CSF Extract process is located at MT/Client_A_sk and extracts MT-CSF from MI_AI_D. Figure 8-24 shows the CSF Extract Process Symbol.

The encoding of the MT_CI_D signal for CSF frames is for further study.

The criteria for filtering are based on the values of the fields within the MT CI D signal:

- GAL included to the MT CI D if GAL usage is enabled via MI GAL Enable
- OAM type that is defined in Channel type of G-ACh indicates CSF

This behaviour is defined in Figure 8-25. The function CSF(D) extracts the CSF specific information from the received Traffic Unit.

Note: G-ACh process is done at G-ACh process as defined in clause 8.1. The CSF traffic unit in MT_CI_D is forwarded to the CSF extract process.

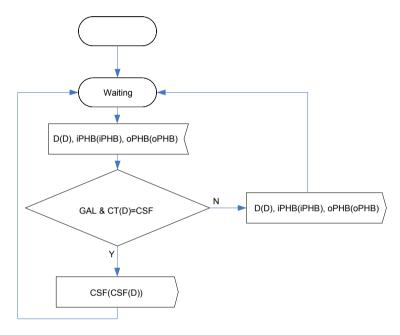


Figure 8-25/G.8121/Y.1381 - CSF Extract Behaviour

8.8 Pro-active and on-demand OAM related Processes

As described in [IETF RFC 6371], OAM functions are categorized as pro-active and on-demand and these OAM fuctionalites provide the different interfaces.

OAM functions can be also categorised as single-ended and dual-ended. Single-ended functions are those in which an initiating MEP sends OAM PDUs to a target MEP, which processes it and sends a response OAM PDU back to the initiating MEP. The results of the function are available only on the initiating MEP. Dual-ended functions are those in which an intiating MEP sends OAM PDUs to a target MEP, which processes it and does not send a response. The results of the function are available only on the target MEP. Dual-ended functions are typically deployed in pairs, one in each direction.

Figure 8-26 shows an OAM protocol-neutral abstract model of the different processes inside MEPs and MIPs that are involved in performing single-ended pro-active or on-demand OAM functions. In the case of dual-ended functions, the model is equivalent to the top half of the diagram only, and the results are reported by the OAM sink control process on the Target MEP.

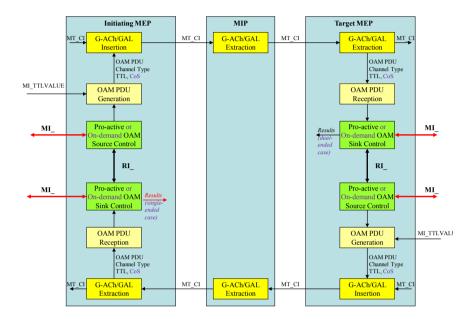


Figure 8-26/G.8121/Y.1381 – Overview of the processes involved with pro-active or ondemand OAM functions

NOTE – The MT_CI signals at the input of the G-ACh/GAL Insertion process and at output of the G-ACh/GAL Extraction process are not input/output signals of the Initiation/Target MEPs but signals which are internal to these MEPs.

The proactive OAM Source and Sink Control processes perform all the OAM control procedures (e.g., they maintain the necessary state machine) that are required for a specific OAM protocol within the MT_TT_So and MT_TT_Sk atomic functions respectively.

The OAM Source Control process within the initiating MEP requests the OAM PDU Generation process to generate OAM Request PDUs toward the target MEP on the basis of the local state machine and the relevant Management Information (MI_). This supports both single-ended and dual-endedpro-active or on-demand OAM transactions.

In the case of a dual-endedOAM transaction, the OAM Sink Control process within the target MEP reports the dual-endedOAM results on the basis of the OAM Request PDUs received by the OAM PDU Reception process.

In the case of single-ended OAM transactions, the following actions are taken:

- 38 -TD 540 Rev.1 (PLEN/15)

- The OAM Sink Control process within the target MEP provides the local OAM Source Control process the relevant Remote Information (RI_) to generate a reply to the OAM Request PDU received by the local PDU Reception process.
- The OAM Source Control process within the target MEP requests the OAM PDU
 Generation process to generate OAM Reply PDUs toward the initiating MEP based on the
 information it receives from the local OAM Sink Control process via the relevant Remote
 Information (RI).
- The OAM Sink Control process within the initiating MEP reports the unidirectional or bidirectional OAM results based on the OAM Reply PDUs received by the local OAM PDU Reception process

The OAM PDU Generation process builds, when instructed by its control process, the required OAM PDU and passes it to the G-ACh/GAL process, defined in clause 8.1, for insertion within the MPLS-TP CI traffic flow. It also passes the following information elements that are required by the G-ACh/GAL process: the CoS associated to the OAM packet (on the basis of the instruction received by the control process); the ACH Channel Type that identifies the OAM PDU and the TTL value which it is either the TTL distance to a MIP (for OAM PDUs targeted to a MIP and properly requested by the control process) or the default value as configured via MI TTLValue.

Similarly, the OAM PDU generation process consists of a number of OAM protocol-specific PDU generation sub-processes and a sub-process that multiplexes all the PDUs generated by these OAM protocol-specific PDU generation sub-processes into a single stream of OAM PDUs, which is sent to the G-ACh/GAL Insertion process along with the appropriate ACH Channel Type.

The OAM PDU Reception process receives an OAM PDU, together with the ACH Channel Type value identifying the PDU type and the associated CoS, from the G-ACh/GAL process and passes the relevant information to its control process.

Similarly, the OAM PDU Reception process consists of a number of OAM protocol-specific PDU reception sub-processes and a sub-process that demultiplexes OAM PDUs received from the G-ACh/GAL Extraction process towards these OAM protocol-specific PDU reception sub-processes, based on the ACH Channel Type.

The relevant Management Information (MI_) and Remote Information (RI_) used by these processes depend on the OAM function to be performed and it is defined in the next sub-clauses.

The detailed specification, including further process decomposition and the interface between them, of these pro-active and on-demand OAM control processes and of the OAM PDU Generation and Reception processes are OAM protocol-specific and therefore outside the scope of this Recommendation.

The Proactive OAM Source Control process, Proactive OAM Sink Control, On-demand OAM Source Control and On-Demand OAM Sink Control processes each consist of a number of protocol-specific control sub-processes, relating to different types of OAM PDU.

8.8.1 Pro-active Continuity Check and Connectivity Verification (CC/CV)

[CD07: asks for single-ended mechansim (BFD CC and CV packets in each direction are not independent) while The current content in section 8.8.1 describes only the dual-ended

_

- 39 -TD 540 Rev.1 (PLEN/15)

mechanism and is therefore incompatible with G.8121.2.] As described in [IETF RFC 6371], both CC and CV OAM functions are based on the (proactive) generation of OAM packets by the source MEP that are processed by the peer sink MEP(s).

The source MEP generates CC/CV OAM packets if it is enabled via Management Information. As described in [IETF RFC 6371], the CC/CV OAM packets are generated at a regular rate which is configured by the operator via the MI_CC_Period. These packets are also transmitted using PHB which is configured via MI_CC_COS and MI_CC_DP (and that is typically the "minimum loss probability PHB").

In order to perform Connectivity Verification, the generated CC/CV packets also includes a globally unique Source MEP identifier: the transmitted value is configured via protocol-specific management information on the source MEP while the expected value is configured via different protocol-specific management information on the sink MEP.

The sink MEP always processes received CC/CV OAM packets and detects the following CC/CV defects, as defined in clause 6.1:

- dLOC
- dUNC-CC
- dUNC-CV
- dMMG
- dUNM
- dUNP-CC
- dUNP-CV

CC/CV OAM packets pass transparently through MIPs as described in [IETF RFC 6371].

The EMF can retrieve from the sink MEP the latest CC/CV OAM packet which caused a defect condition via the MI_GetSvdCC command: the CC/CV OAM packet is returned to the EMF via the MI_SvdCC.

8.8.2 Remote Defect Indication (RDI)

As in [IETF RFC6371], in case of co-routed and associated bidirectional transport paths, RDI is associated with proactive CC/CV, and the RDI indicator can be piggy-backed onto the CC/CV packet.

RDI information is carried in the CC/CV packets based upon the RI_CC/CV_RDI input. It is extracted in the CC/CV Reception Process.

In case of unidirectional transport paths, the RDI related OAM process is for further study.

8.8.3 On-demand Connectivity Verification (CV)

As described in [IETF RFC 6371], on-demand CV OAM functions are based on the (on-demand) generation of OAM packets by the source MEP, that are processed and responded to by the peer sink MIP(s) or MEP(s).

- 40 -TD 540 Rev 1 (PLEN/15)

The source MEP generates on-demand CV OAM packets when requested via protocol-specific MI signals. The results of the on-demand CV operation are returned by the source MEP using additional protocol-specific management information.8.8.4 Pro-active Packet Loss Measurement (LMp)

As described in [IETF RFC 6371], pro-active LM is performed by periodically sending LM OAM packets from the initiatingMEP to the target MEP and by receiving LM OAM packets from the target MEP on a co-routed bidirectional connection. Each MEP performs measurements of its transmitted and received user data packets (TxFCl and RxFCl). These measurements are then correlated in real time with the target MEP in the ME to derive the impact of packet loss on a number of performance metrics for the ME in the MEG.

For single-ended:

- The initiating MEP generates pro-active LM OAM Request packets if MI_LMp_Enable is true. These packets are generated at the rate configured via the MI_LMp_Period and, as described in [IETF RFC 6371], with the PHB configured via MI_LMp_CoS that yields the lowest drop precedence within the measured PHB Scheduling Class, in order to maximize reliability of measurement within the traffic class. The local value of transmitted user data packets (TxFCl) is inserted within the LM OAM packet by the OAM PDU Generation process.
- The target MEP replies to the LM OAM packets if it is enabled. The local value of the received user data packets (RxFCl) at the time the pro-active LM OAM Request packet has been received is passed by OAM PDU Reception process to the pro-active OAM sink control process, then to the pro-active OAM source control process (via RI_OAM_Info) and inserted by the OAM PDU Generation process within the transmitted pro-active LM OAM Reply: the actual behaviour on how this information is passed is OAM protocol specific and therefore outside the scope of this Recommendation. The OAM PDU Generation process also inserts the local value of the transmitted user data packets (TxFCl) in the reverse direction within the transmitted pro-active LM OAM Reply.
- The initiating MEP processes the received pro-active LM OAM Reply packet, together with the local value of the received used data packets (RxFCl) in the reverse direction at the time this OAM packet is received, as passed by the OAM PDU Reception process, and generates LM results.
- Depending on the LMp OAM tool that it is used, the LM results can be either calculated by the pro-active OAM sink control process or by the pro-active OAM source control process. In the latter case, the the pro-active OAM sink control process passes the required information in the received LM OAM Reply to the the pro-active OAM source control process via the RI_LMRp and receives the LM results back via the RI_LMp_Result. In both cases, the pro-active OAM sink control process passes the LM Results to the relevant performance monitoring processes within the MT_TT_Sk atomic function for reporting to the EMF.

For dual-ended:

• the initiating MEP generates pro-active LM OAM Request packets if it is enabled to do so via management information. These packets are generated at the rate configured via the MI_LMp_Period and, as described in [IETF RFC6371], with the PHB configured via MI_LMp_CoS that yields the lowest drop precedence within the measured PHB Scheduling Class, in order to maximize reliability of measurement within the traffic class. The local value of transmitted user data packets (TxFCl) is inserted within the LM OAM packet by the OAM PDU Generation process.

- 41 -TD 540 Rev.1 (PLEN/15)

• The target MEP receives to the LM OAM packets if it is enabled to do so via management information. The local value of the received user data packets (RxFCl) at the time the proactive LM OAM Request packet has been received is passed by OAM PDU Reception process to the pro-active OAM sink control process and generates LM results.

Pro-active LM OAM packets pass transparently through MIPs as described in [IETF RFC6371].

8.8.5 On-demand Packet Loss Measurement (LMo)

As described in [IETF RFC 6371], on-demand LM is performed by the command that sends LM OAM packets from the initiating MEP to the target MEP and by receiving LM OAM packets from the target MEP on a co-routed bidirectional connection. The initiating MEP performs measurements of its transmitted and received user data packets (TxFCl and RxFCl). These measurements are then correlated in real time with values received from the target MEP in the ME to derive the impact of packet loss for the ME in the MEG.

For single-ended measurement,

- The initiating MEP generates on-demand LM OAM Request packets when enabled via management information. These packets are generated with the PHB configured via management information that yields the lowest drop precedence within the measured PHB Scheduling Class, in order to maximize reliability of measurement within the traffic class. The local value of transmitted user data packets (TxFCl) is inserted within the LM OAM packet by the OAM PDU Generation process.
- The target MEP replies to the LM OAM packets if enabled via management information. The local value of the received user data packets (RxFCl) at the time the on-demand LM OAM Request packet has been received is passed by OAM PDU Reception process to the on-demand OAM sink control process, then to the on-demand OAM source control process (via RI_OAM_Info) and inserted by the OAM PDU Generation process within the transmitted on-demand LM OAM Reply: the actual behaviour on how this information is passed is OAM protocol specific and therefore outside the scope of this Recommendation. The OAM PDU Generation process also inserts the local value of the transmitted user data packets (TxFCl) in the reverse direction within the transmitted on-demand LM OAM Reply.
- The initiating MEP processes the received on-demand LM OAM Reply packet, together with the local value of the received used data packets (RxFCl) in the reverse direction at the time this OAM packet is received, as passed by the OAM PDU Reception process, and generates LM results.
- Depending on the LMo OAM tool that it is used, the LM results can be either calculated by
 the on-demand OAM sink control process or by the on-demand OAM source control process.
 In both cases, the LM results are reported to EMF by the MTDe_TT_So by the protocolspecific management information.

For dual-ended measurement,

• The initiating MEP generates on-demand LM OAM Request packets when enabled via management information. These packets are generated at the rate configured via the MI_LMo_Period and, as described in [IETF RFC6371], with the PHB configured via MI_LMo_CoS that yields the lowest drop precedence within the measured PHB Scheduling Class, in order to maximize reliability of measurement within the traffic class. The local value

of transmitted user data packets (TxFCl) is inserted within the LM OAM packet by the OAM PDU Generation process.

• The target MEP receives to the LM OAM packets when enabled via mangement information. The local value of the received user data packets (RxFCl) at the time the ondmeand LM OAM Request packet has been received is passed by OAM PDU Reception process to the on-demand OAM sink control process and generates LM results.

On demand LM OAM packets pass transparently through MIPs as described in [IETF RFC6371].

8.8.6 Pro-active Packet Delay Measurement (DMp)

As described in [IETF RFC6371], pro-active DM is performed by periodically sending DM OAM packets from the initiating MEP to the target MEP and by receiving DM OAM packets from the target MEP on a co-routed bidirectional connection. Each MEP records its transmitted and received Timestamps. The timestamps from the intiating and target MEPs are then correlated to derive a number of performance metrics relating to delay for the ME in the MEG.

For single-ended:

- The initiating MEP generates pro-active DM OAM Request packets if MI_DMp_Enable is true. These packets are generated at the rate configured via the MI_DMp_Period and, as described in [IETF RFC 6371], with the PHB configured via MI_DMp_CoS that yields the lowest drop precedence within the measured PHB Scheduling Class, in order to maximize reliability of measurement within the traffic class. The local value of transmitted timestamp (TxTimeStampf) is inserted within the DM OAM packet by the OAM PDU Generation process.
- The target MEP replies to the DM OAM packets if enabled by management information. The local value of the received timestamp (RxTimeStampl) at the time the pro-active DM OAM Request packet has been received is passed by OAM PDU Reception process to the pro-active OAM sink control process, then to the pro-active OAM source control process (via RI_OAM_Info) and inserted by the OAM PDU Generation process within the transmitted pro-active DM OAM Reply: the actual behaviour on how this information is passed is OAM protocol specific and therefore outside the scope of this Recommendation. The OAM PDU Generation process also inserts the local value of the transmitted timestamp (TxTimeStampf) in the reverse direction within the transmitted pro-active DM OAM Reply.
- The initiating MEP processes the received pro-active DM OAM Reply packet, together with the local value of the received timestamp (RxTimeStampl) in the reverse direction at the time this OAM packet is received, as passed by the OAM PDU Reception process, and generates DM results.
- Depending on the DMp OAM tool that it is used, the DM results can be either calculated by the pro-active OAM sink control process or by the pro-active OAM source control process. In the latter case, the the pro-active OAM sink control process passes the required information in the received DM OAM Reply to the the pro-active OAM source control process via the RI_DMRp and receives the DM results back via the RI_DMp_Result. In both cases, the pro-active OAM sink control process passes the DM Results to the relevant performance monitoring processes within the MT TT Sk atomic function for reporting to the EMF.

For dual-ended:

• the initiating MEP generates pro-active DM OAM Request packets if enabled by management information. These packets are generated at the rate configured via the

MI_DMp_Period and, as described in [IETF RFC6371], with the PHB configured via MI_DMp_CoS that yields the lowest drop precedence within the measured PHB Scheduling Class, in order to maximize reliability of measurement within the traffic class. The local value of transmitted Timestamp (TxTimeStampl) is inserted within the DM OAM packet by the OAM PDU Generation process.

• The target MEP receives to the DM OAM packets if enabled by management information. The local value of the received Timestamp (RxTimeStampl) at the time the pro-active DM OAM Request packet has been received is passed by OAM PDU Reception process to the pro-active OAM sink control process which generates DM results.

Pro-active DM OAM packets pass transparently through MIPs as described in [IETF RFC6371].

8.8.7 On-demand Packet Delay Measurement (DMo)

As described in [IETF RFC6371], on-demand DM is performed by the command that sends DM OAM packets from the initiating MEP to the target MEP and by receiving DM OAM packets from the target MEP on a co-routed bidirectional connection. Each MEP records its transmitted and received Timestamps. The timestamps from the initiating and target MEPs are then correlated to derive a number of performance metrics relating to delay for the ME in the MEG.

For single-ended:

- The initiating MEP generates on-demand PM OAM Request packets if MI_DMo_Enable is true. These packets are generated with the PHB configured via MI_DMo_CoS that yields the lowest drop precedence within the measured PHB Scheduling Class, in order to maximize reliability of measurement within the traffic class. The local value of transmitted timestamp (TxTimeStampf) is inserted within the DM OAM packet by the OAM PDU Generation process. The target MEP replies to the PM OAM packets if the MI_PMo_Enable is true. The local value of the received timestamp (RxTimeStampl) at the time the on-demand PM OAM Request packet has been received is passed by OAM PDU Reception process to the on-demand OAM sink control process, then to the on-demand OAM source control process (via RI_OAM_Info) and inserted by the OAM PDU Generation process within the transmitted on-demand DM OAM Reply: the actual behaviour on how this information is passed is OAM protocol specific and therefore outside the scope of this Recommendation.
- The initiating MEP processes the received on-demand DM OAM Reply packet, together with the local value of the received timestamp (RxTimestampl) in the reverse direction at the time this OAM packet is received, as passed by the OAM PDU Reception process, and generates DM results.
- Depending on the DMo OAM tool that it is used, the DM results can be either calculated by the on-demand OAM sink control process or by the on-demand OAM source control process. In both cases, the DM results are reported to EMF by the MTDe_TT_So by the protocolspecific management information.

dua1-ended:

• The initiating MEP generates on-demand DM OAM Request packets if MI_DMo_Enable is true. These packets are generated at the rate configured via the MI_DMo_Period and, as described in [IETF RFC6371], with the PHB configured via MI_DMo_CoS that yields the lowest drop precedence within the measured PHB Scheduling Class, in order to maximize reliability of measurement within the traffic class. The local value of transmitted Timestsmp (TxTimestampl) is inserted within the DM OAM packet by the OAM PDU Generation process.

- 44 -TD 540 Rev.1 (PLEN/15)

• The target MEP receives to the DM OAM packets if the MI_DMo_Enable is true. The local value of the received Timestsmp (RxTimestampl) at the time the on-demand DM OAM Request packet has been received is passed by OAM PDU Reception process to the on-demand OAM sink control process and generates DM results.

DM OAM packets pass transparently through MIPs as described in [IETF RFC6371].

8.8.8 Throughput Test (TH)

For dual-ended Throughput Test:

- As described in [IETF RFC 6371], out of service on demand throughput estimation can be
 performed by sending OAM test packets at increasing rate (up to the theoretical maximum),
 computing the percentage of OAM test packets received and reporting the rate at which OAM
 test packets begin to drop. In general, this rate is dependent on the OAM test packet size.
- The source MEP starts generating test packets when requested via protocol-specific management information and continues generating these packets at the configured period until requested to stop; at this time the number of sent packets is reported via protocol-specific management information.
- The sink MEP, when enabled via protocol-specific management information, starts processing the received OAM test packets until the test is terminated; at this time, the calculated test results are reported.

For single-ended Throughput Test:

For futher study

8.8.9 Route Tracing (RT)

For further study

9 MPLS-TP layer functions

Figure 9-0 illustrates the MPLS-TP layer network and server and client layer adaptation functions. The information crossing the MPLS-TP connection point (MT_CP) is referred to as the MPLS-TP characteristic information (MT_CI). The information crossing the MPLS-TP access point (MT_AP) is referred to as the MPLS-TP adapted information (MT_AI).

The MPLS-TP layer network provides embedded hierarchy via the label stacking mechanism. This is represented in the model by MPLS-TP Tunnel sublayers, which contain MT_TT and MT/MT_A functions. The figure shows a generic example for the connection of the MPLS-TP Tunnel functions. It is not required to connect them via a MT_C function; they can be directly inserted without a connection function. It is noted that this recommendation only defines Ethernet for the client of MPLS-TP as MT/ETH adaptation function.

This mechanism (MPLS-TP tunnel sublayers) is also used when sublayer (tandem connection) monitoring is required.

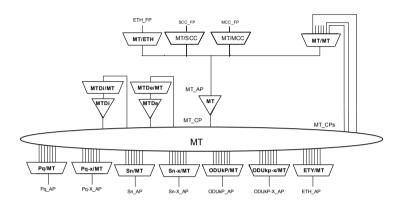


Figure 9-0/G.8121/Y.1381 - MPLS-TP atomic functions

9.1 Connection Functions (MT_C)

MT_C is the function that assigns MPLS packets at its input ports to MPLS-TP packets at its output ports.

The MT_C connection process is a unidirectional function as illustrated in Figure 9-1. The signal formats at the input and output ports of the function are similar, differing only in the logical sequence of the MPLS-TP packets. As the process does not affect the nature of the characteristic information of the signal, the reference point on either side of the MT_C function is the same, as illustrated in Figure 9-1.

Incoming MPLS-TP packets at the MT_CP are assigned to available outgoing MPLS-TP capacity at the MT_CP.

- 46 -TD 540 Rev.1 (PLEN/15)

• Symbol:

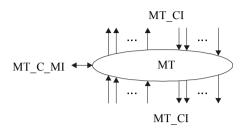


Figure 9-1/G.8121/Y.1381 - MT_C symbol

• Interfaces:

Table 9-1/G.8121/Y.1381 - MT_C input and output signals

Input(s)	Output(s)
Per MT_CP, n × for the function: MT_CI_D MT_CI_iPHB MT_CI_oPHB MT_CI_SSF MT_AI_TSF	per MT_CP, m × per function: MT_CI_D MT_CI_iPHB MT_CI_oPHB MT_CI_SSF
per input and output connection point: for further study	
per matrix connection: MT_C_MI_ConnectionType MT_C_MI_Return_CP_ID MT_C_MI_ConnectionPortIds	
per SNC protection group: for further study	

• Processes:

In the MT_C function MPLS-TP Characteristic Information is routed between input (termination) connection points ((T)CPs) and output (T)CPs by means of matrix connections. (T)CPs may be allocated within a protection group.

NOTE-Neither the number of input/output signals to the connection function, nor the connectivity is specified in this Recommendation. That is a property of individual network elements.

- 47 -TD 540 Rev.1 (PLEN/15)

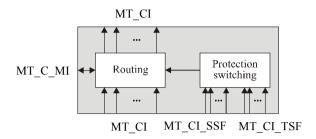


Figure 9-2/G.8121/Y.1381 - MT C process diagram

- Routing process:

This process passes all the traffic units received from a specific input to the corresponding output according to the matrix connection between the specified input and output.

Each (matrix) connection in the MT_C function shall be characterized by the:

Type of connection (MI_ConnectionType):	unprotected, protected
Traffic direction (MI_Return_CP_ID):	Unidirectional if NULL, otherwise it identifies the CP of the return connection (Note)
Input and output connection points (MI_ConnectionPortIDs):	set of connection point identifiers
NOTE – Bidirectional LSPs are supported by associating two unidirectional LSPs in the data plane, as per	

NOTE – Bidirectional LSPs are supported by associating two unidirectional LSPs in the data plane, as per ITU-T Rec. G.8110.1/Y.1370.1.

- Protection Switching process:

For further study.

• Performance Monitoring:

None.

• Defects:

None.

• Consequent actions:

If an output of this function is not connected to one of its inputs, the connection function shall send no traffic units and SSF = false to the output.

• Defect correlations:

None.

9.1.1 Sub-network connection protection process

For further study.

9.2 Termination functions

9.2.1 MPLS-TP Trail Termination function (MT TT)

The bidirectional MPLS-TP Trail Termination (MT_TT) function terminates the MPLS-TP OAM to determine the status of the MPLS-TP (sub)layer trail. The MT_TT function is performed by a colocated pair of the MPLS-TP trail termination source (MT_TT_So) and sink (MT_TT_Sk) functions as shown in Figure 9-3.

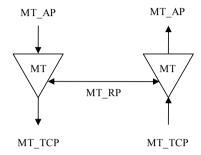


Figure 9-3/G.8121/Y.1381 - MT_TT

9.2.1.1 MPLS-TP Trail Termination Source function (MT TT So)

The MT_TT_So function determines and inserts the TTL value in the shim header TTL field and adds MPLS-TP OAM for pro-active monitoring to the MT_AI signal at its MT_AP.

The information flow and processing of the MT_TT_So function is defined with reference to Figure 9-4.

• Symbol:

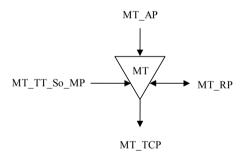
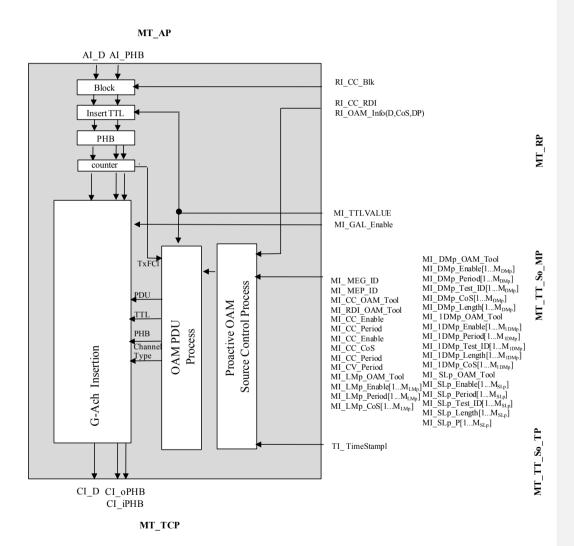


Figure9-4/G.8121/Y.1381 -MT_TT_So function

• Interfaces:

Table 9-2/G.8121/Y.1381 - MT_TT_So inputs and outputs

- 49 -TD 540 Rev.1 (PLEN/15)


Input(s)	Output(s)
MT_AP: MT_AI_D MT_AI_PHB	MT_CP: MT_CI_D MT_CI_oPHB MT_CI_iPHB
MT_AI_LStack	MT_CI_LStack
MT_RP: MT_RI_CC_RDI MT_RI_CC_Blk MT_RI_OAM_Info(D,CoS,DP)	MT_RP:
MT_TT_So_MP: MT_TT_So_MI_GAL_Enable MT_TT_So_MI_TTLVALUE MT_TT_So_MI_MEG_ID MT_TT_So_MI_MEP_ID	
MT_TT_So_MI_CC_OAM_Tool MT_TT_So_MI_RDI_OAM_Tool MT_TT_So_MI_CC_Enable MT_TT_So_MI_CC_CoS	
MT_TT_So_MI_CC_Period MT_TT_So_MI_CV_Period	
MT_TT_So_MI_LMp_OAM_Tool MT_TT_So_MI_LMp_Enable[1M _{LMp}] MT_TT_So_MI_LMp_Period[1M _{LMp}] MT_TT_So_MI_LMp_CoS[1M _{LMp}]	
$\label{eq:mt_to_model} \begin{split} & MT_TT_So_MI_DMp_OAM_Tool \\ & MT_TT_So_MI_DMp_Enable[1M_{DMp}] \\ & MT_TT_So_MI_DMp_Period[1M_{DMp}] \\ & MT_TT_So_MI_DMp_Test_ID[1M_{DMp}] \\ & MT_TT_So_MI_DMp_CoS[1M_{DMp}] \\ & MT_TT_So_MI_DMp_Length[1M_{DMp}] \\ \end{split}$	
MT_TT_So_MI_1DMp_OAM_Tool MT_TT_So_MI_1DMp_Enable[1M _{1DMp}] MT_TT_So_MI_1DMp_Period[1M _{1DMp}] MT_TT_So_MI_1DMp_Test_ID[1M _{1DMp}] MT_TT_So_MI_1DMp_Length[1M _{1DMp}] MT_TT_So_MI_1DMp_CoS[1M _{1DMp}]	
MT_TT_So_MI_SLp_OAM_Tool MT_TT_So_MI_SLp_Enable[1M _{SLp}] MT_TT_So_MI_SLp_Period[1M _{SLp}] MT_TT_So_MI_SLp_Test_ID[1M _{SLp}] MT_TT_So_MI_SLp_Length[1M _{SLp}] MT_TT_So_MI_SLp_CoS[1M _{SLp}]	

- 50 -TD 540 Rev.1 (PLEN/15)

MT_TP:	
MT TT So TI TimeStampl	

• Processes:

The processes associated with the MT_TT_So function are as depicted in Figure 9-5.

- 51 -TD 540 Rev.1 (PLEN/15)

Figure 9-5/G.8121/Y.1381 -MT TT So process diagram

Notes:

- 1. The interface between Pro-active OAM Control and OAM PDU Generation is protocol specific.
- 2. Note that the parameters & values in the MT_TT_So_MI_XX_OAM_Tool are outside the scope of this recommendation.

PHB: The AI_PHB signal is assigned to both the CI_iPHB and CI_oPHB signals at the MT_TCP reference point.

Insert TTL: The Time To Live value is inserted in the outer shim header's TTL field within the MT_AI traffic unit

Block process: When RI_CC_Blk is raised, the Block process will discard all AI_D traffic units it receives. If RI_CC_Blk is cleared, the received AI_D traffic units will be passed to the output port.

Counter process: For Further Study.

G-Ach/GAL Insertion Process: See 8.1/G.8121.

Pro-active OAM Source Control Process: See 8.8/G.8121

OAM PDU Generation Process: See 8.8/G.8121

• Defects:

None.

• Consequent actions:

None.

• Defect correlations:

None.

• Performance monitoring:

None.

9.2.1.2 MPLS-TP Trail Termination Sink function (MT_TT_Sk)

The MT_TT_Sk function reports the state of the MPLS-TP Trail (Network Connection). It extracts MPLS-TP trail OAM - for pro-active monitoring - from the MPLS-TP signal at its MT_TCP, detects defects, counts during 1-second periods errors and defects to feed Performance Monitoring when connected and forwards the defect information as backward indications to the companion MT_TT_So function.

Note – The MT_TT_Sk function extracts and processes one level of MPLS-TP OAM irrespective of the presence of more levels.

The information flow and processing of the MT_TT_Sk function is defined with reference to Figure 9-6.

• Symbol:

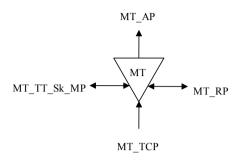


Figure 9-6/G.8121/Y.1381 – MT_TT_Sk function

• Interfaces:

 $Table~9\hbox{--}3/G.8121/Y.1381-MT_TT_Sk~inputs~and~outputs$

Input(s)	Output(s)
MT_TCP:	MT_AP:
MT CI D	MT AI D
MT CI iPHB	MT AI PHB
MT_CI_oPHB	MT_AI_TSF
MT_CI_SSF	MT AI TSD
MT_CI_Lstack	MT_AI_AIS
MT_RP:	MT_AI_LStack
MT_TT_Sk_MP:	MT_RP:
MT_TT_Sk_MI_ MEG_ID	MT_RI_CC_RDI
MT_TT_Sk_MI_ PeerMEP_ID	MT_RI_CC_Blk
MT_TT_Sk_MI_ CC_OAM_Tool	
MT_TT_Sk_MI_ RDI_OAM_Tool	MT_RI_OAM_Info(D,P,DP)
MT_TT_Sk_MI_CC_Enable	MT_TT_Sk_MP:
MT_TT_Sk_MI_CC_Period	MT TT Sk MI SvdCC
MT_TT_Sk_MI_CC_CoS	MT TT Sk MI cSSF
MT TT CL ML CV Decision	MT_TT_Sk_MI_cLCK
MT_TT_Sk_MI_CV_Period	MT_TT_Sk_MI_cLOC
MT_TT_Sk_MI_Get_SvdCC	MT_TT_Sk_MI_cMMG
MT TT Sk MI LMp OAM Tool	MT_TT_Sk_MI_cUNM
MT_TT_Sk_MI_LMp_Enable[1 M _{LMp}]	MT_TT_Sk_MI_cUNP-CC
MT_TT_Sk_MI_LMp_CoS[1 M _{LMp}]	MT_TT_Sk_MI_cUNP-CV
MT TT Sk MI LM DEGM	MT_TT_Sk_MI_cUNC-CC
MT TT Sk MI LM M	MT_TT_Sk_MI_cUNC-CV
MT TT Sk MI LM DEGTHR	MT_TT_Sk_MI_cDEG
MT TT Sk MI LM TFMIN	MT_TT_Sk_MI_cRDI
	MT_TT_Sk_MI_pN_LF[1P] MT_TT_Sk_MI_pN_TF[1P]
MT TT Sk MI DMp OAM Tool	INTI_TI_SK_INII_PIN_TIT[1F]

- 53 -TD 540 Rev.1 (PLEN/15)

Input(s)	Output(s)
MT TT Sk MI DMp Enable[1 M _{DMp}]	MT TT Sk MI pF LF[1P]
MT_TT_Sk_MI_DMp_CoS[1 M _{DMp}]	MT_TT_Sk_MI_pF_TF[1P]
	MT_TT_Sk_MI_pF_DS
MT_TT_Sk_MI_ 1DMp_OAM_Tool	MT_TT_Sk_MI_pN_DS
MT_TT_Sk_MI_1DMp_Enable[1M _{1DMp}]	MT_TT_Sk_MI_pB_FD[1P]
$MT_TT_Sk_MI_1DMp_Test_ID[1M_{1DMp}]$	MT_TT_Sk_MI_pB_FDV[1P]
MT_TT_Sk_MI_ SLp_OAM_Tool	MT_TT_Sk_MI_pN_FD[1P]
MT_TT_Sk_MI_SLp_Enable[1 M _{SLp}]	MT_TT_Sk_MI_pN_FDV[1P]
$MT_TT_Sk_MI_SLp_CoS[1M_{SLp}]$	MT_TT_Sk_MI_pF_FD[1P]
	MT_TT_Sk_MI_pF_FDV[1P]
MT_TT_Sk_MI_AIS_OAM_Tool	
MT_TT_Sk_MI_LCK_OAM_Tool	
MT_TT_Sk_MI_1second	
MT_TT_Sk_MI_SSF_Reported MT_TT_Sk_MI_RDI_Reported	
MT_TP: MT_TT_Sk_TI_ TimeStampl	

• Processes:

The processes associated with the MT_TT_Sk function are as depicted in Figure 9-7.

- 54 -TD 540 Rev.1 (PLEN/15)

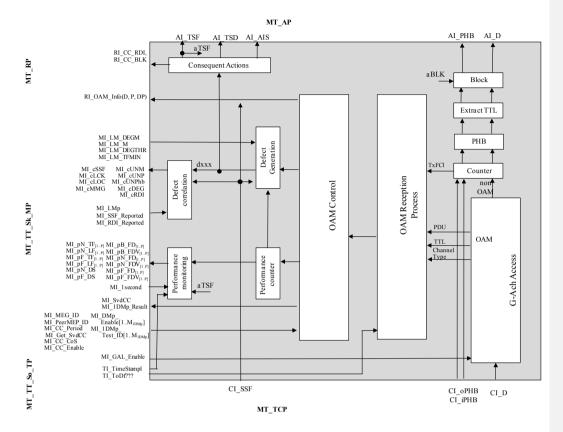


Figure 9-7/G.8121/Y.1381 - MT_TT_Sk process diagram

Note - The parameters & values in the MT_TT_Sk_MI_XX_OAM_Tool are outside the scope of this recommendation.

PHB: The CI oPHB signal is assigned to the AI PHB signal at the reference point MT AP.

Note that the CI_iPHB signal is not used by any of the processes in the function.

Extract TTL: The Time To Live value is extracted from the outer shim header's TTL field within the MT CI traffic unit

Block: When the aBlock consequent action is asserted, this process drops all traffic units arriving at its input.

Counter process: For further study

G-Ach/GAL Extraction Process: See 8.1.

Pro-active OAM Sink Control Process: See 8.8

OAM PDU Reception Process: See 8.8

Defect Generation: This process raises and clears the defects as defined in clause 6.1.•

• Defects:

For further study

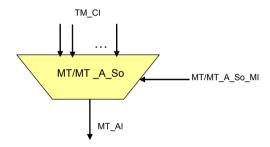
• Consequent actions:

For further study

• Defect correlations:

For further study

• Performance monitoring:


For further study

9.3 Adaptation functions

9.3.1 MPLS-TP to MPLS-TP adaptation function (MT/MT_A)

9.3.1.1 MPLS-TP to MPLS-TP adaptation source function (MT/MT_A_So)

This function maps client MT_CI traffic units into server MT_AI traffic units.

 $Figure~9\text{--}8/G.8121/Y.1381-MT/MT_A_So~function$

- 56 -TD 540 Rev.1 (PLEN/15)

• Interfaces:

 $Table~9\text{--}4/G.8121/Y.1381-MT/MT_A_So~interfaces$

Inputs	Outputs
Each MT_CP:	MT_AP:
MT_CI_Data	MT_AI_Data
MT_CI_iPHB	MT_AI_PHB
MT_CI_oPHB	
MT/MT_A_So_MI:	
MT/MT_A_So_MI_Admin_State	
MT/MT_A_So_MI_Label[1M]	
MT/MT_A_So_MI_LSPType[1M]	
MT/MT_A_So_MI_CoS[1M]	
MT/MT_A_So_MI_PHB2TCMapping[1M]	
MT/MT_A_So_MI_QoSEncodingMode[1M]	
MT/MT_A_So_MI_LCK_Period[1M]	
MT/MT_A_So_MI_LCK_CoS[1M]	
MT/MT_A_So_MI_GAL_Enable[1M]	

• Processes:

A process diagram of this function is shown in Figure 9-9.

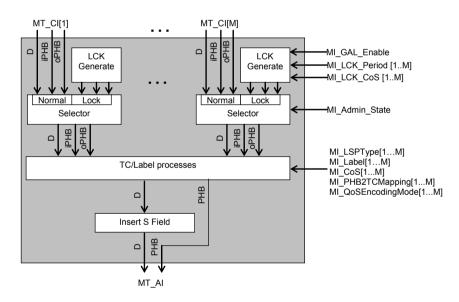


Figure 9-9/G.8121/Y.1381 – MT/MT_A_So process diagram

- LCK Generate process:

See 8.6.3. Each CP has its LCK Generate process.

- Selector process:

See 8.6.1. The normal CI is blocked if Admin_State = LOCKED.

- TC/Label processes:

See 8.2.1.

- S Field Insertion:

A 1-bit S Field set to 0 (not bottom of label stack) is inserted to indicate the client is MPLS.

• Defects:

None.

• Consequent actions:

None.

• Defect correlations:

None.

• Performance monitoring:

None.

9.3.1.2 MPLS-TP to MPLS-TP adaptation sink function (MT/MT_A_Sk)

This function retrieves client MT_CI traffic units from server MT_AI traffic units.

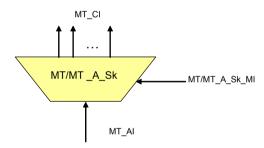


Figure 9-10/G.8121/Y.1381 – MT/MT_A_Sk function

• Interfaces:

 $Table\ 9\text{-}5/G.8121/Y.1381-MT/MT_A_Sk\ interfaces$

Inputs	Outputs
MT_AP:	Each MT_CP:
MT_AI_Data	MT_CI_Data
MT_AI_PHB	MT_CI_iPHB

- 58 -TD 540 Rev.1 (PLEN/15)

MT AI TSF	MT CI oPHB
MT AI AIS	MT_CI_SSF
MT AI LStack	MT_AI_LStack
MT/MT A Sk MP:	
MT/MT A Sk MI AdminState	
MT/MT_A_Sk_MI_Label[1M]	
MT/MT_A_Sk_MI_LSPType[1M]	
MT/MT_A_Sk_MI_CoS[1M]	
MT/MT_A_Sk_MI_ TC2PHBMapping[1M]	
MT/MT_A_Sk_MI_QoSDecodingMode[1M]	
MT/MT_A_Sk_MI_AIS_Period[1M]	
MT/MT_A_Sk_MI_AIS_CoS[1M]	
MT/MT_A_Sk_MI_LCK_Period[1M]	
MT/MT_A_Sk_MI_LCK_CoS[1M]	
MT/MT_A_Sk_MI_GAL_Enable [1M]	

•

Processes:

A process diagram of this function is shown in Figure 9-11.

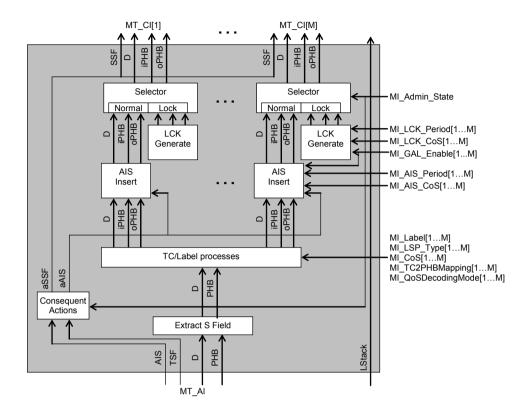


Figure 9-11/G.8121/Y.1381 - MT/MT_A_Sk process diagram

- Selector process:

See 8.6.1. The normal CI is blocked if Admin_State = LOCKED.

- LCK Generate process:

See 8.6.3.

- AISprocess:

See 8.6.2.

- TC/Label processes:

See 8.2.2.

- Label Stack Copy process:

See 8.2.3.

- S field extraction:

Extract and process the 1-bit S Field : the retrieved S Field should have the value 0 (not bottom of label stack) to indicate the client is MPLS; for such case the traffic unit is accepted and forwarded

(together with the PHB information) after extraction of the S-bit field to the next process. For the case the S-bit has the value 1, the traffic unit is silently discarded.

• Defects:

None.

• Consequent actions:

The function shall perform the following consequent actions:

aSSF ← AI TSF

aAIS ← AI_AIS • Defect correlations:

None.

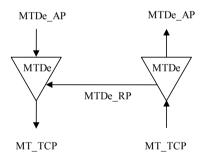
• Performance monitoring:

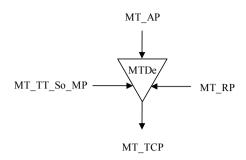
None.

9.4 MT Diagnostic Function

9.4.1 MT Diagnostic Trail Termination Functions for MEPs (MTDe)

The bidirectional MTDe Flow Termination (MTDe_TT) function is performed by a co-located pair of MTDe flow termination source (MTDe_TT_So) and sink (MTDe_TT_Sk) functions as shown in Figure 9-12.




Figure 9-12/G.8121/Y.1381 - MTDe_TT

9.4.1.1 MT Diagnostic Flow Termination Source Function for MEPs (MTDe_FT_So)

The MTDe_FT_So Process diagram is shown in Figure 9-13.

Symbol

- 61 -TD 540 Rev.1 (PLEN/15)

 $Figure~9-13/G.8121/Y.1381-~MTDe_TT_So~symbol$

Interfaces

Table 9-6/G.8121/Y.1381 – MTDe_TT_So interfaces

14010 / 0/010121/111001	
Input(s)	Output(s)
MTDe_AP: MTDe_AI_D MTDe_AI_oPHB MTDe_AI_iPHB MTDe_AI_LStack	MT_CP: MT_CI_D MT_CI_oPHB MT_CI_iPHB MTDe_CI_LStack MT_RP:
MTDe_RP: MTDe_RI_OAM_Info(D,CoS,DP) MTDe_TT_So_MP: MTDe_TT_So_MI_GAL_Enable MTDe_TT_So_MI_TTLVALUE MTDe_TT_So_MI_CV_OAM_Tool MTDe_TT_So_MI_CV_Series (Target_MEP/MIP_ID,TTL,CoS,N,Length,Period)	MTDe_TT_So_MP: MTDe_TT_So_MI_CV_Series_Result(REC,ERR,OO) MTDe_TT_So_MI_1TH_Result(Sent) MTDe_TT_So_MI_LMo_Result(N_TF,N_LF,F_TF,F_ LF)[1M_{LMo}] MTDe_TT_So_MI_DMo_Result(count,B_FD[],F_FD[], N_FD[])[1M_{DMo}] MTDe_TT_So_MI_SLo_Result(N_TF,N_LF,F_TF,F_L F)[1M_{SLo}]
MTDe_TT_So_MI_1TH_OAM_Tool MTDe_TT_So_MI_1TH_Start (CoS,Length,Period) MTDe_TT_So_MI_1TH_Terminate MTDe_TT_So_MI_LMo_OAM_Tool MTDe_TT_So_MI_LMo_Start(CoS,Period) [1MLMo] MTDe_FT_SO_MI_LMO_Terminatef [1MLMo]	
MTDe_TT_So_MI_DMo_OAM_Tool MTDe_TT_So_MI_DMo_Start (CoS,Test_ID,Length,Period)[1M _{DMo}] MTDe_TT_So_MI_DMo_Terminate[1M _{DMo}] MTDe_TT_So_MI_1DMo_OAM_Tool MTDe_TT_So_MI_1DMo_Start	

```
(CoS,Test_ID,Length,Period)[1...M<sub>1DMo</sub>]

MTDe_TT_So_MI_1DMo_Terminate[1...M<sub>1DMo</sub>]

MTDe_TT_So_MI_SLo_OAM_Tool

MTDe_TT_So_MI_SLo_Start

(CoS,Test_ID,Length,Period)[1...M<sub>SLo</sub>]

MTDe_TT_So_MI_SLo_Terminate[1...M<sub>SLo</sub>]

MTDe_TT_So_TP:

MTDe_TT_So_TI_ TimeStampl
```

Processes

MTDe_AP

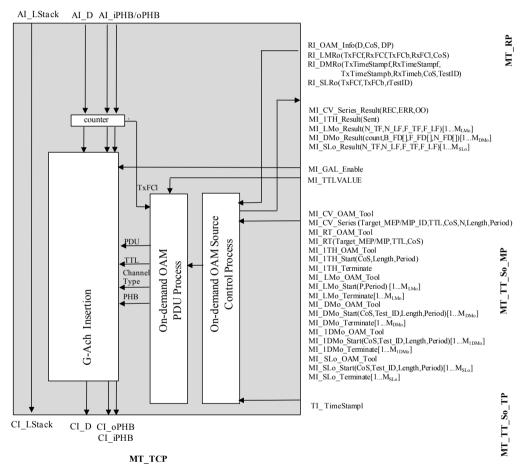


Figure 9-14/G.8121/Y.1381 - MTDe_FT_So Process

G-Ach/GAL Insertion process: See 8.1.

- 63 -TD 540 Rev.1 (PLEN/15)

On-demand OAM Source Control Process: See 8.8

OAM PDU Generation Process: See 8.8

DefectsNoneConsequent actionsNoneDefect correlationsNonePerformance monitoringNone

9.4.1.2 MT Diagnostic Trail Termination Sink Function for MEPs (MTDe_TT_Sk) Symbol

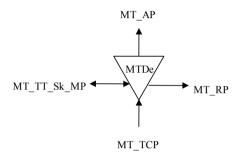


Figure 9-15/G.8121/Y.1381 - MTDe_TT_Sk symbol

Interfaces

 $Table~9\text{--}7/G.8121/Y.1381-MTDe_TT_Sk~interfaces$

Input(s)	Output(s)
MT_TCP:	MTDe_AP:
MT_CI_D	MTDe_AI_D
MT_CI_iPHB	MTDe_AI_oPHB
MT_CI_oPHB	MTDe_AI_iPHB
MT_CI_LStack	MTDe_AI_LStack
MT RP:	MTDe RP:
1	MTDe_RI_OAM_Info(D,CoS,DP)
MTDe_TT_Sk_MP:	
MTDe_TT_Sk_MI_ GAL_Enable	MTDe FT Sk MP:
MTDe_TT_Sk_MI_ MEG_ID	MTDe TT Sk MI 1TH Result(REC,CRC,BER,O
MTDe_TT_Sk_MI_PeerMEP_ID	0)
MTDe_TT_Sk_MI_CV_OAM_Tool	MTDe_TT_Sk_MI_1DMo_Result(count,N_FD[])[1
MTDe_TT_Sk_MI_1TH_OAM_Tool MTDe TT_Sk_MI_1TH_Start	$M_{\rm DMo}$]]
MTDe TT Sk MI 1TH Start MTDe TT Sk MI 1TH Terminate	
MTDe_TT_Sk_MI_TTI_Terminate MTDe TT_Sk_MI_LMo_OAM_Tool	

- 64 -TD 540 Rev.1 (PLEN/15)

Input(s)	Output(s)
MTDe_TT_Sk_MI_ DMo_OAM_Tool	
MTDe_TT_Sk_MI_ 1DMo_OAM_Tool	
MTDe_TT_Sk_MI_1DMo_Start(Test_ID)[1M _{1DM}	
0]	
MTDe_TT_Sk_MI_1DMo_Terminate[1M _{1DMo}]	
MTDe_TT_Sk_MI_SLo_OAM_Tool	
MTDe_TP:	
MTDe_TT_Sk_TI_ TimeStampl	

Processes

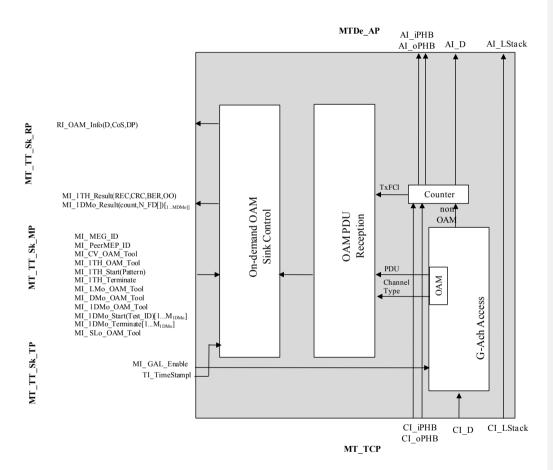
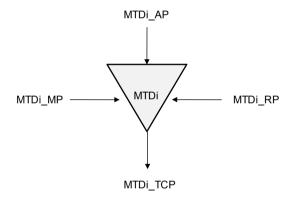


Figure 9-16/G.8121/Y.1381 - MTDe_TT_Sk Process

]


G-Ach/GAL Extraction Process: See 8.1/G.8121.

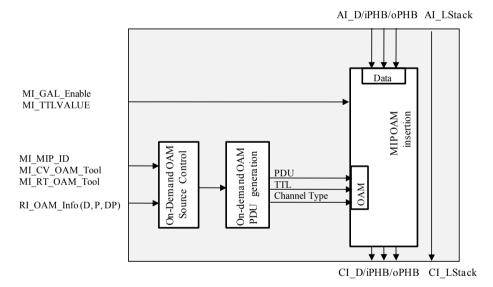
On-demand OAM Sink Control Process: See 8.8/G.811

OAM PDU Reception Process: See 8.8

DefectsNoneConsequent actionsNoneDefect correlationsNonePerformance monitoringNone

- 9.4.2 MT Diagnostic Flow Termination Functions for MIPs (MTDi_TT)
- 9.4.2.1 MT Diagnostic Trail Termination Functions for MIPs (MTDi TT So)
- 9.4.2.1.1 MT Diagnostic Trail Termination Source Function for MIPs (MTDi_TT_So) Symbol

 $Figure~9\text{-}17/G.8121/Y.1381-MTDi_TT_So~symbol$


Interfaces

- 66 -TD 540 Rev.1 (PLEN/15)

 $Table~9-8/G.8121/Y.1381-MTDi_TT_So~interfaces$

Inputs	Outputs
MTDi_AP MT_AI_D MT_AI_iPHB MT_AI_oPHB MT_AI_Lstack	MTDi_TCP MT_CI_D, MT_CI_iPHB, MT_CI_oPHB, MT_CI_LStack
MTDi_RP MT_RI_OAM_Info (D, CoS, DP)	
MTDi_TT_So_MP MTDi_TT_So_MI_GAL_Enable MTDi_TT_So_MI_TTLVALUE MTDi_TT_So_MI_MIP_ID MTDi_TT_So_MI_CV_OAM_Tool	

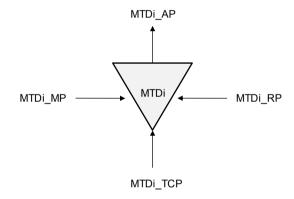
Processes

MTDi_TCP

Figure 9-18/G.8121/Y.1381 – MTDi_TT_So Process (remove RT)

MIP OAM insertion:

The MIP OAM Insertion process inserts OAM Traffic Units that are generated in the MTDi_TT_So process into the stream of Traffic Units.


- 67 -TD 540 Rev.1 (PLEN/15)

The GAL is used or not according to the MI_GAL_Enable parameter.

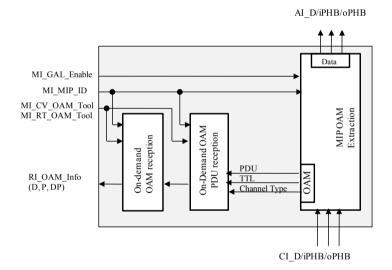
On-demand OAM PDU Generation Process: See clause 8.8. **On-demand OAM Source Control Process**: See clause 8.8.

DefectsNone.Consequent actionsNone.Defect correlationsNone.Performance monitoringNone.

9.4.2.1.2 MT Diagnostic Trail Termination Sink Function for MIPs (MTDi_TT_Sk) Symbol

 $Figure~9-19/G.8121/Y.1381-MTDi_TT_Sk~symbol$

Interfaces


Table 9-9/G.8121/Y.1381 - MTDi_TT_Sk interfaces

- 68 -TD 540 Rev.1 (PLEN/15)

Inputs	Outputs
MTDi_TCP MT_CI_D MT_CI_iPHB MT_CI_oPHB MT_CI_LStack	MTDi_AP MT_AI_D MT_AI_iPHB MT_AI_oPHB MT_AI_LStack
MTDi_TT_Sk_MP MTDi_TT_Sk_MI_GAL_Enable MTDi_TT_Sk_MI_MIP_ID MTDi_TT_Sk_MI_CV_OAM_Tool	MTDi_RP MT_RI_OAM_Info (D, CoS, DP)

Processes

$MTDi_AP$

MT_TCP

Figure 9-20/G.8121/Y.1381 – MTDi_TT_Sk Process (remove RT)

- 69 -TD 540 Rev.1 (PLEN/15)

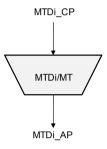
MIP OAM extraction:

The MIP OAM Extraction process classifies the OAM traffic units targeted to the MIP to which this MTDi_TT belongs, as configured by MI_MIP_ID, and delivers them to the On-demand OAM PDU Reception Process. All the other traffic units are delivered to MTDi_AP.

On-demand OAM PDU Reception Process: See clause 8.8.

On-demand OAM Sink Control Process: See clause 8.8.

DefectsNone.Consequent actionsNone.Defect correlationsNone.Performance monitoringNone.


9.4.2.2 MTDi to MT Adaptation functions (MTDi/MT_A)

The MTDi/MT adaptation function is an empty function; it is included to satisfy the modelling rules.

The bidirectional MTD/MT adaptation function is performed by a co-located pair of MTDi/MT adaptation source (MTDi/MT_A_So) and sink (MTDi/MT_A_Sk) functions.

9.4.2.2.1 MTDi to MT adaptation source functions (MTDi/MT_A_So)

The MTDi/MT A So function symbol is shown in Figure 9-xx and the process in Figure 9-21.

 $Figure~9-21/G.8121/Y.1381-MTDi/MT_A_So~symbol$

Interfaces

Table 9-10 - MTDi/MT_A_So interfaces

Inputs	Outputs
MT_CP:	MT_AP:
MT_CI_D	MT_AI_D
MT_CI_iPHB	MT_AI_iPHB
MT_CI_oPHB	MT_AI_oPHB
MT_CI_LStack	MT_AI_LStack

Processes

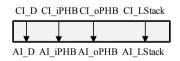
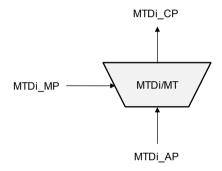



Figure 9-22/G.8121/Y.1381 - MTDi/MT_A_So Process

DefectsNone.Consequent ActionsNone.Defect correlationsNone.Performance MonitoringNone.

9.4.2.2.2 MTDi to MT adaptation sink function (MTDi/MT_A_Sk)

The MTDi/MT_A_So function symbol is shown in Figure 9-xx and the process in Figure 9-xx.

 $Figure~9\text{-}23/G.8121/Y.1381-MTDi/MT_A_Sk~symbol$

Interfaces

 $Table~9\text{-}11/G.8121/Y.1381~-MTDi/MT_A_Sk~interfaces$

Inputs	Outputs
MT_AP: MT_AI_D MT_AI_iPHB MT_AI_oPHB MT_AI_LStack	MT_CP: MT_AI_D MT_AI_iPHB MT_AI_oPHB MT_AI_LStack
MT_MP: MI_DS_MP_Type	

Processes

- 72 -TD 540 Rev.1 (PLEN/15)

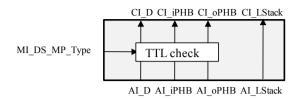


Figure 9-24/G.8121/Y.1381 - MTDi/MT A Sk Process

TTL check process:

TTL check process drops all MPLS-TP packets with TTL = 0 by default (MI_DS_MP_Type set to none).

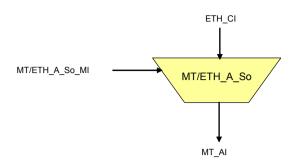
When MI_DS_MP_Type is set to MIP, TTL check process drops only user data MPLS-TP packets with TTL = 0 while OAM packets with TTL = 0 are not dropped in this process and forwarded.

When the MI_DS_MP_Type is set to MEP, TTL check process does not block any MPLS-TP packet with TTL = 0: all MPLS-TP packets with TTL = 0 are forwarded.

NOTE – The MI_DS_MP_Type parameter should be properly configured by the EMF on the basis of the MPLS-TP connection configuration within the node and not exposed to the operator as a configuration parameter of the Equipment Management Interface. Examples of MI_DS_MP_Type configuration are described in Appendix I.

DefectsNone.Consequent ActionsNone.Defect correlationsNone.Performance MonitoringNone.

- 10 MPLS-TP to Non-MPLS-TP client adaptation functions
- 10.1 MPLS-TP to ETH adaptation function (MT/ETH A)


10.1.2 MPLS-TP to ETH adaptation source function (MT/ETH A So)

This function maps the ETH CI information for transport in an MT AI signal.

The information flow and processing of the MT/ETH_A_So function is defined with reference to Figure 10-1.

• Symbol:

- 73 -TD 540 Rev.1 (PLEN/15)

 $Figure~\textcolor{red}{\textcolor{blue}{10-1}}/G.8121/Y.1381-MT/ETH_A_So~function$

• Interfaces:

 $Table~10\hbox{--}1/G.8121/Y.1381-MT/ETH_A_So~Inputs~and~Outputs$

Inputs	Outputs
ETH_FP:	MT_AP:
ETH_CI_Data	MT_AI_Data
ETH_CI_P	MT_AI_PHB
ETH_CI_DE	
MT/ETH_A_So_MP:	
MT/ETH_A_So_MI_AdminState	
MT/ETH_A_So_MI_FCSEnable	
MT/ETH_A_So_MI_CWEnable	
MT/ETH_A_So_MI_SQUse	
MT/ETH_A_So_MI_PRI2PSCMapping	
MT/ETH_A_So_MI_MEP_MAC*	
MT/ETH_A_So_MI_Client_MEL*	
MT/ETH_A_So_MI_LCK_Period* MT/ETH_A_So_MI_LCK_Pri*	
MT/ETH_A_SO_MI_LCK_PII*	
* ETH OAM related	

- 74 -TD 540 Rev.1 (PLEN/15)

• Processes:

The processes associated with the MT/ETH_A_So function are as depicted in Figure 10-2.

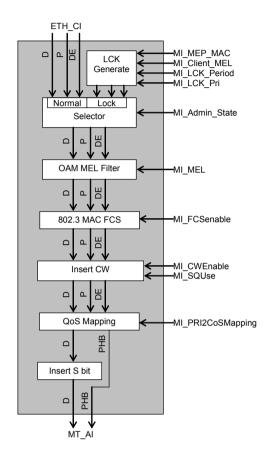


Figure 10-2/G.8121/Y.1381 – MT/ETH_A_So process diagram

- LCK Generate process:

See 8.1.2 of [ITU-T G.8021].

- Selector process:

See 8.1.3 of [ITU-T G.8021]. The normal CI is blocked if Admin_State = LOCKED.

- OAM MEL Filter process:

See 8.1.1 of [ITU-T G.8021].

- 75 -TD 540 Rev.1 (PLEN/15)

- 802.3 MAC FCS generation:

See 8.8.1 of [ITU-T G.8021]. MAC FCS generation is optional (see [IETF RFC 4720] and [ITU-T Y.1415]): MAC FCS is generated if MI FCSEnabled is True.

- CW Insertion process:

See 8.5.1.

- QoS mapping process:

This process maps the Ethernet-based QoS signals into MPLS-based QoS signals.

The CoS part of the AI_PHB is generated by the received CI_P according to the 1:1 mapping configured by the MI_PRI2PSCMapping.

The DP part of the AI PHB is generated by the received CI DE according to the following rule:

```
If CI_DE = True
     DP(AI_PHB) = Yellow
Else
     DP(AI_PHB) = Green
```

– S Field insertion:

A 1-bit S Field set to 1 (bottom of label stack) is inserted to indicate the client is not MPLS.

• Defects:

None.

• Consequent actions:

None.

• Defect correlations:

None.

• Performance monitoring:

None.

10.1.2 MPLS-TP to ETH adaptation sink function (MT/ETH_A_Sk)

This function extracts the ETH CI information from an MT AI signal.

The information flow and processing of the MT/ETH_A_Sk function is defined with reference to Figure 10-3.

• Symbol:

- 76 -TD 540 Rev.1 (PLEN/15)

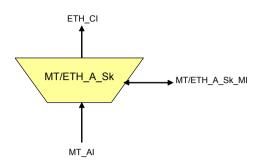


Figure 10-3/G.8121/Y.1381 – MT/ETH_A_Sk function

• Interfaces:

 $Table~10\text{-}2/G.8121/Y.1381-MT/ETH_A_Sk~Inputs~and~Outputs$

Inputs	Outputs
Each MT_AP:	ETH_FP:
MT AI Data	ETH CI Data
MT_AI_PHB	ETH_CI_P
MT_AI_TSF	ETH_CI_DE
MT/ETH_A_Sk_MP:	ETH_CI_SSF
MT/ETH_A_Sk_MI_FCSEnable	
MT/ETH_A_Sk_MI_CIIEnable	
MT/ETH_A_So_MI_SQUse	
MT/ETH_A_Sk_MI_CoS2PRIMapping	
MT/ETH A Sk MI Admin State	
MT/ETH A Sk MI LCK Period *	
MT/ETH A Sk MI LCK Pri *	
MT/ETH A Sk MI Client MEL *	
MT/ETH A Sk MI MEP MAC *	
MT/ETH A Sk MI AIS Pri *	
MT/ETH A Sk MI AIS Period *	
* ETH OAM related	

• Processes:

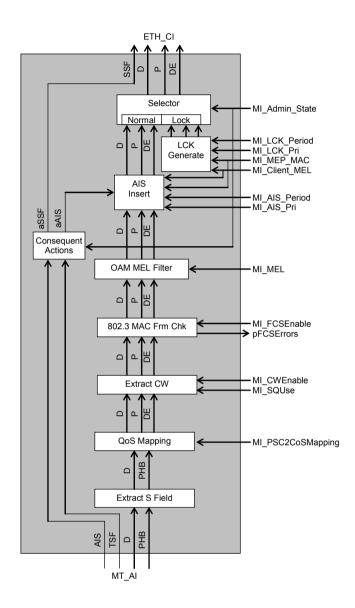


Figure 10-4/G.8121/Y.1381 – MT/ETH_A_Sk process diagram

- Selector process:

See 8.1.3 of [ITU-T G.8021]. The normal CI is blocked if Admin_State = LOCKED.

- 78 -TD 540 Rev.1 (PLEN/15)

- LCK Generate process:

See 8.1.2 of [ITU-T G.8021].

- AIS Insert process:

See 8.1.4 of [ITU-T G.8021].

- OAM MEL Filter process:

See 8.1.1 of [ITU-T G.8021].

- "802.3 MAC Frame Check" process:

See 8.9.2/G.8021/Y.1341. MAC Frame Check is optional (see [IETF RFC 4720] and [ITU-T Y.1415]): MAC FCS is checked if MI_FCSEnabled is True.

- CW Extraction process:

See 8.5.2.

- QoS mapping process:

This process maps the MPLS-based QoS signals into Ethernet-based QoS signals.

The CI_P is generated by the received PSC part of the AI_PHB according to the 1:1 mapping configured by the MI_CoS2PRIMapping.

The CI_DE is generated by the received DP part of the AI_PHB according to the following rule

```
If DP(AI_PHB) = Green
    CI_DE = False
Else
    CI_DE = True
```

– S field extraction:

Extract and process the 1-bit S Field: the retrieved S Field should have the value 1 (bottom of label stack) to indicate the client is not MPLS: for such case the traffic unit is accepted and forwarded (together with the PHB information) after extraction of the S-bit field to the next process. For the case the S-bit has the value 0, the traffic unit is silently discarded.

• Defects:

None.

• Consequent actions:

The function shall perform the following consequent actions:

```
aSSF ← AI_TSF and (not MI_Admin_State == LOCKED)
```

aAIS ← AI AIS• Defect correlations:

None.

• Performance monitoring:

Ffs.

10.2 MPLS-TP to SCC and MCC Adaptation functions

This clause provides the descriptions of the MPLS-TP adaptation functions for the MPLS-TP MCC and SCC.

Figure 10-5 shows the MPLS-TP adaptation functions providing access to the MCC and SCC. These MT/MCC and MT/SCC adaptation functions are defined in more detail below.

In case that the client is MPLS-TP, MT/Client will be MT/MT,

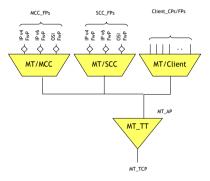
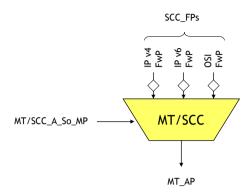


Figure 10-5/G.8121/Y.1382 – MT/SCC_A function, MT/MCC_A function, and MT/client_A function

10.2.1 MT/SCC_A Adaptation Function

The MT to SCC adaptation function provides access to the SCC for signalling communication. It is used for the scenarios where the SCN utilizes the SCC as defined in [IETF RFC5718].


10.2.1.1 MT to SCC adaptation source function (MT/SCC A So function)

The MT/SCC_A_So function maps the SCN data into the G-ACh SCC packets as defined in [IETF RFC5718]. The diamonds in Figure 10-6 represent traffic shaping and conditioning functions that may be needed to prevent the SCC forwarding points from exceeding their committed bandwidth in congestion situations. These traffic shaping and conditioning functions as well as the related bandwidth management and bandwidth assignment functions are outside the scope of this recommendation.

The information flow and processing of the MT/SCC_A_So functions is defined with reference to Figures 10-6 and 10-7.

- 80 -TD 540 Rev.1 (PLEN/15)

Symbol

 $Figure~10\text{-}6/G.8121/Y.1382-MT/SCC_A_So~function$

Interfaces

 $Table~10\hbox{--}3/G.8121/Y.1382-MT/SCC_A_So~inputs~and~outputs$

Input(s)	Output(s)
SCC_FP:	MT_AP:
SCC_CI_D	MT_AI_D
MT/SCC_A_So_MP:	MT_AI_PHB
MT/SCC_A_So_MI_Active	
MT/SCC_A_So_MI_ECC_CoS	
MT/SCC_A_So_MI_GAL_Enable	

Processes

Activation

- The MT/SCC_A_So function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

The process associated with the MT/SCC_A_So function is as depicted in Figure 10-7.

- 81 -TD 540 Rev.1 (PLEN/15)

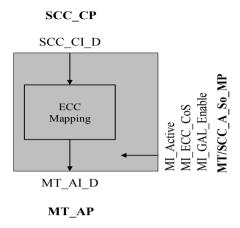


Figure 10-7/G.8121/Y.1382 – MT/SCC_A_So processes

ECC Mapping process: See clause 8.7.1.1

Defects: None.

Consequent actions: None. **Defect correlations**: None.

Performance Monitoring: None.

10.2.1.2 MT to SCC adaptation sink function (MT/SCC_A_Sk function)

The MT/SCC_A_Sk function extracts the SCN from the G-ACh SCC packets as defined in [IETF RFC5718].

The information flow and processing of the MT/SCC_A_Sk functions is defined with reference to Figures 10-8 and 10-9.

Symbol

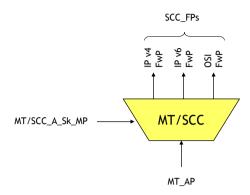


Figure 10-8/G.8121/Y.1382 - MT/SCC_A_Sk function

Interfaces

Table 10-4/G.8121/Y.1382 - MT/SCC_A_Sk inputs and outputs

Input(s)	Output(s)
MT_AP:	SCC_FP:
MT_AI_D	SCC_CI_D
MT_AI_PHB	SCC_CI_SSF
MT_AI_TSF	
MT/SCC_A_Sk_MP:	
MT/SCC_A_Sk_MI_Active	
MT/SCC_A_Sk_MI_GAL_Enable	

Processes

Activation

The MT/SCC_A_Sk function shall access the access point and perform the common and specific processes operation specified below when it is activated (MI_Active is true). Otherwise, it shall activate the SSF signals at its output (CI_SSF).

The processes associated with the MT/SCC_A_Sk function are as depicted in Figure 10-9.

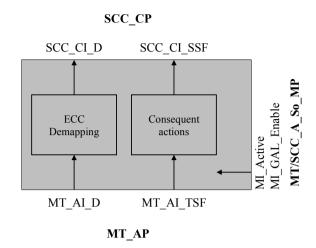


Figure 10-9/G.8121/Y.1382 - MT/SCC_A_Sk processes

ECC Demapping process: See clause 8.7.1.2

Defects: None.

Consequent actions

The function shall perform the following consequent actions:

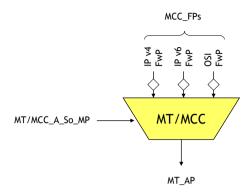
aSSF \leftarrow AI TSF or (not MI Active)

Defect correlations: None.

Performance monitoring: None.

10.2.2 MT/MCC A Adaptation Function

The MT to MCC adaptation function provides access to the MCC for signalling communication. It is used for the scenarios where the MCN utilizes the MCC as defined in [IETF RFC5718].


10.2.2.1 MT to MCC adaptation source function (MT/MCC_A_So function)

The MT/MCC_A_So function maps the MCN data into the G-ACh MCC packets as defined in [IETF RFC5718]. The diamonds in Figure 10-A.6 represent traffic shaping and conditioning functions that may be needed to prevent the MCC forwarding points from exceeding their committed bandwidth in congestion situations. These traffic shaping and conditioning functions as well as the related bandwidth management and bandwidth assignment functions are outside the scope of this recommendation.

The information flow and processing of the MT/MCC_A_So functions is defined with reference to Figures 10-10 and 10-11.

- 84 -TD 540 Rev.1 (PLEN/15)

Symbol

 $Figure~10\text{-}10/G.8121/Y.1382-MT/MCC_A_So~function$

Interfaces

 $Table~10\text{--}5/G.8121/Y.1382-MT/MCC_A_So~inputs~and~outputs$

Input(s)	Output(s)
MCC_FP:	MT_AP:
MCC_CI_D	MT_AI_D
MT/MCC_A_So_MP:	MT_AI_PHB
MT/MCC_A_So_MI_Active	
MT/MCC_A_So_MI_ECC_CoS	
MT/MCC_A_So_MI_GAL_enable	

Processes

Activation

The MT/MCC_A_So function shall access the access point when it is activated (MI_Active is true). Otherwise, it shall not access the access point.

The process associated with the MT/MCC_A_So function is as depicted in Figure 10-11.

- 85 -TD 540 Rev.1 (PLEN/15)

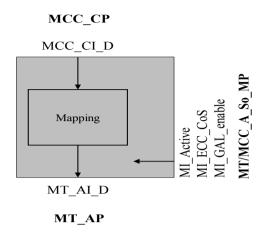


Figure 10-11/G.8121/Y.1382 - MT/MCC_A_So processes

MCC Mapping process: See clause 8.7.1.1

Defects: None.

Consequent actions: None. **Defect correlations**: None.

Performance Monitoring: None.

10.2.2.2 MT to MCC adaptation source function (MT/SCC_A_Sk function)

The MT/MCC_A_Sk function extracts the MCN data from the G-ACh MCC packets as defined in [IETF RFC5718].

The information flow and processing of the MT/MCC_A_Sk functions is defined with reference to Figures 10-12 and 10-13.

- 86 -TD 540 Rev.1 (PLEN/15)

Symbol

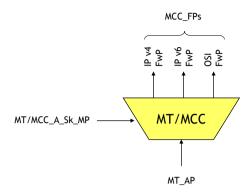


Figure 10-12/G.8121/Y.1382 - MT/MCC_A_Sk function

Interfaces

 $Table~10\text{-}6/G.8121/Y.1382-MT/MCC_A_Sk~inputs~and~outputs$

Input(s)	Output(s)
MT_AP:	MCC_FP:
MT_AI_D	MCC_CI_D
MT_AI_PHB	MCC_CI_SSF
MT_AI_TSF	
MT/MCC_A_Sk_MP:	
MT/MCC_A_Sk_MI_Active	
MT/SCC_A_Sk_MI_GAL_Enable	

Processes

Activation

The MT/MCC_A_Sk function shall access the access point and perform the common and specific processes operation specified below when it is activated (MI_Active is true). Otherwise, it shall activate the SSF signals at its output (CI_SSF).

The processes associated with the MT/MCC_A_Sk function are as depicted in Figure 10-13.

MCC_CP MCC_CI_D MCC_CI_SSF Consequent actions MI_Active MI_AI_D MT_AI_TSF MT_AP

 $Figure~10\text{-}13/G.8121/Y.1382-MT/MCC_A_Sk~processes$

ECC Demapping process: See clause 8.7.1.2

Defects: None.

Consequent actions

The function shall perform the following consequent actions:

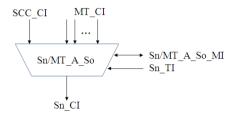
aSSF ← AI_TSF or (not MI_Active)

Defect correlations: None.

Performance monitoring: None.

11 Non-MPLS-TP Server to MPLS-TP adaptation functions

11.1 SDH to MPLS-TP adaptation function (S/MT_A)


11.1.1 VC-n to MPLS-TP adaptation functions (Sn/MT_A; n=3, 3-X, 4, 4-X)

11.1.1.1 VC-n to MPLS-TP adaptation source function (Sn/MT_A_So)

This function maps MT_CI information onto an Sn_AI signal (n=3, 3-X, 4, 4-X).

Data at the Sn_AP is a VC-n (n = 3, 3-X, 4, 4-X), having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J1, B3, G1.

• Symbol:

 $Figure~11\text{--}1/G.8121/Y.1381-Sn/MT_A_So~symbol$

• Interfaces:

 $Table~11\text{--}1/G.8121/Y.1381-Sn/MT_A_So~interfaces$

Inputs	Outputs
Each MT_CP:	Sn_AP:
MT_CI_Data	Sn_AI_Data
MT_CI_iPHB	Sn_AI_Clock
MT_CI_oPHB	Sn_AI_FrameStart
SCC_CP:	
SCC_CI_Data	
Sn_TP:	
Sn_TI_Clock	
Sn_TI_FrameStart	
Sn/MT_A_So_MP:	
Sn/MT_A_So_MI_SCCType	
Sn/MT_A_So_MI_Label[1M]	
Sn/MT_A_So_MI_LSPType[1M]	
Sn/MT_A_So_MI_CoS[1M]	
Sn/MT_A_So_PHB2TCMapping[1M]	
Sn/MT_A_So_MI_QoSEncodingMode[1M]	

• Processes:

A process diagram of this function is shown in Figure 11-2.

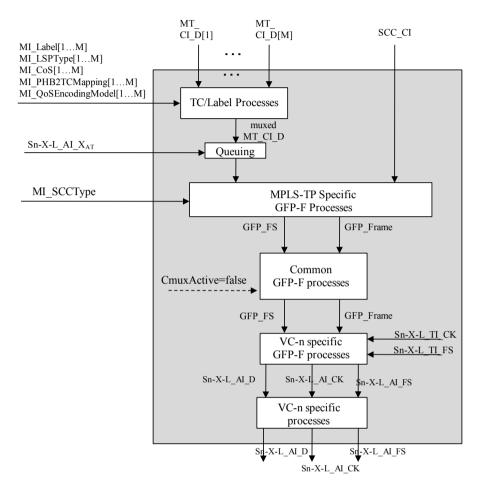


Figure 11-2/G.8121/Y.1381 - Sn/MT_A_So process diagram

- TC/Label processes:

See 8.2.1.

– Queuing process:

See 8.3.

- MPLS-TP-specific GFP-F source process:

See 8.4.1.

- Common GFP source process:

See 8.5.3.1/G.806. GFP channel multiplexing is not supported (CMuxActive=false).

- 90 -TD 540 Rev.1 (PLEN/15)

- VC-n specific GFP source process:

See 8.5.2.1/G.806. The GFP frames are mapped into the VC-n payload area according to 10.6/G.707/Y.1322.

- VC-n specific source process:

C2: Signal label information is derived directly from the Adaptation function type. The value for "GFP mapping" in Table 9-11/G.707/Y.1322 is placed in the C2 byte position.

H4: For Sn/MT A So with n=3, 4, the H4 byte is sourced as all-zeros.

NOTE 1 – For Sn/MT_A_So with n=3-X, 4-X, the H4 byte is undefined at the $Sn-X_AP$ output of this function (as per clause 12/G.783).

NOTE 2 – For Sn/MT_A_So with n=3, 4, 3-X, 4-X, the K3, F2, F3 bytes are undefined at the Sn-X_AP output of this function (as per clause 12/G.783).

• Defects:

None.

• Consequent actions:

None.

Defect correlations:

None.

• Performance monitoring:

Ffs.

11.1.1.2 VC-n to MPLS-TP adaptation sink function (Sn/MT A Sk)

This function extracts MT_CI information from the Sn_AI signal (n=3, 3-X, 4, 4-X), delivering MT_CI.

Data at the Sn_AP is a VC-n (n=3, 3-X, 4, 4-X) but with indeterminate POH bytes J1, B3, G1, as per [ITU-T G.707].

• Symbol:

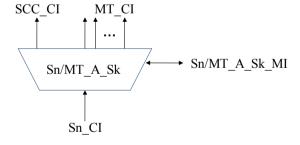


Figure 11-3/G.8121/Y.1381 - Sn/MT_A_Sk symbol

- 91 -TD 540 Rev.1 (PLEN/15)

• Interfaces:

 $Table~11\hbox{--}2/G.8121/Y.1381-Sn/MT_A_Sk~interfaces$

Inputs	Outputs
Inputs Sn_AP: Sn_AI_Data Sn_AI_ClocK Sn_AI_FrameStart Sn_AI_TSF Sn/MT_A_Sk_MP: Sn/MT_A_Sk_MI_SCCType Sn/MT_A_Sk_MI_Label[1M] Sn/MT_A_Sk_MI_LSPType[1M] Sn/MT_A_Sk_MI_CoS[1M]	Outputs Each MT_CP: MT_CI_Data MT_CI_iPHB MT_CI_oPHB MT_CI_SSF MT_CI_LStack SCC_CP: SCC_CI_Data SCC_CI_SSF
Sn/MT_A_Sk_MI_TC2PHBMapping[1M] Sn/MT_A_Sk_MI_QoSDecodingMode[1M] Sn/MT_A_Sk_MI_LCK_Period[1M] Sn/MT_A_Sk_MI_LCK_CoS[1M] Sn/MT_A_Sk_MI_Admin_State Sn/MT_A_Sk_MI_AIS_Period[1M] Sn/MT_A_Sk_MI_AIS_CoS[1M] Sn/MT_A_Sk_MI_AIS_CoS[1M]	Sn/MT_A_Sk_MP: Sn/MT_A_Sk_MI_AcSL Sn/MT_A_Sk_MI_AcEXI Sn/MT_A_Sk_MI_LastValidUPI Sn/MT_A_Sk_MI_cPLM Sn/MT_A_Sk_MI_cLFD Sn/MT_A_Sk_MI_cEXM Sn/MT_A_Sk_MI_cEXM

• Processes:

A process diagram of this function is shown in Figure 11-4.

- 92 -TD 540 Rev.1 (PLEN/15)

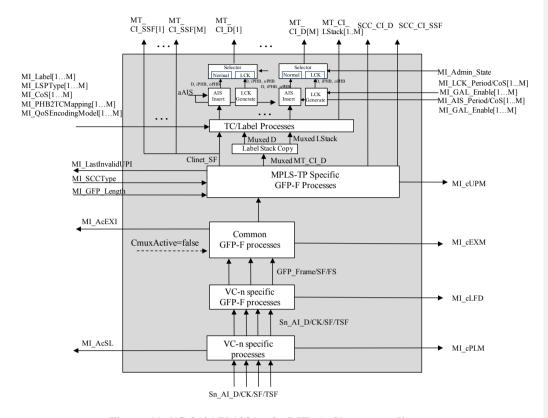


Figure 11-4/G.8121/Y.1381 – Sn/MT_A_Sk process diagram

- Selector generation process:

See 8.6.1 The normal CI is blocked if Admin_State = LOCKED.

- AIS Insert process:

See 8.6.2. There is a single AIS Insert process for each MT.

- LCK generation process:

See 8.6.3. There is a single LCK Insert process for each MT.

- TC/Label processes:

See 8.2.2.

Label Stack Copy process:

See 8.2.3.

- MPLS-TP-specific GFP-F sink process:

See 8.4.2.

- 93 -TD 540 Rev.1 (PLEN/15)

– Common GFP sink process:

See 8.5.3.2 in [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

- VC-n specific GFP sink process:

See 8.5.2.2 in [ITU-T G.806]. The GFP frames are demapped from the VC-n payload area according to 10.6 in [ITU-T G.707].

- VC-n-specific sink process:

C2: The signal label is recovered from the C2 byte as per 6.2.4.2 in [ITU-T G.806]. The signal label for "GFP mapping" in Table 9-11 of [ITU-T G.707] shall be expected. The accepted value of the signal label is also available at the Sn/MT_A_Sk_MP.

• Defects:

```
dPLM - See 6.2.4.2 in [ITU-T G.806].
```

dLFD - See 6.2.5.2 in [ITU-T G.806].

dEXM - See 6.2.4.4 in [ITU-T G.806].

dUPM - See 8.4.2.

• Consequent actions:

The function shall perform the following consequent actions:

aSSF ← AI_TSF or dPLM or dLFD or dUPM or dEXM

aAIS ← AI_TSF or dPLM or dLFD or dUPM or dEXM

• Defect correlations:

The function shall perform the following defect correlations to determine the most probable fault cause (see 6.4/G.806). This fault cause shall be reported to the EMF.

cPLM ← dPLM and (not AI TSF)

cLFD ← dLFD and (not dPLM) and (not AI_TSF)

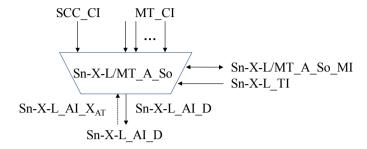
cEXM ← dEXM and (not dPLM) and (not dLFD) and (not AI TSF)

cUPM ← dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF)

• Performance monitoring:

Ffs.

11.1.2 LCAS-capable VC-n to MPLS-TP adaptation functions (Sn-X-L/MT A; n=3, 4)


11.1.2.1 LCAS-capable VC-n to MPLS-TP adaptation source function (Sn-X-L/MT A So)

This function maps MT CI information onto an Sn-X-L AI signal (n=3, 4).

Data at the Sn-X-L_AP is a VC-n-X (n = 3, 4), having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J1, B3, G1.

- 94 -TD 540 Rev.1 (PLEN/15)

• Symbol:

 $Figure~11\text{--}5/G.8121/Y.1381-Sn-X-L/MT_A_So~symbol$

• Interfaces:

 $Table~11\hbox{--}3/G.8121/Y.1381-Sn\hbox{--}X-L/MT_A_So~interfaces$

Inputs	Outputs
Each MT_CP:	Sn-X-L_AP:
MT_CI_Data	Sn-X-L_AI_Data
MT_CI_iPHB	Sn-X-L_AI_Clock
MT_CI_oPHB	Sn-X-L_AI_FrameStart
SCC_CP:	
SCC_CI_Data	
Sn-X-L_AP:	
Sn-X-L_AI_X _{AT}	
Sn-X-L_TP:	
Sn-X-L_TI_Clock	
Sn-X-L_TI_FrameStart	
Sn-X-L/MT_A_So_MP:	
Sn-X-L/MT_A_So_MI_SCCType	
Sn-X-L/MT_A_So_MI_Label[1M]	
Sn-X-L/MT_A_So_MI_LSPType[1M]	
Sn-X-L/MT_A_So_MI_CoS[1M]	
Sn-X-L/MT_A_So_PHB2TCMapping[1M]	
Sn-X-L/MT_A_So_MI_QoSEncodingMode[1M]	

• Processes:

A process diagram of this function is shown in Figure 11-6.

- 95 -TD 540 Rev.1 (PLEN/15)

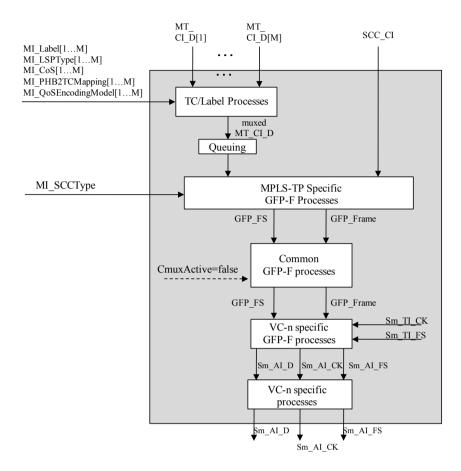


Figure 11-6/G.8121/Y.1381 – Sn-X-L/MT_A_So process diagram

The processes have the same definition as in 11.1.1.1.

• Defects:

None.

• Consequent actions:

None.

• Defect correlations:

None.

• Performance monitoring:

Ffs.

11.1.2.2 LCAS-capable VC-n to MPLS-TP adaptation sink function (Sn-X-L/MT A Sk)

This function extracts MT_CI information from the Sn-X-L_AI signal (n=3, 4), delivering MT_CI. Data at the Sn-X-L_AP is a VC-n-Xv (n=3, 4) but with indeterminate POH bytes J1, B3, G1, as per [ITU-T G.707].

• Symbol:

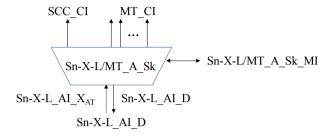
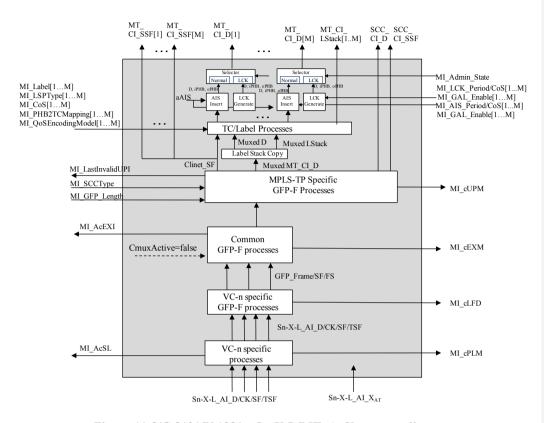


Figure 11-7/G.8121/Y.1381 - Sn-X-L/MT_A_Sk symbol

• Interfaces:


Table 11-4/G.8121/Y.1381 - Sn-X-L/MT_A_Sk interfaces

Inputs	Outputs
Sn-X-L_AP: Sn-X-L_AI_Data Sn-X-L_AI_ClocK Sn-X-L_AI_FrameStart Sn-X-L_AI_TSF Sn-X-L_AI_X_R Sn-X-L/MT_A_Sk_MP: Sn-X-L/MT_A_Sk_MI_SCCType Sn-X-L/MT_A_Sk_MI_Label[1M] Sn-X-L/MT_A_Sk_MI_LSPType[1M] Sn-X-L/MT_A_Sk_MI_CoS[1M] Sn-X-L/MT_A_Sk_MI_TC2PHBMapping[1M]	Outputs Each MT_CP: MT_CI_Data MT_CI_iPHB MT_CI_oPHB MT_CI_SSF MI_CI_LStack SCC_CP: SCC_CI_Data SCC_CI_SSF Sn-X-L/MT_A_Sk_MP: Sn-X-L/MT A Sk MI AcSL
Sn-X-L/MT_A_Sk_MI_QoSDecodingMode[1M] Sn-X-L/MT_A_Sk_MI_LCK_Period[1M] Sn-X-L/MT_A_Sk_MI_LCK_CoS[1M] Sn-X-L/MT_A_Sk_MI_Admin_State Sn-X-L/MT_A_Sk_MI_AIS_Period[1M] Sn-X-L/MT_A_Sk_MI_AIS_CoS[1M] Sn-X-L/MT_A_Sk_MI_GAL_Enable [1M]	Sn-X-L/MT_A_Sk_MI_AcEXI Sn-X-L/MT_A_Sk_MI_LastValidUPI Sn-X-L/MT_A_Sk_MI_cPLM Sn-X-L/MT_A_Sk_MI_cLFD Sn-X-L/MT_A_Sk_MI_cEXM Sn-X-L/MT_A_Sk_MI_cEXM

• Processes:

A process diagram of this function is shown in Figure 11-8.

- 97 -TD 540 Rev.1 (PLEN/15)

 $Figure~11\text{--}8/G.8121/Y.1381-Sn-X-L/MT_A_Sk~process~diagram$

See process diagram and process description in 11.1.1.2. The additional Sn-X-L_AI_ X_{AR} interface is not connected to any of the internal processes.

• Defects:

dPLM - See 6.2.4.2 in [ITU-T G.806].

dLFD - See 6.2.5.2 in [ITU-T G.806].

dUPM - See 8.4.2.

dEXM - See 6.2.4.4 in [ITU-T G.806].

- 98 -TD 540 Rev.1 (PLEN/15)

• Consequent actions:

The function shall perform the following consequent actions:

aSSF ← AI TSF or dPLM or dLFD or dUPM or dEXM

aAIS ← AI_TSF or dPLM or dLFD or dUPM or dEXM

• Defect correlations:

The function shall perform the following defect correlations to determine the most probable fault cause (see 6.4 in [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM ← dPLM and (not AI TSF)

cLFD ← dLFD and (not dPLM) and (not AI TSF)

cEXM \leftarrow dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cUPM ← dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF)

• Performance monitoring:

Ffs.

11.1.3 VC-m to MPLS-TP adaptation functions (Sm/MT_A; m=11, 11-X, 12, 12-X)

11.1.3.1 VC-m to MPLS-TP adaptation source function (Sm/MT A So)

This function maps MT CI information onto an Sm AI signal (m=11, 11-X, 12, 12-X).

Data at the Sm_AP is a VC-m (m = 11, 11-X, 12, 12-X), having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J2, V5[1-4], V5[8].

• Symbol:

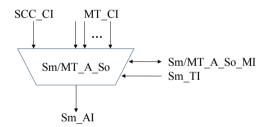
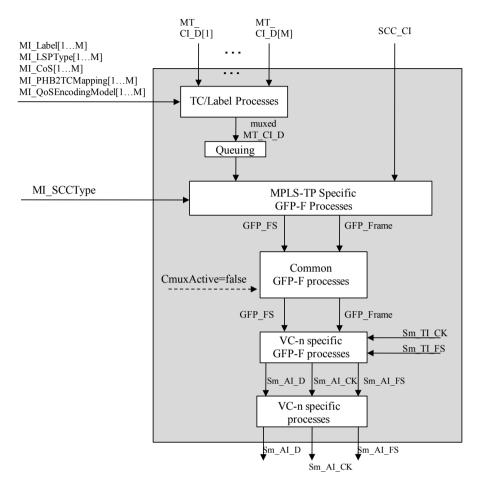


Figure 11-9/G.8121/Y.1381 - Sm/MT A So symbol

- 99 -TD 540 Rev.1 (PLEN/15)

• Interfaces:


 $Table~11\text{--}5/G.8121/Y.1381-Sm/MT_A_So~interfaces$

Inputs	Outputs
Each MT_CP:	Sm_AP:
MT_CI_Data	Sm_AI_Data
MT_CI_iPHB	Sm_AI_Clock
MT_CI_oPHB	Sm_AI_FrameStart
SCC_CP:	
SCC_CI_Data	
Sm_TP:	
Sm_TI_Clock	
Sm_TI_FrameStart	
Sm/MT_A_So_MP:	
Sm/MT_A_So_MI_SCCType	
Sm/MT_A_So_MI_Label[1M]	
Sm/MT_A_So_MI_LSPType[1M]	
Sm/MT_A_So_MI_CoS[1M]	
Sm/MT_A_So_PHB2TCMapping[1M]	
Sm/MT_A_So_MI_QoSEncodingMode[1M]	

• Processes:

A process diagram of this function is shown in Figure 11-10.

- 100 -TD 540 Rev.1 (PLEN/15)

 $Figure~11\text{--}10/G.8121/Y.1381-Sm/MT_A_So~process~diagram$

- TC/Label processes:

See 8.2.1.

– Queuing process:

See 8.3.

- MPLS-TP-specific GFP-F source process:

See 8.4.1.

- Common GFP source process:

See 8.5.3.1/G.806. GFP channel multiplexing is not supported (CMuxActive=false).

- 101 -TD 540 Rev.1 (PLEN/15)

– VC-m-specific GFP source process:

See 8.5.2.1/G.806. The GFP frames are mapped into the VC-m payload area according to 10.6/G.707/Y.1322.

– VC-m-specific source process:

V5[5-7] and K4[1]: Signal label information is derived directly from the Adaptation function type. The value for "GFP mapping" in Table 9-13/G.707/Y.1322 is placed in the K4[1] Extended Signal Label field as described in 8.2.3.2/G.783.

K4[2]: For Sm/MT A So with m = 11, 12, the K4[2] bit is sourced as all-zeros.

NOTE 1 – For Sm/MT_A_So with m = 11-X, 12-X, the K4[2] bit is undefined at the Sm-X_AP output of this function (as per clause 13/G.783).

NOTE 2 – For Sm/MT_A_So with m = 11, 11-X, 12, 12-X, 2, the K4[3-8], V5[1-4] and V5[8] bits are undefined at the Sm-X_AP output of this function (as per clause 13/G.783).

• Defects:

None.

• Consequent actions:

None.

• Defect correlations:

None.

• Performance monitoring:

Ffs.

11.1.3.2 VC-m to MPLS-TP adaptation sink function (Sm/MT A Sk)

This function extracts MT_CI information from the Sm_AI signal (m=11, 11-X, 12, 12-X), delivering MT_CI.

Data at the Sm _AP is a VC-m (m=11, 11-X, 12, 12-X) but with indeterminate POH bytes J2, V5[1-4], V5[8], as per [ITU-T G.707].

• Symbol:

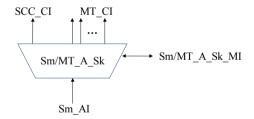
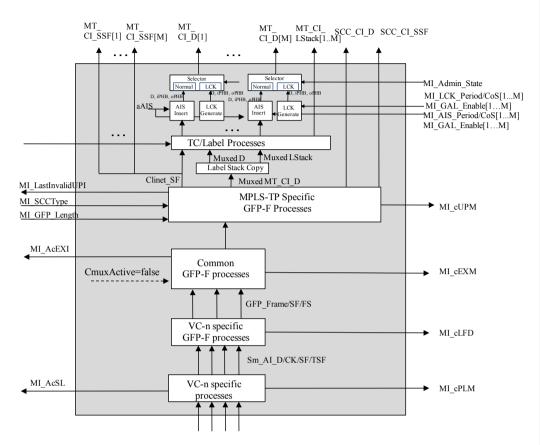


Figure 11-11/G.8121/Y.1381 - Sm/MT_A_Sk symbol

- 102 -TD 540 Rev.1 (PLEN/15)

• Interfaces:


 $Table~11\text{--}6/G.8121/Y.1381-Sm/MT_A_Sk~interfaces$

Inputs	Outputs
Sm_AP: Sm_AI_Data Sm_AI_ClocK Sm_AI_FrameStart Sm_AI_TSF Sm/MT_A_Sk_MP: Sm/MT_A_Sk_MI_SCCType Sm/MT_A_Sk_MI_Label[1M] Sm/MT_A_Sk_MI_LSPType[1M] Sm/MT_A_Sk_MI_CoS[1M] Sm/MT_A_Sk_MI_TC2PHBMapping[1M] Sm/MT_A_Sk_MI_COSDecodingMode[1M] Sm/MT_A_Sk_MI_COSDecodingMode[1M]	Outputs Each MT_CP: MT_CI_Data MT_CI_iPHB MT_CI_oPHB MT_CI_SSF MI_CI_LStack SCC_CP: SCC_CI_Data SCC_CI_SSF Sm/MT_A_Sk_MP: Sm/MT_A_Sk_MI_AcSL Sm/MT_A_Sk_MI_AcEXI
Sm/MT_A_Sk_MI_LCK_Feriod[1M] Sm/MT_A_Sk_MI_LCK_CoS[1M] Sm/MT_A_Sk_MI_Admin_State Sm/MT_A_Sk_MI_AIS_Period[1M] Sm/MT_A_Sk_MI_AIS_CoS[1M] Sm/MT_A_Sk_MI_GAL_Enable[1M]	Sm/MT_A_Sk_MI_AcEXI Sm/MT_A_Sk_MI_LastValidUPI Sm/MT_A_Sk_MI_cPLM Sm/MT_A_Sk_MI_cLFD Sm/MT_A_Sk_MI_cEXM Sm/MT_A_Sk_MI_cUPM

• Processes:

A process diagram of this function is shown in Figure 11-12

- 103 -TD 540 Rev.1 (PLEN/15)

 $Figure~11\text{-}12/G.8121/Y.1381 - Sm/MT_A_Sk~process~diagram$

- Selector generation process:
- See 8.6.1 The normal CI is blocked if Admin_State = LOCKED.
- AIS Insert process:
- See 8.6.2. There is a single AIS Insert process for each MT.
- LCK generation process:
- See 8.6.3. There is a single LCK Insert process for each MT.
- TC/Label processes:
- See 8.2.2.
- Label Stack Copy process:
- See 8.2.3.

- 104 -TD 540 Rev.1 (PLEN/15)

- MPLS-TP specific GFP-F sink process:

See 8.4.2.

- Common GFP sink process:

See 8.5.3.2 in [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

- VC-m-specific GFP sink process:

See 8.5.2.2 in [ITU-T G.806]. The GFP frames are demapped from the VC-m payload area according to 10.6 in [ITU-T G.707].

– VC-m-specific sink process:

V5[5-7] and K4[1]: The signal label is recovered from the extended signal label position as described in 8.2.3.2 in [ITU-T G.783] and 6.2.4.2 in [ITU-T G.806]. The signal label for "GFP mapping" in Table 9-13 in [ITU-T G.707] shall be expected. The accepted value of the signal label is also available at the Sm/MT_A_Sk_MP.

• Defects:

dPLM - See 6.2.4.2 in [ITU-T G.806].

dLFD - See 6.2.5.2 in [ITU-T G.806].

dUPM - See 8.4.2.

dEXM - See 6.2.4.4 in [ITU-T G.806].

• Consequent actions:

The function shall perform the following consequent actions:

aSSF ← AI TSF or dPLM or dLFD or dUPM or dEXM

aAIS ← AI TSF or dPLM or dLFD or dUPM or dEXM

• Defect correlations:

The function shall perform the following defect correlations to determine the most probable fault cause (see 6.4/G.806). This fault cause shall be reported to the EMF.

cPLM ← dPLM and (not AI TSF)

cLFD ← dLFD and (not dPLM) and (not AI TSF)

cEXM ← dEXM and (not dPLM) and (not dLFD) and (not AI TSF)

cUPM ← dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF)

• Performance monitoring:

Ffs.

- 105 -TD 540 Rev.1 (PLEN/15)

11.1.4 LCAS-capable VC-m to MPLS-TP adaptation functions (Sm-X-L/MT_A; m=11, 12)

11.1.4.1 LCAS-capable VC-m to MPLS-TP Adaptation Source function (Sm-X-L/MT_A_So)

This function maps MT_CI information onto an Sm-X-L_AI signal (m=11, 12).

Data at the Sm-X-L_AP is a VC-m-X (m = 11, 12), having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J2, V5[1-4], V5[8].

• Symbol:

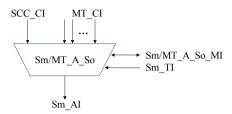
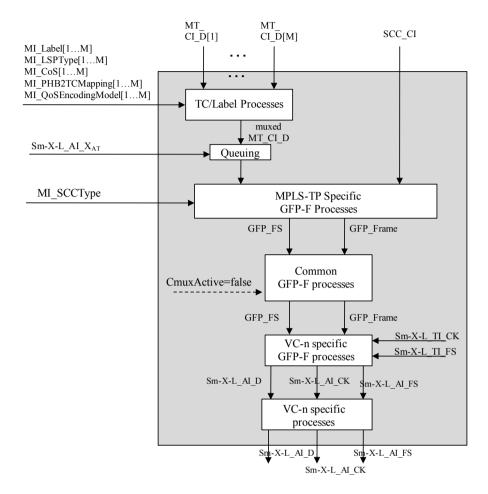


Figure 11-13/G.8121/Y.1381 - Sm-X-L/MT_A_So symbol

• Interfaces:


Table 11-7/G.8121/Y.1381 - Sm-X-L/MT_A_So interfaces

Inputs	Outputs
Each MT_CP:	Sm-X-L_AP:
MT_CI_Data	Sm-X-L_AI_Data
MT_CI_iPHB	Sm-X-L_AI_Clock
MT_CI_oPHB	Sm-X-L_AI_FrameStart
SCC_CP:	
SCC_CI_Data	
Sm-X-L_AP:	
Sm-X-L_AI_X _{AT}	
Sm-X-L_TP:	
Sm-X-L_TI_Clock	
Sm-X-L_TI_FrameStart	
Sm-X-L/MT_A_So_MP:	
Sm-X-L/MT_A_So_MI_SCCType	
Sm-X-L/MT_A_So_MI_Label[1M]	
Sm-X-L/MT_A_So_MI_LSPType[1M]	
Sm-X-L/MT_A_So_MI_CoS[1M]	
Sm-X-L/MT_A_So_PHB2TCMapping[1M]	
Sm-X-L/MT_A_So_MI_QoSEncodingMode[1M]	

• Processes:

A process diagram of this function is shown in Figure 11-14.

- 106 -TD 540 Rev.1 (PLEN/15)

 $Figure~11\text{-}14/G.8121/Y.1381-Sm-X-L/MT_A_So~process~diagram$

The processes have the same definition as in 11.1.1.1.

• Defects:

None.

• Consequent actions:

None.

• Defect correlations:

None.

• Performance monitoring:

Ffs.

- 107 -TD 540 Rev.1 (PLEN/15)

11.1.4.2 LCAS-capable VC-m to MPLS-TP adaptation sink function (Sm-X-L/MT_A_Sk)

This function extracts MT_CI information from the Sm-X-L_AI signal ($m=11,\ 12$), delivering MT_CI.

Data at the Sm-X-L_AP is a VC-m-Xv (m=11, 12) but with indeterminate POH bytes J2, V5[1-4], V5[8], as per [ITU-T G.707].

• Symbol:

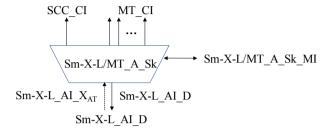


Figure 11-15/G.8121/Y.1381 - Sm-X-L/MT_A_Sk symbol

• Interfaces:

Table 11-8/G.8121/Y.1381 - Sm-X-L/MT_A_Sk interfaces

Inputs	Outputs
Sm-X-L_AP: Sm-X-L_AI_Data Sm-X-L_AI_ClocK Sm-X-L_AI_FrameStart Sm-X-L_AI_TSF Sm-X-L_AI_X_AR Sm-X-L/MT_A_Sk_MP: Sm-X-L/MT_A_Sk_MI_SCCType Sm-X-L/MT_A_Sk_MI_Label[1M] Sm-X-L/MT_A_Sk_MI_LSPType[1M] Sm-X-L/MT_A_Sk_MI_CoS[1M] Sm-X-L/MT_A_Sk_MI_TC2PHBMapping[1M] Sm-X-L/MT_A_Sk_MI_QoSDecodingMode[1M] Sm-X-L/MT_A_Sk_MI_LCK_Period[1M] Sm-X-L/MT_A_Sk_MI_LCK_Period[1M]	Each MT_CP: MT_CI_Data MT_CI_iPHB MT_CI_oPHB MT_CI_SSF MI_CI_LStack SCC_CP: SCC_CI_Data SCC_CI_Data SCC_CI_SSF Sm-X-L/MT_A_Sk_MP: Sm-X-L/MT_A_Sk_MI_AcSL Sm-X-L/MT_A_Sk_MI_LastValidUPI Sm-X-L/MT_A_Sk_MI_CPLM Sm-X-L/MT_A_Sk_MI_cLFD
Sm-X-L/MT_A_Sk_MI_QoSDecodingMode[1M] Sm-X-L/MT_A_Sk_MI_LCK_Period[1M] Sm-X-L/MT_A_Sk_MI_LCK_CoS[1M] Sm-X-L/MT_A_Sk_MI_Admin_State	Sm-X-L/MT_A_Sk_MI_LastValidUPI Sm-X-L/MT_A_Sk_MI_cPLM
Sm-X-L/MT_A_Sk_MI_AIS_Period[1M] Sm-X-L/MT_A_Sk_MI_AIS_CoS[1M] Sm-X-L/MT_A_Sk_MI_GAL_Enable[1M]	Sm-X-L/MT_A_Sk_MI_cUPM

• Processes:

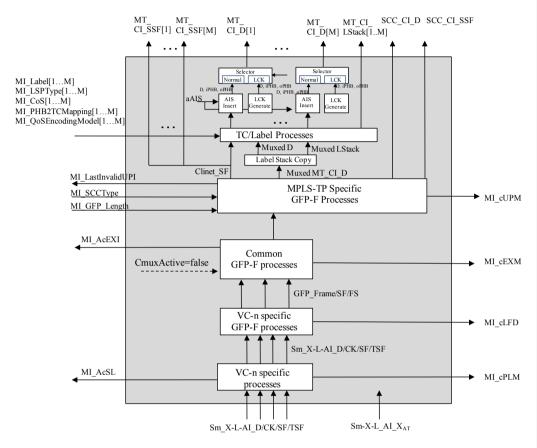


Figure 11-16/G.8121/Y.1381 – Sm-X-L/MT_A_Sk process diagram

See process diagram and process description in 11.1.1.2. The additional Sm-X-L_AI_ X_{AR} interface is not connected to any of the internal processes.

• Defects:

dPLM - See 6.2.4.2 in [ITU-T G.806].

dLFD - See 6.2.5.2 in [ITU-T G.806].

dUPM - See 8.4.2.

dEXM - See 6.2.4.4 in [ITU-T G.806].

• Consequent actions:

The function shall perform the following consequent actions:

aSSF ← AI TSF or dPLM or dLFD or dUPM or dEXM

aAIS ← AI or dPLM or dLFD or dUPM or dEXM

• Defect correlations:

The function shall perform the following defect correlations to determine the most probable fault cause (see 6.4 in [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM ← dPLM and (not AI TSF)

cLFD ← dLFD and (not dPLM) and (not AI TSF)

cEXM ← dEXM and (not dPLM) and (not dLFD) and (not AI TSF)

cUPM ← dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF)

• Performance monitoring:

Ffs.

11.2 OTH to MPLS-TP Adaptation function (O/MT_A)

11.2.1 ODUk to MPLS-TP Adaptation functions

11.2.1.1 ODUk to MPLS-TP adaptation source function (ODUkP/MT A So)

The ODUkP/MT_A_So function creates the ODUk signal from a free running clock. It maps the MT_CI information into the payload of the OPUk, adds OPUk Overhead (RES, PT) and default ODUk Overhead.

Symbol:

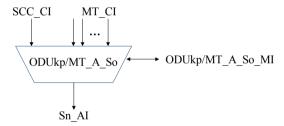


Figure 11-17/G.8121/Y.1381 - ODUkP/MT_A_So symbol

Interfaces:

Table 11-9/G.8121/Y.1381 - ODUkP/MT_A_So interfaces

Inputs	Outputs
Each MT_CP:	ODUkP_AP:
MT_CI_Data	ODUkP_AI_Data
MT_CI_iPHB	ODUkP_AI_Clock
MT_CI_oPHB	ODUkP_AI_FrameStart
SCC_CP:	ODUkP_AI_MultiFrameStart

- 110 -TD 540 Rev.1 (PLEN/15)

```
SCC_CI_Data

ODUkP/MT_A_So_MP:

ODUkP/MT_A_So_MI_Active

ODUkP/MT_A_So_MI_SCCType

ODUkP/MT_A_So_MI_Label[1...M]

ODUkP/MT_A_So_MI_LSPType[1...M]

ODUkP/MT_A_So_MI_CoS[1...M]

ODUkP/MT_A_So_PHB2TCMapping[1...M]

ODUkP/MT_A_So_MI_QoSEncodingMode[1...M]
```

Processes:

A process diagram of this function is shown in Figure 11-18.

 $Figure~11-18/G.8121/Y.1381-ODUkP/MT_A_So~process~diagram$

- TC/Label processes:

See 8.2.1.

- Queuing process:

See 8.3.

- MPLS-TP-specific GFP-F source process:

See 8.4.1.

- Common GFP source process:

See 8.5.3.1in [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

- ODUk specific GFP source process:

See 8.5.2.1/G.806. The GFP frames are mapped into the ODUk payload area according to 17.3 in [ITU-T G.709].

- ODUk specific source process:

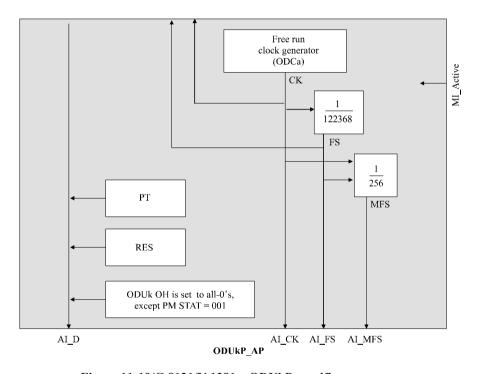


Figure 11-19/G.8121/Y.1381 – ODUkP specific source processes

Clock and (Multi)Frame Start signal generation: The function shall generate a local ODUk clock (ODUkP_AI_CK) of "239/(239 - k) * $4^{(k-1)}$ * 2 488 320 kHz \pm 20 ppm" from a free running oscillator. The jitter and wander requirements as defined in Annex A in [ITU-T G.8251] (ODCa clock) apply.

The function shall generate the (multi)frame start reference signals AI_FS and AI_MFS for the ODUk signal. The AI_FS signal shall be active once per 122368 clock cycles. AI_MFS shall be active once every 256 frames.

- 112 -TD 540 Rev.1 (PLEN/15)

PT: The payload type information is derived directly from the Adaptation function type. The value for "GFP mapping" shall be inserted into the PT byte position of the PSI overhead as defined in 15.9.2.1.1 in [ITU-TG.709].

RES: The function shall insert all-0's into the RES bytes.

All other bits of the ODUk overhead should be sourced as "0"s, except the ODUk-PM STAT field which should be set to the value "normal path signal" (001).

Defects:

None.

Consequent actions:

None.

Defect correlations:

None.

Performance monitoring:

Ffs.

11.2.1.2 ODUk to MPLS-TP adaptation sink function (ODUkP/MT A Sk)

The ODUkP/MT_A_Sk extracts MT_CI information from the ODUkP payload area. It extracts the OPUk Overhead (PT and RES) and monitors the reception of the correct payload type.

Symbol:

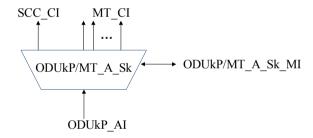


Figure 11-20/G.8121/Y.1381 - ODUkP/MT_A_Sk symbol

- 113 -TD 540 Rev.1 (PLEN/15)

Interfaces:

Table 11-10/G.8121/Y.1381 – ODUkP/MT_A_Sk interfaces

Inputs	Outputs
ODUKP_AP: ODUKP_AI_Data ODUKP_AI_ClocK ODUKP_AI_FrameStart ODUKP_AI_MultiFrameStart ODUKP_AI_TSF ODUKP/MT_A_Sk_MP: ODUKP/MT_A_Sk_MI_SCCType ODUKP/MT_A_Sk_MI_Label[1M] ODUKP/MT_A_Sk_MI_LSPType[1M] ODUKP/MT_A_Sk_MI_CoS[1M] ODUKP/MT_A_Sk_MI_TC2PHBMapping[1M] ODUKP/MT_A_Sk_MI_LCK_Period[1M] ODUKP/MT_A_Sk_MI_LCK_Period[1M] ODUKP/MT_A_Sk_MI_LCK_Period[1M] ODUKP/MT_A_Sk_MI_AIS_Period[1M] ODUKP/MT_A_Sk_MI_AIS_Period[1M] ODUKP/MT_A_Sk_MI_AIS_Period[1M] ODUKP/MT_A_Sk_MI_AIS_Period[1M] ODUKP/MT_A_Sk_MI_AIS_COS[1M] ODUKP/MT_A_Sk_MI_AIS_COS[1M] ODUKP/MT_A_SK_MI_AIS_COS[1M]	Each MT_CP: MT_CI_Data MT_CI_iPHB MT_CI_oPHB MT_CI_SSF MT_CI_LStack SCC_CP: SCC_CI_Data SCC_CI_SSF ODUkP/MT_A_Sk_MP: ODUkP/MT_A_Sk_MI_AcPT ODUkP/MT_A_Sk_MI_AcEXI ODUkP/MT_A_Sk_MI_LastValidUPI ODUkP/MT_A_Sk_MI_cPLM ODUkP/MT_A_Sk_MI_cLFD ODUkP/MT_A_Sk_MI_cEXM ODUKP/MT_A_SK_MI_CEXM ODUKP/MT_A_SK_MI_CUPM

Processes:

A process diagram of this function is shown in Figure 11-21.

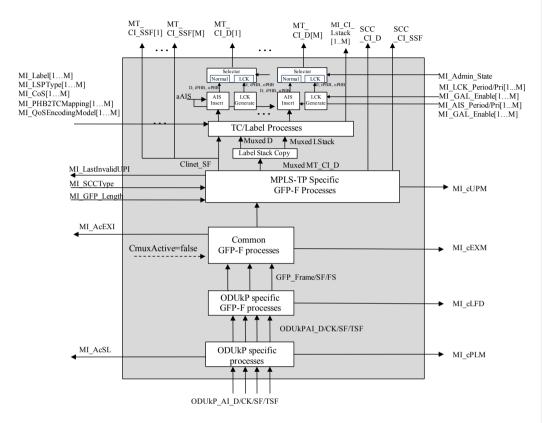


Figure 11-21/G.8121/Y.1381 - ODUkP/MT_A_Sk process diagram

- Selector generation process:

See 8.6.1 The normal CI is blocked if Admin_State = LOCKED.

- AIS Insert process:

See 8.6.2. There is a single AIS Insert process for each MT.

- LCK generation process:

See 8.6.3. There is a single LCK Insert process for each MT.

– TC/Label processes:

See 8.2.2.

- Label Stack Copy process:

See 8.2.3.

- MPLS-TP-specific GFP-F sink process:

See 8.4.2.

- Common GFP sink process:

See 8.5.3.2 in [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

- ODUk specific GFP sink process:

See 8.5.2.2 in [ITU-T G.806]. The GFP frames are demapped from the ODUk payload area according to 17.3 in [ITU-T G.709].

ODUk-specific sink process:

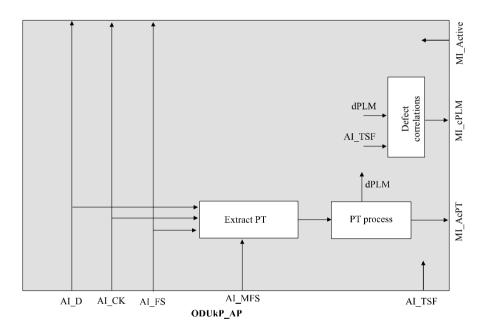


Figure 11-22/G.8121/Y.1381 - ODUkP specific sink processes

PT: The function shall extract the PT byte from the PSI overhead as defined in 8.7.1 in [ITU-T G.798]. The payload type value for "GFP mapping" in 15.9.2.1.1 in [ITU-T G.709] shall be expected. The accepted PT value is available at the MP (MI_AcPT) and is used for PLM defect detection.

RES: The value in the RES bytes shall be ignored.

Defects:

dPLM - See 6.2.4.1 in [ITU-T G.798].

dLFD - See 6.2.5.2 in [ITU-T G.806].

- 116 -TD 540 Rev.1 (PLEN/15)

dEXM - See 6.2.4.4 in [ITU-T G.806].

dUPM - See 8.4.2.

Consequent actions:

The function shall perform the following consequent actions:

aSSF ← AI TSF or dPLM or dLFD or dUPM or dEXM

aAIS ← AI_TSF or dPLM or dLFD or dUPM or dEXM

Defect correlations:

The function shall perform the following defect correlations to determine the most probable fault cause (see 6.4/G.806). This fault cause shall be reported to the EMF.

cPLM ← dPLM and (not AI TSF)

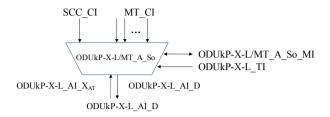
cLFD ← dLFD and (not dPLM) and (not AI_TSF)

cEXM ← dEXM and (not dPLM) and (not dLFD) and (not AI TSF)

cUPM ← dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI TSF)

Performance monitoring:

Ffs.


11.2.2 LCAS-capable ODUk to MPLS-TP Adaptation functions (ODUkP-X-L/MT_A; k=1,2,3)

11.2.2.1 LCAS-capable ODUk to MPLS-TP adaptation source function (ODUkP-X-L/MT_A_So)

The ODUkP-X-L/MT_A_So function creates the ODUk-X-L signal from a free running clock. It maps the MT_CI information into the payload of the OPUk-Xv (k = 1, 2, 3), adds OPUk-Xv Overhead (RES, vcPT).

- 117 -TD 540 Rev.1 (PLEN/15)

Symbol:

 $Figure~11\text{-}23/G.8121/Y.1381-ODUkP-X-L/MT_A_So~symbol$

Interfaces:

 $Table~11\text{-}11/G.8121/Y.1381-ODUkP\text{-}X\text{-}L/MT_A_So~interfaces$

Inputs	Outputs
Each MT_CP:	ODUkP-X-L_AP:
MT_CI_Data	ODUkP-X-L_AI_Data
MT_CI_iPHB	ODUkP-X-L_AI_Clock
MT_CI_oPHB	ODUkP-X-L_AI_FrameStart
SCC_CP:	ODUkP-X-L_AI_MultiFrameStart
SCC_CI_Data	
ODUkP-X-L_AP:	
ODUkP-X-L_AI_X _{AT}	
ODUkP-X-L/MT_A_So_MP:	
ODUkP-X-L/MT_A_So_MI_Active	
ODUkP-X-L/MT_A_So_MI_SCCType	
ODUkP-X-L/MT_A_So_MI_Label[1M]	
ODUkP-X-L/MT_A_So_MI_LSPType[1M]	
ODUkP-X-L/MT_A_So_MI_CoS[1M]	
ODUkP-X-L/MT_A_So_PHB2TCMapping[1M]	
ODUkP-X-L/MT_A_So_MI_QoSEncodingMode[1M]	

Processes:

A process diagram of this function is shown in Figure 48.

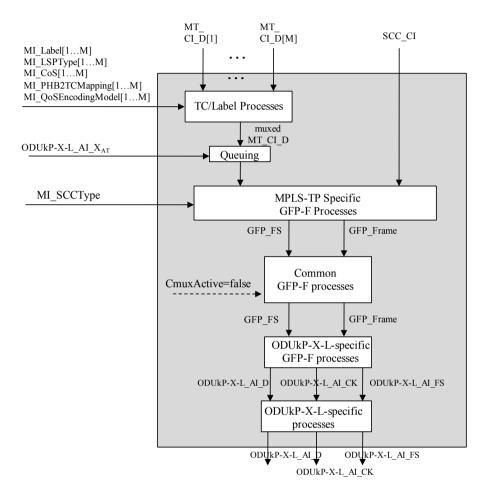


Figure 11-24/G.8121/Y.1381 - ODUkP-X-L/MT_A_So process diagram

The processes have the same definition as in 11.2.1.1.

ODUkP-X-L specific source process:

- 119 -TD 540 Rev.1 (PLEN/15)

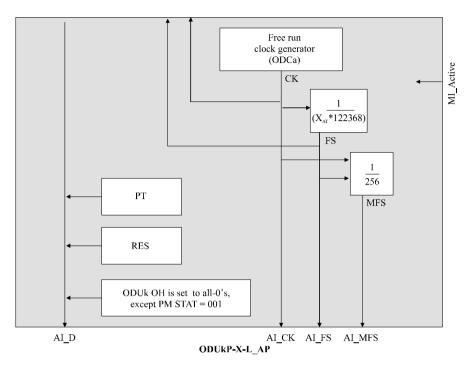


Figure 11-25/G.8121/Y.1381 - ODUkP-X-L specific source processes

Clock and (Multi)Frame Start signal generation: The function shall generate a local ODUk clock (ODUkP_AI_CK) of " X_{AT} * 239/(239 - k) * $4^{(k-1)}$ * 2 488 320 kHz ± 20 ppm" from a free running oscillator. The jitter and wander requirements as defined in Annex A in [ITU-T G.8251] (ODCa clock) apply.

The function shall generate the (multi)frame start reference signals AI_FS and AI_MFS for the ODUk signal. The AI_FS signal shall be active once per 122368 clock cycles. AI_MFS shall be active once every 256 frames.

vcPT: The payload type information is derived directly from the Adaptation function type. The value for "GFP mapping" shall be inserted into the vcPT byte position of the PSI overhead as defined in 18.1.2.2 in [ITU-TG.709].

RES: The function shall insert all-0's into the RES bytes.

None.

Consequent actions:

None.

Defect correlations:

None.

Performance monitoring:

Ffs.

11.2.2.2 LCAS-capable ODUk to MPLS-TP adaptation sink function (ODUkP-X-L/MT_A_Sk)

The ODUkP-X-L/MT_A_Sk extracts MT_CI information from the ODUkP-Xv payload area. It extracts the OPUk-Xv Overhead (vcPT and RES) and monitors the reception of the correct payload type.

Symbol:

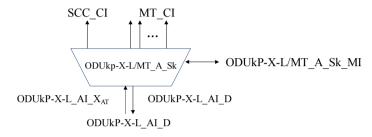



Figure 11-26/G.8121/Y.1381 - ODUkP-X-L/MT_A_Sk symbol

Interfaces:

Table 11-12/G.8121/Y.1381 - ODUkP-X-L/MT_A_Sk interfaces

Inputs	Outputs
ODUkP-X-L_AP: ODUkP-X-L_AI_Data ODUkP-X-L_AI_ClocK ODUkP-X-L_AI_FrameStart ODUkP-X-L_AI_FrameStart ODUkP-X-L_AI_TSF ODUkP-X-L_AI_X_R ODUkP-X-L/MT_A_Sk_MP: ODUkP-X-L/MT_A_Sk_MI_Active ODUkP-X-L/MT_A_Sk_MI_SCCType ODUkP-X-L/MT_A_Sk_MI_Label[1M] ODUkP-X-L/MT_A_Sk_MI_LSPType[1M] ODUkP-X-L/MT_A_Sk_MI_CoS[1M] ODUkP-X-L/MT_A_Sk_MI_TC2PHBMapping[1M] ODUkP-X-L/MT_A_Sk_MI_QoSDecodingMode[1M] ODUkP-X-L/MT_A_Sk_MI_LCK_Period[1M] ODUkP-X-L/MT_A_Sk_MI_LCK_CoS[1M] ODUKP-X-L/MT_A_Sk_MI_LCK_CoS[1M] ODUKP-X-L/MT_A_Sk_MI_AIS_Period[1M] ODUKP-X-L/MT_A_Sk_MI_AIS_Period[1M] ODUKP-X-L/MT_A_Sk_MI_AIS_Period[1M] ODUKP-X-L/MT_A_Sk_MI_AIS_Period[1M] ODUKP-X-L/MT_A_Sk_MI_AIS_Period[1M] ODUKP-X-L/MT_A_Sk_MI_AIS_Period[1M]	Each MT_CP: MT_CI_Data MT_CI_iPHB MT_CI_oPHB MT_CI_SSF MT_CI_LStack SCC_CP: SCC_CI_Data SCC_CI_SSF ODUkP-X-L/MT_A_Sk_MP: ODUkP-X-L/MT_A_Sk_MI_AcVcPT ODUkP-X-L/MT_A_Sk_MI_AcEXI ODUkP-X-L/MT_A_Sk_MI_LastValidUPI ODUkP-X-L/MT_A_Sk_MI_cVcPLM ODUkP-X-L/MT_A_Sk_MI_cLFD ODUkP-X-L/MT_A_Sk_MI_cLFD ODUkP-X-L/MT_A_Sk_MI_cEXM ODUKP-X-L/MT_A_Sk_MI_cEXM ODUKP-X-L/MT_A_Sk_MI_cUPM

Processes:

 $Figure~11\text{-}27/G.8121/Y.1381 - ODUkP\text{-}X\text{-}L/MT_A_Sk~process~diagram$

See process diagram and process description in 11.2.1.2. The additional ODUkP-X-L_AI_ X_{AR} interface is not connected to any of the internal processes.

ODUkP-X-L specific sink process:

- 122 -TD 540 Rev.1 (PLEN/15)

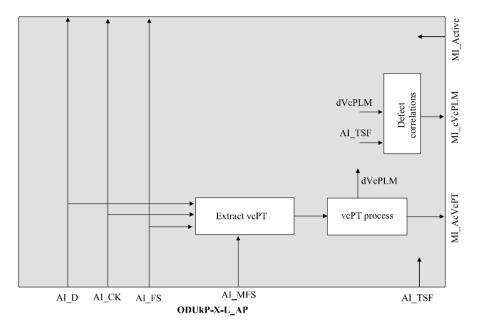


Figure 11-28/G.8121/Y.1341 - ODUkP-X-L specific sink processes

PT: The function shall extract the vcPT byte from the PSI overhead as defined in 8.7.3 in [ITU-T G.798]. The payload type value for "GFP mapping" in 18.1.2.2 in [ITU-T G.709] shall be expected. The accepted PT value is available at the MP (MI_AcPT) and is used for PLM defect detection.

RES: The value in the RES bytes shall be ignored.

Defects:

dVcPLM - See 6.2.4.2 in [ITU-T G.798].

dLFD - See 6.2.5.2 in [ITU-T G.806].

dUPM - See 8.4.2.

dEXM - See 6.2.4.4 in [ITU-T G.806].

Consequent actions:

The function shall perform the following consequent actions:

aSSF ← AI TSF or dVcPLM or dLFD or dUPM or dEXM

aAIS ← AI_TSF or dVcPLM or dLFD or dUPM or dEXM

Defect correlations:

The function shall perform the following defect correlations to determine the most probable fault cause (see 6.4 in [ITU-T G.806]). This fault cause shall be reported to the EMF.

cVcPLM ← dVcPLM and (not AI TSF)

cLFD \leftarrow dLFD and (not dVcPLM) and (not AI_TSF)

 $cEXM \leftarrow dEXM$ and (not dVcPLM) and (not dLFD) and (not AI_TSF)

cUPM ← dUPM and (not dEXM) and (not dVcPLM) and (not dLFD) and (not AI TSF)

Performance monitoring:

Ffs.

11.3 PDH to MPLS-TP adaptation function (P/MT_A)

11.3.1 Pq to MPLS-TP Adaptation functions (Pq/MT_A ; q = 11s, 12s, 31s, 32e)

11.3.1.1 Pq to MPLS-TP Adaptation Source function (Pq/MT A So)

This function maps MT_CI information onto a Pq_AI signal (q = 11s, 12s, 31s, 32e).

Data at the Pq_AP is a Pq (q = 11s, 12s, 31s, 32e), having a payload as described in [ITU-T G.7043] with a value of N=1. The VLI byte is reserved and not used for payload data.

Symbol

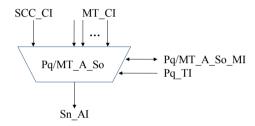


Figure 11-29/G.8121/Y.1381 - Pq/MT A So symbol

- 124 -TD 540 Rev.1 (PLEN/15)

Interfaces

Table 11-13/G.8121/Y.1381: Pq/MT_A_So interfaces

Inputs	Outputs
Each MT CP:	Pq AP:
MT_CI_Data	Pq_AI_Data
MT_CI_iPHB	Pq_AI_Clock
MT_CI_oPHB	Pq_AI_FrameStart
SCC_CP: SCC_CI_Data Pq_TP: Pq_TI_Clock Pq_TI_FrameStart	
Pq/MT A So MP:	
Pq/MT_A_So_MI_SCCType	
Pq/MT_A_So_MI_Label[1M]	
Pq/MT_A_So_MI_LSPType[1M]	
Pq/MT_A_So_MI_CoS[1M]	
Pq/MT_A_So_PHB2TCMapping[1M]	
Pq/MT_A_So_MI_QoSEncodingMode[1M]	

Processes

A process diagram of this function is shown in Figure 11-30.

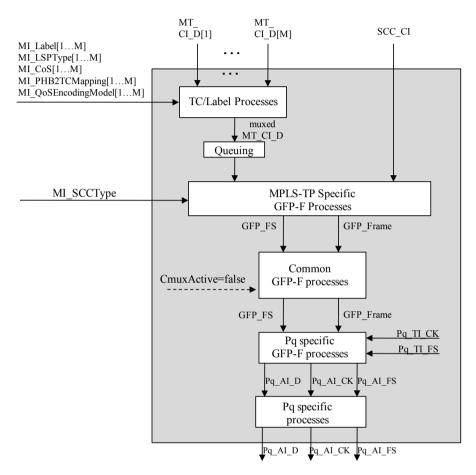


Figure 11-30/G.8121/Y.1381 - Pq/MT_A_So process diagram

TC/Label processes:

See 8.2.1.

Queuing process:

See 8.3.

MPLS-TP-specific GFP-F source process:

See 8.4.1.

Common GFP source process:

- 126 -TD 540 Rev.1 (PLEN/15)

See 8.5.3.1 in [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

- 127 -TD 540 Rev.1 (PLEN/15)

Pq specific GFP source process:

See 8.5.2.1 in [ITU-T G.806]. The GFP frames are mapped into the Pq payload area according to [ITU-T G.8040].

Pq specific source process:

Note: the VLI byte is fixed stuff equal to 0x00 at the Pq AP output of this function.

P31s specific:

MA: Signal label information is derived directly from the Adaptation function type. The value for "GFP mapping" in clause 2.1/G.832 is placed in the Payload Type field of the MA byte.

Defects

None.

Consequent actions

None.

Defect correlations

None.

Performance monitoring

Ffs.

11.3.1.2 Pq to MPLS-TP Adaptation Sink function (Pq/MT A Sk)

This function extracts MT_CI information from the Pq_AI signal (q = 11s, 12s, 31s, 32e), delivering MT_CI.

Data at the Pq $_$ AP is a Pq (q = 11s, 12s, 31s, 32e), having a payload as described in [ITU-T G.7043] with a value of N=1. The VLI byte is reserved and not used for payload data.

Symbol

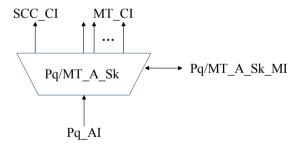


Figure 11-31/G.8121/Y.1381 - Pq/MT A Sk symbol

- 128 -TD 540 Rev.1 (PLEN/15)

Interfaces

 $Table~11\text{-}14/G.8121/Y.1381:~Pq/MT_A_Sk~interfaces$

Inputs	Outputs
Pq AP:	Each MT CP:
Pq AI Data	MT CI Data
Pq_AI_ClocK	MT CI iPHB
Pq_AI_FrameStart	MT CI oPHB
Pq_AI_TSF	MT_CI_SSF
	MT CI LStack
Pq/MT_A_Sk_MP:	
Pq/MT_A_Sk_MI_SCCType	SCC CP:
Pq/MT_A_Sk_MI_Label[1M]	SCC CI Data
Pq/MT_A_Sk_MI_LSPType[1M]	SCC_CI_SSF
Pq/MT_A_Sk_MI_CoS[1M]	
Pq/MT_A_Sk_MI_TC2PHBMapping[1M]	Pq/MT A Sk MP:
Pq/MT_A_Sk_MI_QoSDecodingMode[1M]	Pq/MT_A_Sk_MI_AcSL
	Pq/MT_A_Sk_MI_AcEXI
Pg/MT A Sk MI LCK Period[1M]	Pq/MT_A_Sk_MI_LastValidUPI
Pg/MT A Sk MI LCK CoS[1M]	Pq/MT_A_Sk_MI_cPLM
Pq/MT_A_Sk_MI_Admin_State	Pq/MT_A_Sk_MI_cLFD
Pq/MT _A_Sk_MI _AIS_Period[1M]	Pq/MT_A_Sk_MI_cEXM
Pq/MT _A_Sk_MI _AIS_CoS[1M]	Pq/MT_A_Sk_MI_cUPM
Pq/MT _A_Sk_MI _GAL_Enable [1M]	

Processes

A process diagram of this function is shown in Figure 11-32.

- 129 -TD 540 Rev.1 (PLEN/15)

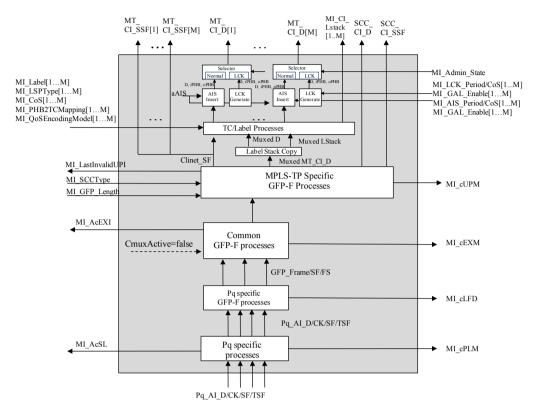


Figure 11-32/G.8121/Y.1381 - Pq/MT_A_Sk process diagram

- Selector generation process:

See 8.6.1 The normal CI is blocked if Admin_State = LOCKED.

- AIS Insert process:

See 8.6.2. There is a single AIS Insert process for each MT.

- LCK generation process:

See 8.6.3. There is a single LCK Insert process for each MT.

TC/Label processes:

See 8.2.2.

- Label Stack Copy process:

See 8.2.3.

MPLS-TP specific GFP-F sink process:

See 8.4.2/G.8121/Y.1381.

- 130 -TD 540 Rev.1 (PLEN/15)

Common GFP sink process:

See 8.5.3.1/G.806. GFP channel multiplexing is not supported (CMuxActive=false).

Pq specific GFP sink process:

See 8.5.2.1/G.806. The GFP frames are demapped from the Pq payload area according to G.8040/Y.1340.

Pq specific sink process:

Note: the VLI byte at the Pq AP input of this function is ignored.

P31s specific:

MA: The signal label is recovered from the Payload Type field in the MA byte as per 6.2.4.2 in [ITU-T G.806]. The signal label for "GFP mapping" in clause 2.1 in [ITU-T G.832] shall be expected. The accepted value of the signal label is also available at the P31s/ETH_A_Sk_MP.

Defects

dPLM - See 6.2.4.2 in [ITU-T G.806].

dLFD - See 6.2.5.2 in [ITU-T G.806]

dUPM - See 8.4.2/G.8121/Y.1381

dEXM - See 6.2.4.4 in [ITU-T G.806].

Note: dPLM is only defined for q = 31s. dPLM is assumed to be false for q = 11s, 12s, 32e.

Consequent actions

The function shall perform the following consequent actions:

aSSF ← AI TSF or dPLM or dLFD or dUPM or dEXM

aAIS ← AI TSF or dPLM or dLFD or dUPM or dEXM

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see 6.4/G.806). This fault cause shall be reported to the EMF.

cPLM ← dPLM and (not AI TSF)

cLFD ← dLFD and (not dPLM) and (not AI TSF)

cEXM ← dEXM and (not dPLM) and (not dLFD) and (not AI TSF)

 $cUPM \ \leftarrow \ dUPM \ and \ (not \ dEXM) \ and \ (not \ dPLM) \ and \ (not \ dLFD) \ and \ (not \ AI_TSF)$

Performance monitoring

Ffs.

11.3.2 LCAS-capable Pq to MPLS-TP Adaptation functions (Pq-X-L/MT_A; q=11s, 12s, 31s, 32e)

11.3.2.1 LCAS-capable Pq to MPLS-TP Adaptation Source function (Pq-X-L/MT A So)

This function maps MT_CI information onto an Pq-X-L_AI signal (q=11s, 12s, 31s, 32e).

- 131 -TD 540 Rev.1 (PLEN/15)

Data at the Pq-X-L_AP is a Pq-X (q = 11s, 12s, 31s, 32e), having a payload as described in [ITU-T G.7043].

- 132 -TD 540 Rev.1 (PLEN/15)

Symbol

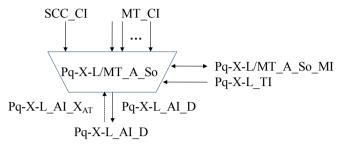


Figure 11-33/G.8121/Y.1381 - Pq-X-L/MT_A_So symbol

Interfaces

Table 11-15/G.8121/Y.1381: Pq-X-L/MT_A_So interfaces

Inputs	Outputs
Each MT CP:	Pq-X-L AP:
MT_CI_Data	Pq-X-L_AI_Data
MT_CI_iPHB	Pq-X-L_AI_Clock
MT_CI_oPHB	Pq-X-L_AI_FrameStart
SCC_CP:	
SCC_CI_Data	
D. VI AD	
Pq-X-L_AP:	
Pq-X-L_AI_X _{AT}	
Pq-X-L_TP:	
Pq-X-L TI Clock	
Pq-X-L_TI_FrameStart	
Pq-X-L/MT_A_So_MP:	
Pq-X-L/MT_A_So_MI_SCCType	
Pq-X-L/MT_A_So_MI_Label[1M]	
Pq-X-L/MT_A_So_MI_LSPType[1M]	
Pq-X-L/MT_A_So_MI_CoS[1M]	
Pq-X-L/MT_A_So_PHB2TCMapping[1M]	
Pq-X-L/MT_A_So_MI_QoSEncodingMode[1M]	

Processes

A process diagram of this function is shown in Figure 11-34.

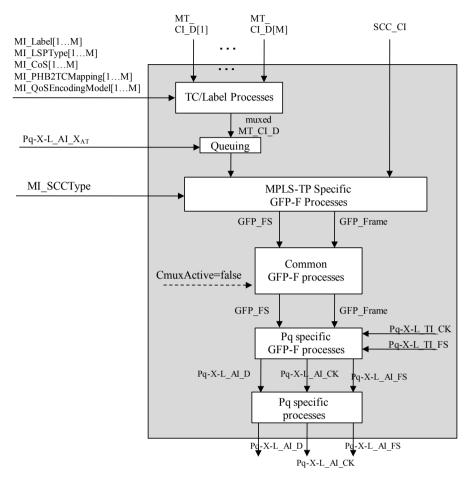


Figure 11-34/G.8121/Y.1381 – Pq-X-L/MT_A_So process diagram

The processes have the same definition as in 11.1.1.1.

Defects

None.

Consequent actions

None.

Defect correlations

None.

Performance monitoring

Ffs.

11.3.2.2 LCAS-capable Pq to MPLS-TP Adaptation Sink function (Pq-X-L/MT_A_Sk)

- 134 -TD 540 Rev.1 (PLEN/15)

This function extracts MT_CI information from the Pq-X-L_AI signal (q = 11s, 12s, 31s, 32e), delivering MT_CI.

Data at the Pq-X-L_AP is a Pq-Xv (q = 11s, 12s, 31s, 32e), having a payload as described in [ITU-T G.7043].

Symbol

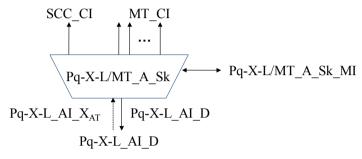


Figure 11-35/G.8121/Y.1381 - Pq-X-L/MT_A_Sk symbol

Interfaces

Table11-16/G.8121/Y.1381: Pq-X-L/MT_A_Sk interfaces

-	
Inputs	Outputs
Pq-X-L_AP:	Each MT_CP:
Pq-X-L_AI_Data	MT_CI_Data
Pq-X-L_AI_ClocK	MT_CI_iPHB
Pq-X-L_AI_FrameStart	MT_CI_oPHB
Pq-X-L_AI_TSF	MT_CI_SSF
Pq-X-L_AI_X _{AR}	MT_CI_LStack
Pq-X-L/MT A Sk MP:	SCC CP:
Pq-X-L/MT_A_Sk_MI_SCCType	SCC CI Data
Pq-X-L/MT_A_Sk_MI_Label[1M]	SCC_CI_SSF
Pq-X-L/MT_A_Sk_MI_LSPType[1M]	
Pq-X-L/MT_A_Sk_MI_CoS[1M]	Pq-X-L/MT A Sk MP:
Pq-X-L/MT_A_Sk_MI_TC2PHBMapping[1M]	Pq-X-L/MT_A_Sk_MI_AcSL
Pq-X-L/MT A Sk MI QoSDecodingMode[1M]	Pq-X-L/MT_A_Sk_MI_AcEXI
Pq-X-L//MT A Sk MI LCK Period[1M]	Pq-X-L/MT_A_Sk_MI_LastValidUPI
Pq-X-L//MT A Sk MI LCK P[1M]	Pq-X-L/MT_A_Sk_MI_cPLM
Pq-X-L//MT A Sk MI Admin State	Pq-X-L/MT_A_Sk_MI_cLFD
Pq-X-L//MT A Sk MI AIS Period[1M]	Pq-X-L/MT_A_Sk_MI_cEXM
Pq-X-L//MT_A_Sk_MI_AIS_P[1M]	Pq-X-L/MT_A_Sk_MI_cUPM
Pq-X-L//MT _A_Sk_MI _GAL_Enable[1M]	

- 135 -TD 540 Rev.1 (PLEN/15)

Processes

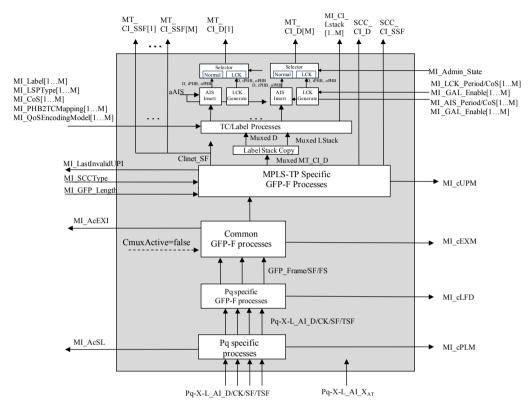


Figure 11-36/G.8121/Y.1381 – Pq-X-L/MT_A_Sk process diagram

See process diagram and process description in 11.1.1.2. The additional Pq-X-L_AI_X_{AR} interface is not connected to any of the internal processes.

Defects

dPLM - See 6.2.4.2 in [ITU-T G.806].

dLFD - See 6.2.5.2 in [ITU-T G.806].

dUPM - See 8.4.2

dEXM - See 6.2.4.4 in [ITU-T G.806].

Note: dPLM is only defined for q = 31s. dPLM is assumed to be false for q = 11s, 12s, 32e.

Consequent actions

The function shall perform the following consequent actions:

aSSF ← AI_TSF or dPLM or dLFD or dUPM or dEXM

- 136 -TD 540 Rev.1 (PLEN/15)

aAIS ← AI_TSF or dPLM or dLFD or dUPM or dEXM

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see 6.4/G.806). This fault cause shall be reported to the EMF.

cPLM ← dPLM and (not AI_TSF)

cLFD ← dLFD and (not dPLM) and (not AI_TSF)

 $cEXM \leftarrow dEXM$ and (not dPLM) and (not dLFD) and (not AI_TSF)

 $cUPM \leftarrow dUPM$ and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF)

Performance monitoring

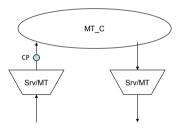
Ffs.

11.4 Ethernet to MPLS-TP adaptation function

FFS

Appendix I Examples of processing of packets with expired TTL

(This appendix does not form an integral part of this Recommendation)


MPLS-TP packets received with an expired TTL shall not be forwarded. However MPLS-TP OAM packets received with an expired TTL can be processed and their processing can be happen at different locations (i.e., from different atomic functions) within an MPLS-TP Equipment.

The proper behavior depends on the MPLS-TP connection configuration within the node. The following examples are considered and described:

- Intermediate node with no MIPs
- Intermediate node interface MIPs
- Intermediate node node MIP
- Terminating Node Down MEP or node MEP
- Terminating Node Up MEP (with interface MIP)

NOTE – As indicated in clause 9.4.2.2.2, the MI_DS_MP_Type parameter should be properly configured by the EMF and not exposed to the operator as a configuration parameter of the NE Management. The examples described in this appendix provides guidelines on how the EMF can properly configure the MI_DS_MP_Type.

Figure I.1 describes the behavior of an intermediate node with no MIPs using the atomic functions defined in this Recommendation:

NOTE - Srv can be any server (MT or non-MT)

Figure I.1 – Intermediate node with no MIPs

The Server/MT_A_Sk is connected to the MT_C via an MT_CP. Therefore the TTL Decrement Process, as defined in clause 8.2.2, will discard all the MPLS-TP packets (user data or OAM) that are received with an expired TTL.

Figure I.2 describes the behavior of an intermediate node supporting per-interface MIPs using the atomic functions defined in this Recommendation:

- 138 -TD 540 Rev.1 (PLEN/15)

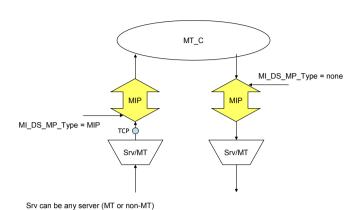


Figure I.2 – Intermediate node with per-interface MIPs

The Server/MT_A_Sk is connected to ingress MIP via an MT_TCP. Therefore the TTL Decrement Process, as defined in clause 8.2.2, will forward all the MPLS-TP packets (user data or OAM) that are received with an expired TTL to the ingress MIP.

The MTDi_TT_Sk atomic function within the ingress MIP will process all the MPLS-TP OAM packets received with an expired TTL and targeted to the ingress MIP.

The TTL check process in the MTDi/MT_A_Sk within the ingress MIP, as defined in clause 9.4.2.2.2, is properly configured by the EMF (MI_DS_MP_Type=MIP) to drop all the MPLS-TP user data packets received with an expired TTL and to forward all the MPLS-TP OAM packets received with an expired TTL together (i.e., with fate share) with all the MPLS-TP packets received with an non-expired TTL.

These packets are forwarded up to the egress MIP where the MTDi_TT_Sk atomic function will process all the MPLS-TP OAM packets received with an expired TTL and targeted to the egress MIP.

The TTL check process in the MTDi/MT_A_Sk within the egress MIP, as defined in clause 9.4.2.2.2, is properly configured by the EMF (MI_DS_MP_Type=none) to drop all the MPLS-TP packets received with an expired TTL. Although MPLS-TP user data packets with an expired TTL will never arrive at this point, this check will ensure also that any MPLS-TP OAM packet with an expired TTL is not forwarded.

Figure I.3 describes the behavior of an intermediate node with a per-node MIP using the atomic functions defined in this Recommendation. The per-node MIP is modeled as being composed by two half-MIPs on each side of the MT C:

Bibliography

[IETF b-RFC 6378] IETF RFC 6378 MPLS Transport Profile (MPLS-TP) Linear Protection.