
1 of 3 25/04/2006 17:21

Subject: Re: Unicode Technical Committee Liaison Statement to IETF on iab-idn-nextsteps
From: Mark Davis <mark.davis@icu-project.org>
Date: Friday, 24 Feb 2006 01.52.32 GMT+02:00
To: paf@cisco.com,
CC:iab@iab.org, john-ietf@jck.com, "rick@unicode.org" <rick@unicode.org>

The Unicode Technical Committee has reviewed the document http://www.iab.org/documents/drafts/draft-iab-idn-nextsteps-02.txt.

The UTC strongly supports many of the goals of the document, including especially improving the security of IDNs, and updating the version of Unicode used
in NamePrep and StringPrep (since the old version of Unicode they require excludes or hampers many languages). There are, however, a number of areas of
concern.

As a general issue, we'd urge closer cooperation between the IAB and the Unicode consortium on the document, so that the character encoding and software
internationalization issues can be reviewed by experts in the field, and accurately represented in the document.

The chief area of concern is section 4.3.

4.3. Combining Characters and Character Components

 One thing that increases IDNA complexity and the need for
 normalization is that combining characters are permitted. Without
 them, complexity might be reduced enough to permit more easy
 transitions to new versions. The community should consider whether
 combining characters should be prohibited entirely from IDNs. A
 consequence of this, of course, is that each new language or script
 would require that all of its characters have Unicode assignments to
 specific, precomposed, code points, a model that the Unicode
 Consortium has rejected for Roman-based scripts. For non-Roman
 scripts, it seems to be the Unicode trend to define such code points.
 At some level, telling the users and proponents of scripts that, at
 present, require composing characters to work the issues out with the
 Unicode Consortium in a way that severely constrains the need for
 those characters seems only appropriate. The IAB and the IETF should
 examine whether it is appropriate to press the Unicode Consortium to
 revise these policies or otherwise to recommend actions that would
 reduce the need for normalization and the related complexities.

The descriptions and recommendations in this section are simply not feasable. They do not recognize the fundamental importance of combining marks as an
integral component of a great many scripts, nor do they recognize the fundamental need for compatibility that is required of the Unicode Standard. Asking for
combining characters to be removed is akin to asking English vowels to be removed, and all possible syllables to be encoded instead. There are, as well, a
number of purely factual errors. For example, "it seems to be the Unicode trend to define such code points" is simply incorrect. This section serves no purpose
but to betray a basic lack of understanding of scripts; it needs to be removed entirely.

A second area of major concern is Section 2.2.3.

2.2.3. Normalization and Character Mappings

 Unicode contains several different models for representing
 characters. The Chinese (Han)-derived characters of the "CJK"
 languages are "unified", i.e., characters with common derivation and
 similar appearances are assigned to the same code point. European
 characters derived from a Greek-Roman base are separated into
 separate code blocks for "Latin", Greek and Cyrillic even when
 individual characters are identical in both form and semantics.
 Separate code points based on font differences alone are generally
 prohibited, but a large number of characters for "mathematical" use
 have been assigned separate code points even though they differ from
 base ASCII characters only by font attributes such as "script",
 "bold", or "italic". Some characters that often appear together are
 treated as typographical digraphs with specific code points assigned
 to the combination, others require that the two-character sequences
 be used, and still others are available in both forms. Some Roman-
 based letters that were developed as decorated variations on the
 basic Latin letter collection (e.g., by addition of diacritical
 marks) are assigned code points as individual characters, others must
 be built up as two (or more) character sequences using "composing
 characters".

This section betrays a lack of understanding of the fundamental differences between Han characters and the scripts Latin, Greek, and Cyrillic.

 Many of these differences result from the desire to maintain backward
 compatibility while the standard evolved historically, and are hence
 understandable. However, the DNS requires precise knowledge of which
 codes and code sequences represent the same character and which ones
 do not. Limiting the potential difficulties with confusable
 characters (see Section 2.2.6) requires even more knowledge of which
 characters might look alike in some fonts but not in others. These
 variations make it difficult or impossible to apply a single set of

2 of 3 25/04/2006 17:21

 rules to all of Unicode. Instead, more or less complex mapping
 tables, defined on a character by character basis, are required to
 "normalize" different representations of the same character to a
 single form so that matching is possible.

The Unicode consortium *does* supply a precise mechanism for determining when two strings represent the same underlying abstract characters. These do
supply a single set of rules to all of Unicode, based on a set of data that is in the Unicode Character Database.

This paragraph also conflates the confusable issue with character equivalence. These are separate issues: there are great many instances where characters are
confusable where they are not at all equivalent (such as zero and the letter O).

 ... The fact
 that most or all scripts included in Unicode have been initially
 incorporated by copying an existing standard more or less intact has
 impact on the optimization of these algorithms and on forward
 compatibility. Even if the language is known and language-specific
 rules can be defined, dependencies on the language do not disappear.
 Any canonicalization operations that depend on more than short
 sequences of text is not possible to do without context. DNS lookups
 and many other operations do not have a way to capture and utilize
 the language or other information that would be needed to provide
 that context.

First, it is neither "most" nor "all". Very few scripts, proportionately, have been incorporated by copying an existing standard. Second, "Any canonicalization
operations that depend on more than short sequences of text is not possible to do without context...." is difficult to make sense of. One would have to explain
the sense of "canonicalization" that is being discussed. It could be as trivial as "language-based canonicalization is impossible without language information",
which is true, but above the document argues against using language-based equivalencies on a global basis (and for very good reason!)

===

Other areas of concern:

 (more properly "Roman", see below)

The common modern practice in the naming of the script is to use the term "Latin", not "Roman". Whether or not one thinks that should not have been the case,
insisting on older terms is pointless, and not germain to the purpose of the document.

 When writing or typing the label (or word), a script must be selected
 and a charset must be picked for use with that script.

This is confusing charset, keyboard and script. Saying "a script must be selected" is *neither* true from the user's perspective, nor does it at all match the
implementation pipeline from keypress to storage of a label. What may have been confusing for the authors is that sometimes keyboards that are listed for
selection are sorted by script; that does not, however, mean that a "script is selected".

The proper word, if more substantial changes are not made to the wording, would be "a keyboard must be selected". (Even that is a quite odd, since it implies
that that is done each time a user types a label.)

 If that charset, or the local charset being used by the relevant
 operating system or application software, is not Unicode, a further
 conversion must be performed to produce Unicode. How often this is
 an issue depends on estimates of how widely Unicode is deployed as
 the native character set for hardware, operating systems, and
 applications. Those estimates differ widely, with some Unicode
 advocates claiming that it is used in the vast majority of systems
 and applications today. Others are more skeptical, pointing out
 that:

 o ISO 8859 versions [ISO.8859.1992] and even national variations of
 ISO 646 [ISO.646.1991] are still widely used in parts of Europe;
 o code-table switching methods, typically based on the techniques of
 ISO 2022 [ISO.2022.1986] are still in general use in many parts of
 the world, especially in Japan with Shift-JIS and its variations;
 o that computing, systems, and communications in China tend to use
 one or more of the national "GB" standards rather than native
 Unicode;
 o and so on.

 Not all charsets define their characters in the same way and not all
 pre-existing coding systems were incorporated into Unicode without
 changes. Sometimes local distinctions were made that Unicode does
 not make or vice versa. Consequently, conversion from other systems
 to Unicode may potentially lose information.

Most of this section is unnecessary and the thrust of it is misleading. The only issue is "local distinctions" are lost when converting to Unicode; that doesn't
happen when converting from any of the examples listed. This passage implies that there are significant problems in mapping to Unicode in doing IDN, and
there simply aren't.

 ... Worse, one needs to be reasonably
 familiar with a script and how it is used to understand how much

3 of 3 25/04/2006 17:21

 characters can reasonably vary as the result of artistic fonts and
 typography. For example, there are a few fonts for Latin characters
 that are sufficiently highly ornamented that an observer might easily
 confuse some of the characters with characters in Thai script.

The confusion of Latin with Thai is a red herring. It would take an exceedingly contrived scenario for it to present a problem. There are plenty of realistic
scenarios involving confusables across, say, Latin and Cyrillic.

 ... IDNA
 prohibits these mixed-directional (or bidirectional) strings in IDN
 labels, but the prohibition causes other problems such as the
 rejection of some otherwise linguistically and culturally sensible
 strings. As Unicode and conventions for handling so-called
 bidirectional ("BIDI") strings evolve, the prohibition in IDNA should
 be reviewed and reevaluated.

Deviating from the practices already built into IRI would be a mistake. As the document recognizes above, it cannot be a goal to represent all possible
"linguistically and culturally sensible strings" in IDNs. The restrictions on BIDI are ones that have achieved broad consensus as the minimal ones to help avoid
some fairly serious security issues.

4.1.2. Elimination of word-separation punctuation
 ... We might even
 consider banning use of the hyphen itself in non-ASCII strings or,
 less restrictively, strings that contained non-Roman characters.

This section is not well motivated. The authors need to justify why such characters represent a problem (and one of such a serious nature that hyphens should
be disallowed).

