
Contact: Hing-Kam LAM

Alcatel-Lucent

USA

Tel: +1-732-331-3476

Email: kam.lam@alcatel-lucent.com

Contact: YUN Xiang

FiberHome

P.R.China

Tel: +86 27 59100125

Email: yunxig@fiberhome.com.cn

Contact: Scott Mansfield

Ericsson

USA

Tel: +1-724-931-9316

Email: scott.mansfield@ericsson.com

Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the

Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related

work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.

INTERNATIONAL TELECOMMUNICATION UNION STUDY GROUP 15

TELECOMMUNICATION

STANDARDIZATION SECTOR

STUDY PERIOD 2013-2016

TD 406 Rev.1 (PLEN/15)

English only

Original: English

Question(s): 14/15 22 June - 3 July 2015

TD

Source: Editor G.7711/Y.1702

Title: Draft new Recommendation ITU-T G.7711/Y.1702 (ex G.gim) (for Consent, 3 July

2015)

This document contains the base text of new draft Recommendation G.7711 (ex. G.gim) “Generic

Protocol-Neutral Information Model for Transport Resources” for consent

Document history:

Version Date Description

0.01 WD17r1 (9/2014

Shanghai)

Initial version. The proposal text in WD17 was accepted as the

initial base text of G.gim, with the following updates from the

discussion of WD18, WD05r1 (synchronization management),

and WD12 (ECC management).

0.02 TD281/3 (11/2014) Update per the decision on C862, including moving the UML

guideline to Annex A

 Update the UML guideline so that it is not SDO-specific for

the objective of an industry-wide Open Model (and

companion Open Profile)

 Provide the Papyrus file and data dictionary file of the model

mailto:kam.lam@alcatel-lucent.com
mailto:yunxig@fiberhome.com.cn
mailto:scott.mansfield@ericsson.com

- 2 -

TD 406 Rev.1 (PLEN/15)

Version Date Description

0.03 WD31 (3/2015)

Bundang

Updates per proposal in WD12 (ALU)

 In Clause 1.1, update Figure 1-2 and add new sub-clause 1.1.4

 Describe Clauses 7.2 through 7.6 as various aspects of the

Core Network Module

 Update Annex A to align with xxx2015.018.01

 Accept all diff-marks

To do:

 Align the model files with xxx2014.408.03 and

onf2015.074.03

 Align the profile with the Open Model Profile

 Update for discussion on WD16 (ZTE) and WD21 (ZTE)

0.04 WD31r1 (3/3015)

Bundang

Updates

 Move the content of clause 7 into clause 6 (Overview) as the

details is actually in clause 8 and use clause 7 as a place

holder section for future areas

 Align the merged clause 6 with onf2015.074.03 clause 7

 Update the new clause 7 for the Scheduling model,

Synchronization management model, Logging model,

Notification model, based on WD10r1 (CMCC), WD16

(ZTE), and WD21 (ZTE)

0.05

(=1.0)

TD406/P (7/2015)

TD406R1/P

Updates:

 Further align with onf2015.074.06ONF TR-512

 Update Recommendation number to G.7711.

 Updated per group review (shown with diff-marks)

 Updated the data dictionary

 Update the bibliography

- 3 -

TD 406 Rev.1 (PLEN/15)

Draft new Recommendation ITU-T G.7711/Y.1702

Generic protocol-neutral information model for transport resources

Summary

Recommendation ITU-T G.7711/Y.1702 specifies a core information model of transport resources.

The information model is applicable for the management and control of the transport network

regardless of whether the transport networks utilize traditional OSS management, ASON control

plane, or SDN controller to configure transport connectivity. The model is also applicable [to the

management and control of the transport network] regardless of the technology of the underlying

transport network. Furthermore, the applicability of the information model is independent upon the

ultimate protocols that will be used in the management and control interfaces.

Keywords

<Optional>

Introduction

<Optional - This clause should appear only if it contains information different from Scope and

Summary>

- 4 -

TD 406 Rev.1 (PLEN/15)

Draft new Recommendation ITU-T G.7711/Y.1702

Generic Protocol-Neutral Information Model for Transport Resources

1 Scope

An information model describes the things in a domain in terms of objects, their properties

(represented as attributes), and their relationships. This Recommendation describes a core

information model of transport resources. Thise information model is intended to be applicable for

to the management and control of the transport network regardless of whether the transport

networks utilize traditional OSS management [ITU-T G.7710], ASON control plane [ITU-T

G.8080] or SDN controller to configure transport connectivity. The model is also intended to be

applicable to the management and control of the transport network regardless of the transport

technology of the underlying transport network. Furthermore, the applicability of the information

model is independent upon the ultimate protocols that will be used in the management and control

interfaces.

The core information model defined in this Recommendation can be used as the base for the

extension of transport/control-technology-specific information models. Such extension will be

specified in the technology-specific Recommendations, such as shown in Figure 1-1 below [ITU-T

G.874.1] for OTN management, [ITU-T G.8052] for Carrier Ethernet management, [ITU-T G.8152]

for MPLS-TP management, and [ITU-T G.7718.1] for ASON control management.

G.874.1
(OTN)

G.8052
(Ethernet)

G.8152
(MPLS-TP)

G.7718.1
(ASON)

G.7711
(Generic)

G.874.1
(OTN)

G.8052
(Ethernet)

G.7718.1
(ASON)

G.7711
(Generic)

…

Figure 1-1 Example Information Model Extension

A uniform protocol-neutral core information model for traditional management, ASON control, and

SDN control will ensure consistent OAM&P of the transport network. This will benefit the network

operators and system/equipment vendors for enabling interoperability between SDN-controlled and

traditionally-managed network domains and future migration from traditional management to SDN

control.

Furthermore, it is essential that the information model be applicable to complex network elements

(NEs) that may be deployed in current networks, which requires support of more than a simple

nodal view. Examples of such NEs include:

- 5 -

TD 406 Rev.1 (PLEN/15)

 Multi-layer NEs with subnetworks at each layer with transitional links between the

subnetworks:

 NEs that have their matrix partitioned (e.g. to model multiple BLSR MSPRING

terminations or to model connectivity restrictions) with "internal" links between the

subnetworks.

 Distributed NEs (e.g., a PON) with a mediation function to allow management visibility of

each of the "encapsulated" NEs

The complexity of these NEs makes it difficult to distinguish between the NE view and what is

traditionally called the network view. The core information model thus encompasses both nodal

view and network view of the transport resources.

1.1 Development and Use of the G.7711 Generic Information Model

Figure 1-2 below provides an overview of the Common Information Model (IM) and how the

purpose specific IM views and data schema1 are related to it. The term Data Schema (DS) in this

document is used in the context of either (1) a specific protocol that is used to implement a purpose

specific interface or (2) a programming language that is used to invoke a purpose specific

application programming interface (API). Guidelines for the use of UML in the common IM,

pruning and refactoring the common IM to provide a purpose specific view, and ultimately mapping

to a data schema will also be provided.

1 The term data schema is used instead of data model since the term data model is also used in a

wider context.

- 6 -

TD 406 Rev.1 (PLEN/15)

Core model fragment

• module-1

• module-2

• ….

• module-n

Application 1 (e.g. storage)

model fragment

Forwarding technology (e.g.

OTN) model fragment

Guidelines

Interface

specific

Common

process

Common Information Model

Interface

specific

xxx model fragment

Prune/refactor

View of

the

common

IM for a

particular

purpose

Papyrus

tool and

GitHub

Model structure
UML Interface

specific

Interface

specific

Data schema

for interface 1
Map

Data schema

for interface 2
Map

Interface

instance 1
Map

Interface

instance 2
Map

Figure 1-2 Methodology of IM and DS Development

1.1.1 Common IM

An information model describes the things in a domain in terms of objects, their properties

(represented as attributes), and their relationships. The Common IM should be expressed in UML

and include all of the artefacts (object classes, attributes, relationships, etc.) that are necessary to

describe the generic and domains for the technologies/applications being developed.

It will be necessary to continually expand and refine the Common IM over time as new forwarding

technologies, capabilities and applications are encompassed and new insights are gained.

To allow these extensions to be made in a seamless manner, the Common IM will be structured into

a generic model (G.7711) and a number of models which are specific to the forwarding

technologies (such as OTN in G.874.1, Ethernet in G.8052, MPLS-TP in G.8152, etc.) and

application (such as ASON control plane management in G.7718.1). This modelling process is

intended to allow these extensions to be developed with as much independence as possible.

 Generic Model

The artefacts in the generic model (G.7711) will be used by the technology/application

specific models either directly or with extension. The generic model will be constructed as a

set of modules each addressing a specific topic to allow for easier navigation. This

Recommendation is responsible for specifying and maintaining the generic model.

As a result of advancements in the industry it may be recognised that some parts of the

generic model may need to be augmented or changed. This Recommendation will ensure

that any such areas are clearly identified using lifecycle stereotypes. The older model forms

will be maintained to ensure ongoing compatibility and to ease migration.

- 7 -

TD 406 Rev.1 (PLEN/15)

 Specific Models

It is expected that the transport forwarding technology or application specific domains will

develop the appropriate models which contain objects, attributes and associations that relate

solely to that respective domains. In some cases an application or forwarding technology

addition will also require enhancement of the generic model.

In some cases an artefact in a specific model initially considered to be purely for a single

forwarding technology or application may be subsequently recognised as common across

several specific models and hence there will be a need to migrate this artefact to the generic

model.

To assure coherency, any artefacts, attributes or associations that might be identified during the

development of forwarding technology or application specific views should be included in the

appropriate fragment of the common information model. Only those properties that relate to the

specific encoding or style of interaction of an interface may be added outside the common

information model.

1.1.2 Purpose Specific IM View

A purpose specific information model view is a subset of the Common IM and should be expressed

in UML. A purpose specific information model view will typically be much smaller than the entire

Common IM. If additional artefacts (objects, packages, attributes or associations) are identified

while establishing a specific view, these should be added to the appropriate fragment of the

Common IM so that they are available for future use.

To provide maximum reuse, a purpose specific view should be developed in two steps:

 Prune and refactor the artefacts of the Common IM to provide a model of the network

to be managed. Only those artefacts that represent the capabilities that are both in

scope and supported are include in the purpose specific IM.

 Define the access rights for the various groups of users that will manage that network

Pruning and refactoring provides a purpose specific IM that represents the capabilities of the

network of interest. The definition of access rights provides the ability to limit the actions that can

be taken by the various user groups that will use that IM. For example a user group responsible for

network configuration could be provided with full read/write access and the ability to create or

delete object instances; while a user group responsible for inventory may only be allowed read

access (i.e. can see the network but cannot make changes).

 Pruning, i.e. remove the objects/packages/attributes that are not require:

 Select the required object classes from the common IM

 All mandatory (non-optional) attributes and packages must be included

 Select the required conditional packages and optional attributes

 Where appropriate conditional packages and optional attributes may be declared

mandatory

 Remove any optional associations that are not required

 Refactoring, i.e. reduce association flexibility:

 Reducing multiplicity (for example from [1..*] to [1])

 When this results in a composition association of multiplicity [1] between a

subordinate and a superior object class, they can be combined into a single object

class by pulling the attributes of the subordinate class into the superior class

- 8 -

TD 406 Rev.1 (PLEN/15)

 Where possible reducing the depth of the inheritance (i.e. by combining object classes

by moving the attributes of the super class into the subclass)

 Add reverse navigation (if useful for the client).

 The common IM only supports navigation from a subordinate object class to a

superior object class. This allows new subordinate object classes to be added

without any impact on the superior object class. In a purpose specific

implementation it is frequently useful to be able to navigate the relationship

between superior and subordinate object classes in both directions.

 Constraining attribute definitions

 Reducing legal value ranges

 Defining which (if any) attributes should be read only (for all users)

 Defining constraints between attributes

 Definition of access rights:

If only one group will use the network specific IM then this step is not required. If more

than one group will use the network specific IM this optional step provides a profile for each

user group to:

 Convert some attributes defined as read/write in the network specific IM to read only

 Remove the rights to create/delete some or all object instances

1.1.3 Data Schema

A Data Schema (DS) is developed in the context of either (1) a specific protocol that is used to

implement a purpose specific interface or; (2) a programming language that is used to invoke a

purpose specific API. Note that it is possible to map directly from the purpose specific information

model to interface encoding. The DS is constructed by mapping of the purpose specific information

model into the DS together with the operations patterns from the Common IM to provide the

interface protocol specific operations and notifications. The operations should include data

structures taken directly from the purpose specific information model view with no further

adjustment.

The development of the DS should consider the following:

 The operations should act on the information in a way consistent with the modelled object

lifecycle interdependency rules. (Note: these need to be added to the core model)

 Lifecycle dependencies to ensure sensible interface operation structuring and interface

flow rule

 Use transaction approach style of interface to account for lifecycle dependencies of the

model

 The operations should abide by the attribute properties

 Read only attributes (except those which are defined as setByCreate) should not be

included in data related to creation of an object (e.g. not in createData) or in a

specification of a desired object structure outcome

 Use of attribute value ranges, etc. to allow “effort” statement, optionality and negotiation to

be supported by the interface

- 9 -

TD 406 Rev.1 (PLEN/15)

1.1.4 Interface Encoding

This step encodes either the purpose specific data schema or a purpose specific information model

into either a specific protocol that is used to implement a purpose specific interface; or a

programming language that is used to invoke a purpose specific API. If the interface is encoded

directly from the purpose specific information model then the interface operations must be added as

described abovein clause 1.1.3.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the

currently valid ITU-T Recommendations is regularly published.

The reference to a document within this Recommendation does not give it, as a stand-alone

document, the status of a Recommendation.

[ISO/IEC 19505-1] ISO/IEC 19505-1:2012 - Information technology - Object Management

Group Unified Modelling Language (OMG UML) - Part 1: Infrastructure.

Iso.org.2012-04-20. Retrieved 2014-04-10, 2012

[ITU-T G.800] Recommendation ITU-T G.800 (2012), Unified functional architecture of

transport networks

[ITU-T G.805] Recommendation ITU-T G.805 (2000), Generic functional architecture of

transport networks

[ITU-T G.808.1] Recommendation ITU-T G.808.1 (2014), Generic protection switching -

Linear trail and subnetwork protection

[ITU-T G.7710] Recommendation ITU-T G.7710/Y.1701 (02/2012), Common equipment

management function requirements

[ITU-T G.8080] Recommendation ITU-T G.8080/Y.1304 (02/2012), Architecture for the

automatically switched optical network

[ITU-T G.852.2] Recommendation ITU-T G.852.2 (3/1999), Enterprise viewpoint description

of transport network resource model

[ITU-T G.874.1] Recommendation ITU-T G.874.1 (10/2012), Optical transport network:

Protocol-neutral management information model for the network element

view, plus Amendment 1 (08/2013)

[ITU-T G.8052] Recommendation ITU-T G.8052/Y.1346 (08/2013), Protocol-neutral

management information model for the Ethernet Transport capable network

element

 [ITU-T G.8152] Recommendation ITU-T G.8152/Y.1375 (draft), Protocol-neutral

management information model for the MPLS-TP network element

[ITU-T G.7718.1] Recommendation ITU-T G.7718.1/Y.1709.1 (12/2006), Protocol-neutral

management information model for the control plane view

[ITU-T M.3100] ITU-T Recommendation M.3100 (04/2005), Generic network information

model

- 10 -

TD 406 Rev.1 (PLEN/15)

[ITU-T M.3160] ITU-T Recommendation M.3160 (11/2008), Generic Management

Information Model – Protocol Neutral

[ITU-T X.1036] ITU-T Recommendation X.1036 (11/2007), Framework for creation,

storage, distribution and enforcement of policies for network security

 [TMF TR225] TM Forum TR225, Logical Resource: Network Function Model

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 <Term 1> [Reference]: <optional quoted definition>

3.1.2 <Term 2> [Reference]: <optional quoted definition>

3.1.1 access point [ITU-T G.805]

3.1.2 connection termination point [ITU-T M.3100]

3.1.3 connection point [ITU-T G.805]

3.1.4 information model [ITU-T X.1036]

3.1.5 link [ITU-T G.805]

3.1.6 link connection [ITU-T G.805]

3.1.7 matrix [ITU-T G.805]

3.1.8 port [ITU-T G.805]

3.1.9 subnetwork [ITU-T G.805]

3.1.10 subnetwork connection [ITU-T G.805]

3.1.11 trail termination [ITU-T G.805]

3.1.12 termination connection point [ITU-T M.3100]

3.1.13 termination point [ITU-T M.3100]

3.1.14 trail termination [ITU-T G.805]

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 Information Model: An information model describes the things in a domain in terms of

objects, their properties (represented as attributes), and their relationships.

3.2.2 Data Model: TBD

3.2.3 Data Schema: TBD

None

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

- 11 -

TD 406 Rev.1 (PLEN/15)

AP Access Point

API Application Programming Interface

ASON Automatically Switched Optical Network

CFM Core Foundation Module

CNM Core Network Module

CP Connection Point

CTP Connection Termination Point

EMS Element Management System

EP End Point (of FC)

ETH Ethernet MAC Layer

ETY Ethernet Physical Layer

FC Forwarding Construct

FD Forwarding Domain

FDFr Forwarding Domain Fragment

FTP Floating Termination Point

GIM Generic Information Model

GUID Globally Unique Identifier

IM Information Model

IMP Inverse MultipPlexing

LE Link End

LP Layer Protocol

LTP Logical Termination Point

MAC Media Access Control

MEP Maintenance Entity Group End Point

MSPRING Multiplex Section Share Protection Ring

NCD Network Control Domain

NE Network Element

OAM Operation, Administration, and Maintenance

OAM&P Operation, Administration, Maintenance, and Provisioning

OSS Operation Support System

OTN Optical Transport Network

PON Passive Optical Network

SDN Software Defined Networking

TCP Termination Connection Point

TP Termination Point

TTP Trail Termination Point

UML Unified Modelling Language

VNE Virtual Network Element

XC Cross Connection

- 12 -

TD 406 Rev.1 (PLEN/15)

The following abbreviations are for the name of the model constructs, such as object class. These

names follow the UML naming convention, i.e., UpperCamelCase.

 EP EndPoint (of FC)

FC ForwardingConstruct

FD ForwardingDomain

LE LinkEnd

LP LayerProtocol

LTP LogicalTerminationPoint

NCD NetworkControlDomain

NE NetworkElement

5 Conventions

5.1 UML modelling conventions

The information model defined in this Recommendation is expressed in a formal language called

UML (Unified Modelling Language), which was developed by the Object Management Group

(OMG). It is a general-purpose modelling language in the field of software engineering. In 2000

the Unified Modelling Language was also accepted by the International Organization for

Standardization (ISO) as an approved ISO standard [ISO/IEC 19505-1].

UML defines a number of basic model elements, called UML artefacts. In order to assure consistent

modelling, only a selected subset of these artefacts is used in the development of the G.7711

information model. The selected subset of UML artefacts is documented in Annex A “UML Model

Guidelines” of this Recommendation.

5.2 Model Artefact Lifecycle Stereotypes conventions

Stereotypes are applied to entities in the model to indicate the degree of maturity. These are made

visible in many of the figures.

The following stereotypes appear in this document:

 «experimental»

Indicates that the entity is at a very early stage of development and will almost certainly

change. The entity is NOT mature enough to be used in implementation.

 «preliminary»

Indicates that the entity is at a relatively early stage of development and is likely to change

but is mature enough to be used in implementation.

If no stereotype is shown the entity is mature. There are other lifecycle stereotypes that are not

relevant in this document. See Clause A.5.2 for more details.

5.3 Forwarding entity terminology conventions

In this Recommendation, the terms Forwarding Domain (FD) and Forwarding Construct (FC) have

been used in place of the traditional terms SubNetwork (SN) and SubNetwork-Connection (SNC)

respectively.

- 13 -

TD 406 Rev.1 (PLEN/15)

5.4 Conditional package conventions

Conditional packages are used to enhance (core) object classes / interfaces with additional attributes

/ operations on a conditional basis. The attributes / operations are defined in special object classes

called packages. In this Recommendation, package names follow the same rules as defined for

object classes. The name ends with the suffix "_Pac".

5.5 Pictorial diagram conventions

The symbols highlighted below are used in this document in pictorial representation of the model.

FC [TMF SNC, FDFr, MFDFr, XC (and now FRE/FC]

LTP bound to physical port (TMF PTP (and now TPE with physical port))

LTP without direct physical port that is not dependent on another LTP (TMF FTP and now TPE that is floating)

ForwardingDomain [TMF MLSN, FlowDomain (and now ForwardingDomain)]

NE [roughly TMF ME]

An association

FC (emphasising EndPoints which supports the pointer to the LTP)
[EndPoint isequivalent to aList and zList] of TMF SNC/FDFr (and now EndPoint of FRE/FC)]

Route structure

FC decomposition (half switch)
showing common point in grey

Link (emphasising Link Ends and conceptual relationship to FC)

Adapter and or LTP Pool - absorbed into LTP [Is G.805 adaptation function and is Absorbed into TMF PTP/CTP/FTP/TPE]

Protection switch in an FC Two protection switches
that are inverse ganged

LTP without direct physical port that is dependent on another LTP (TMF CTP and now dependent TPE)

Termination function - absorbed into LTP [Is G.805 Trail Termination and is Absorbed into TMF PTP/CTP/FTP/TPE]

Termination Connection Point (TCP) - absorbed into LTP [Is G.805 TCP and is Absorbed into TMF PTP/CTP/FTP/TPE]

Connection Point (CP) - absorbed into LTP [Is G.805 CP and is Absorbed into TMF PTP/CTP/FTP/TPE]

Inverse Multiplex Point (IMP) - absorbed into LTP [Absorbed into TMF PTP/CTP/FTP/TPE]

Alternatives
Symbols

Primary
Symbol

Link End

Figure 5-1 Illustrative Keys

- 14 -

TD 406 Rev.1 (PLEN/15)

TCP

CP

Fixed (degenerate)

SNC / FR

TCP

CP

Semi - flexible

SNC / FR

Rationalized Representation

(G.805 / G.800 terms)

AP

AP

AP

TCP

CP

TPE

TPE

LT

LT

LR x

LR z

LR y

LR w

TPE

n

n

Layer examples

LR x = MS

LR y = VC4 (flexible)

LR z = 140 (flexible)

AP

AP

AP

TCP

TCP

TCP

CP

Expanded G.805

Representation

TMF
CTP

TMF
PTP

LT = LayerTermination

TPE = Termination Point Encapsulation

ITU

TTP

ITU

CTP

ITU-T M.3100

TTP /CTP

LT

LT

LTP

LTP

LP

LP

‘
LTP

n

n

LP

LP

ITU-T TMF ONF

Layered
parameter list
used to capture
per-layer detail

Per-layer detail
captured in LT
entities

CP = Connection Point

AP = Access Point

TCP =Termination Connection Point

TTP = Trail Termination Point

CTP = Connection Termination Point

PTP = Physical Termination Point

LT = Layer Termination

TPE = Termination Point Encapsulation

Figure 5-2 Mapping from ITU-T and TM Forum Termination models to the Generic

Information Model2

6 Overview of the Generic Information Model (GIM)

The focus of this Recommendation is the generic information model (GIM). Application- or

forwarding technology-specific information models are out of scope of this Recommendation. The

GIM is divided into several packages (including modules and subsets). In the following sub-clauses

GIM is discussed from several different perspectives:

 CoreFoundationModule (CFM):

Covers aspects common to all classes such as identifiers and naming.

 CoreNetworkModule (CNM):

Covers the essentials for modelling of the Network providing an overview of the key

classes.

 Termination Subset of the CNM:

Covers the modelling of the processing of transport characteristic information, such as

termination, adaptation, OAM, etc.

Note that technology specific details are covered in the forwarding technology model

(this aspect is not in the scope of this document)

 Forwarding Subest Subset of the CNM:

2 It should be noted that in the Generic Information Model the terms ForwardingDomain (FD) and

ForwardingConstruct (FC) are used in place of SubNetworkConnection (SNC) and SubNetwork

(SN) (respectively used in the technology-specific information models.)

- 15 -

TD 406 Rev.1 (PLEN/15)

Covers the details of forwarding entities, including:

o The Basic Forwarding

o The ForwardingConstructSpec

 Topology Subset of the CNM:

Covers the modelling of network topology information in detail and describes the

attributes relevant when working with network topology. 3

This clause provides visual views, using the UML class diagrams for the object classes of the

information model. These diagrams depict a subset of the relationships among the object classes,

such as inheritance (i.e. specialization), association relationships (such as aggregation and

composition), and conditional features or capabilities. Some diagrams also show further details of

the individual object classes, such as the attributes of the object classes, and the data types used by

the attributes. In addition to the class diagrams there are also pictorial representation of stylized

network fragments to assist in the understanding of the model.

6.1 Overview of the Core Network Module (CNM)

This clause provides a high-level overview of the generic information model. Figure 6-1 below is a

skeleton class diagram illustrating the key object classes defined in the CoreNetworkModule of the

CoreModel.

3 The information described in this subset can be used for example for path computation and to

provide views of network capacity/capability with information maintained in a topology

database.

- 16 -

TD 406 Rev.1 (PLEN/15)

Figure 6-1 Skeleton Class Diagram of key object classes

Note: A more convenient way to view the details of the diagram is by using the companion PNG

file, which can be independently zoomed in and out without impacting the viewing of the main

document.

When applying the information model to a specific-purpose interface, not all of the information

model artefacts need to be considered. That is, only a subset of the overall information model may

be needed. Depending on the scope of the interface, pruning of the information model may be

necessary, such as excluding a whole object class or part of an object class. For example, in the

- 17 -

TD 406 Rev.1 (PLEN/15)

interface from an SDN controller directly to an NE in the infrastructure layer, the

NetworkControlDomain object class is beyond the scope of the NE4 interface and thus not needed.

In addition, re-factoring of the selected model artefacts may be necessary to meet the specific-

purpose needs. However, re-factoring of the model artefacts should not add semantics beyond those

defined in the information model.

Figure 6-2 below is a more comprehensive class diagram than the previous one showing some

attributes and constraints of the associations in the mode.

Figure 6-2 Class Diagram of all key object classes showing attributes and constraints

4 The NE scope of the direct interface from a SDN controller to an NE in the infrastructure layer is

similar to the EMS-to-NE management interface defined in the ITU-T Q14/15 information

models [ITU-T G.874.1] (OTN), [ITU-T G.8052] (Ethernet), and draft [ITU-T G.8152] (MPLS-

TP). On the other hand, the network scope of the interface between two SDN controllers is

similar to the OS-to-OS management interface defined in the TMF 612 information model.

- 18 -

TD 406 Rev.1 (PLEN/15)

6.1.1 LogicalTerminationPoint (LTP) and LayerProtocol (LP)

The LogicalTerminationPoint (LTP) object class encapsulates the termination, adaptation and OAM

functions of one or more transport layers. The structure of LTP supports all transport protocols

including circuit and packet forms. Each transport layer is represented by a LayerProtocol (LP)

instance. The LayerProtocol instances of the LTP can be used for controlling termination and OAM

functionality of that layer. It can also be used for controlling the adaptation (i.e. encapsulation

and/or multiplexing of client signal). Where the client – server relationship is fixed 1:1 and

immutable, the different layers can be encapsulated in a single LTP instance. Where there is a n:1

relationship between client and server, the layers must be split over separate instances of LTP.

Rules for forming LTP instances are provided lin clause 6.3 Termination Subset of this document.

The LP object class is defined with generic attributes “layerProtocolName” for indicating the

supported transport layer protocol.

Transport layer specific properties (such as layer-specific termination and adaptation properties) are

modeled as attributes of conditional packages (called “Pacs” in the UML notation of the

information model) associated with the LP object class5. Transport layers supported by the

information model include:

 Layer 0 (L0): OPS, OTS, OMS, OCh

 Layer 1 (L1): OTU, ODU

 Layer 2 (L2): Carrier Grade Ethernet (ETY, ETH), MPLS-TP (MT)

In the OT information model, the conditional packages for supporting layer-specific termination

functions and adaptation functions have been derived from the various ConnectionTerminationPoint

(CTP) and TrailTerminationPoint (TTP) object classes defined in the NE-view information models,

including the ODUk TTP and ODUk CTP object classes in G.874.1 and the ETH TTP and ETH

CTP object classes in G.8052.

Functions that can be associated/disassociated to/from an LTP instance (and ForwardingConstruct),

such as OAM, protection switching, and performance monitoring are modelled as secondary object

classes.

6.1.2 ForwardingDomain (FD)

The ForwardingDomain (FD) object class models the topological component which represents the

opportunity to enable forwarding between points represented by the LTP in the model. The LTPs

available are those defined at the boundary of the FD (see “subnetwork” topological components in

G.852.2 and TMF 612). The FD object can hold zero or more instances of ForwardingConstruct

(FC) of one or more layer networks; e.g., OCh, ODU, ETH, and MPLS. The FD object provides the

context for instructing the formation, adjustment and removal of FCs.

The FD object class supports a recursive aggregation relationship

(HigherLevelFdEncompassesLowerLevelFds) such that the internal construction of an FD can be

5 Note that some implementation languages may allow the addition and removal of _Pacs and

attributes from instances of a running system and others may be restricted such that

_Pacs/attributes cannot be added/removed once an instance has been created. The model supports

both modes of operation.

- 19 -

TD 406 Rev.1 (PLEN/15)

exposed as multiple lower level FDs and associated Links (partitioning)6 (See Figure 6-14 in clause

6.5.1). An FD within a NetworkElement represents a switch matrix/ fabric)7. Note that a

NetworkElement can encompass multiple matrixes (represented by FDs): see Figure 6-15 in clause

6.5.1. An instance of FD is associated with zero or more LTP objects via the FdAggregatesLtps

aggregation.

6.1.3 ForwardingConstruct (FC)

The ForwardingConstruct (FC) object class models enabled potential for forwarding between two or

more LTPs, and like the LTP, supports any transport protocol including all circuit and packet forms.

The association of the FC to LTPs is made via EndPoints (essentially the ports of the FC) where

each EndPoint (EP) of the FC has a role in the context of the FC. The traffic forwarding between

the associated EPs of the FC depends upon the type of FC and may be associated with FcSwitch

object instances.

An FC can be in only one FD. An FC object supports a recursive aggregation relationship such that

the internal construction of an FC can be exposed as multiple lower level FC objects (partitioning)8.

An FC object can have zero or more routes, each of which is defined as a list of lower level FC

objects (with the implicit understanding that link connections are interleaved between the lower

level FCs)9. At the lowest level of recursion, a FC represents a cross-connection within a

NetworkElement10. Thus the route of an FC may represent the cross-connections in a

NetworkElement.

If an FC provides protection, the FC will have one or more associated FcSwitch objects as

described in clause 6.1.6 FcSwitch that have protection configuration related attributes.

The FC object can be used to represent many different structures including point-to-point (P2P),

point-to-multipoint (P2MP), rooted-multipoint (RMP) and multipoint-to-multipoint (MP2MP)

bridge and selector structure for linear, ring or mesh protection schemes.

6.1.4 FcRoute

The FcRoute object class models the individual routes of an FC. The route of an FC object is

represented by a list of FCs at a lower level. Note that depending on the service supported by an FC,

the FC can have multiple routes.

6 The model actually represents aggregation of lower level FDs into higher level FDs as views

rather than FD partition, and supports multiple views. This allow reallocation of capacity from

lower level FDs to different higher level FDs as if the network is reorganized (as the association

is aggregation not composition).

7 There are cases where the matrix is itself decomposed so the FD may be smaller than the scope of

the matrix.

8 The LinkConnections associated with the Links that are exposed as part of the internal structure of

the FD are not modelled at this point.

9 The route is an alternative view of the internal structure of the FC. There are cases where a route

is the most appropriate representation and cases where the aggregation is the most appropriate

form.

10 Recognizing that as for it may be necessary to decompose the matrix into smaller FDs so it may

be necessary to decompose the XC into smaller FCs (this is true at a control domain boundary for

example).

- 20 -

TD 406 Rev.1 (PLEN/15)

6.1.5 EndPoint (EP)

The EndPoint (EP) object class models the access to the FC function. Each EP instance has a role

(e.g., working, protection, protected, hub, spoke, leaf, root, etc.) with respect to the FC function.

The EP replaces the Protection Unit of a traditional protection model. It represents a protected

(resilient/reliable) point or a protecting (unreliable working or protection) point.

An EP may be associated with a LTP.

6.1.6 FcSwitch

The FcSwitch object class models the switched forwarding of traffic (traffic flow) between EPs and

is present where there is protection functionality in the FC. It plays the role of an aspect of the

Protection Group of the traditional information model. When supporting the protection function, an

FcSwitch object instance associates two or more EPs, each of which is playing the role of a

Protection Unit.

It is possible for one or more protection EPs (standby/backup) to provide protection for one or more

working (i.e., regular/main/preferred) EPs where either the protection or working EPs can feed one

or more protected EPs. The protection system may operate in revertive or non-revertive (symmetric)

mode. The waitToRestore attribute defines the revertive timer for the revertive mode. The

protection function of the FcSwitch may operate in one of several modes including source switched,

destination switched, source and destination switched, etc. (covering cases such as 1+1 and 1:1). It

may be lockout (prevented from switching), force switched or manual switched. It will indicate

switch state and notify change of state.

A specific instance of FC may not contain any FcSwitch instances when there is no protection

capability, and may contain many FcSwitch intances in complex cases. The arrangement of

switches for a particular instance is described by a referenced FcSpec11 (see Error! Reference

source not found.6.4.2 Error! Reference source not found.Forwarding Construct Specification

and other details of Forwarding). The approach supports all forms of protection described in [ITU-T

808.1].

6.1.7 Link and LinkEnd

The Link object class models effective adjacency between two or more12 ForwardingDomains

(FD).13 In its basic form (i.e., point-to-point Link) it associates a set of LTP clients on one FD with

an equivalent set of LTP clients on another FD. Like the FC, the Link has endpoints (LinkEnd)

which take roles relevant to the constraints on flows offered by the Link (e.g., Root role or leaf role

for a Link that has a constrained Tree configuration). A Link may offer parameters such as capacity

and delay (see clause Error! Reference source not found.6.5.3 Error! Reference source not

found.Detailed properties of Topology).. These parameters depend on the type of technology that

supports the link. An FD may aggregate Links: see Figure 6-14 in clause 6.5.1. The

11 Many instances of FC may reference the same FcSpec.

12 At this point the model supports point to point links fully. The model allows multi-point but

anything above 2 is essentially (i.e., 3..*) is preliminary

13 The model supports an experimental attribute, offNetworkAddress, in the LinkEnd to cover cases

where the FD that the Link ends on is outside the visibility (and hence off network).

- 21 -

TD 406 Rev.1 (PLEN/15)

FdEncompassesLinks association is modeled to collect links that are wholly within the bounds of

the FD.14 15

The Link can support multiple transport layers via the associated LTP object. Instance of Link can

be formed with the necessary properties according to the degree of virtualization. For

implementation optimization, where appropriate, multiple layer-specific links can be merged and

represented as a single Link instance as the Link can represent a list of layer protocols (identified

via the layerProtocolNameList attribute).

6.1.8 NetworkElement

The NetworkElement object class represents a Network Element in the data plane or a virtual

network element visible in the interface where virtualization is needed.

In the direct interface from an SDN controller to a Network Element in the data plane, the

NetworkElementobject defines the scope of control for the resources within the network element,

e.g., internal transfer of user information between the external terminations (ports), encapsulation,

multiplexing/demultiplexing, and OAM functions, etc. The NetworkElement provides the scope of

the naming space for identifying objects representing the resources within the Network Element.

The NeEncompassesFd association occurs for FDs that are within the bounds of the

NetworkElement definition such that the FD is bounded by LTPs, all of which are on the boundary

of the NetworkElement or are within the NetworkElement16.

Where virtualization is employed, the NetworkElement object represents a Virtual Network

Element (VNE). The mapping of the VNE to the Network Elements is the internal matter of the

SDN controller that offers the view of the VNE. Via the CPI interface between hierarchical SDN

controllers, NetworkElementinstances can be created (or deleted) for providing (or removing)

virtual views of the combination of slices of network elements in the data plane.

6.1.9 NetworkControlDomain (NCD)

The NetworkControlDomain (NCD) object class represents the scope of control that a particular

SDN controller has with respect to a particular network, i.e., encompassing a designated set of

interconnected (virtual) network elements.

In the interfaces between SDN controllers where virtualization is necessary, e.g., in client/server

SDN controller relationship, the NCD object defines the scope of control of the client SDN

controller on the virtual network that has been provided by the server SDN controller (i.e., the scope

of control relates to the partitioned provider resources allocated to that particular client). The NCD

provides the scope of naming space for identifying objects representing the virtual resources within

the virtual network.

14 This association can also be inferred from the higherLevelFdEncompassesLowerLevelFd

association together with the linkHasAssociatedFds association. Note that Link decomposition

can also be represented using the LinkEncompassesLink association (similar to the

FdEncompassesFd usage for the ForwardingDomain (this association is experimental).

15 A Link with an Off-network end cannot be encompassed by an FD.

16 Where an FD is referenced by the NeEncompassesFd association, any FDs that it encompasses

(i.e., that are associated with it by HigherLevelFdEncompassesLowerLevelFds), must also be

encompassed by the NE and hence must have the NeEncompassesFd association.

- 22 -

TD 406 Rev.1 (PLEN/15)

6.2 Core Foundation Module (CFM)

To communicate about a thing it is important to have some way of referring to that thing, i.e., to

have some reference. Terms such as name and identifier are often used when describing the

reference. Unfortunately these terms in general usage have ambiguity in their definition that leads to

erroneous system behaviour. With the aim to ensure that the controller system behaviour is not

erroneous, the model will adopt the following (hopefully suitably rigorous) principal definitions :

 Entity: A thing with an identity, defined boundary, properties, functionality and life

 Examples: A circuit pack, an LTP

 Feature of an Entity: A thing that is an inseparable part of an entity but is a distinct surface

characteristic of the entity.

 Examples: A pin on an integrated circuit, the endpoint on a FC, a face of a cube, the

handle of a cup.

 Note that this is important from a modeling perspective as the representation appears

similar to that of an Entity

 Object Class: The representation of a thing that may be an entity or an inseparable “Feature

of an Entity”.

 Role: A specific structure of responsibilities, knowledge, skills, and attitudes in the context

of some activity or greater structure. The role has an identity and an identifier

 Identifier: A property of an entity/role with a value that is unique within an identifier space,

where the identifier space is itself globally unique, and immutable. An identifier carries no

semantics with respect to the purpose of the entity.

 Globally Unique Identifier (GUID): An identifier that is globally unique.

 Local ID: An identifier that is unique in the context of some scope that is less than the global

scope.

 Name: A property of an entity with a value that is unique in some namespace but may

change during the life of the entity. A name carries no semantics with respect to the purpose

of the entity.

 Label: A property of an entity with a value that is not expected to be unique and is allowed

to change. A label carries no semantics with respect to the purpose of the entity and has no

effect on the entity behaviour or state.

 A label can be used to carry a freeform text string for any operator purpose. The

contents of a label in one view may happen to be the value of a name or identifier in

another view. From the perspective of the view with the label there is no expectation

other than the value is a string.

 Address: A structure of named values17 in some address space that defines a location (a

volume in that address space) where the structure is a nested hierarchy

 A named value may be a name or identifier the name of the value may be a name or

identifier.

 Route: the way (via specified intermediate locations and paths) to get to one location from

another

 Property: A quality associated with a thing, structure or location.

 Semantics: Meaning.

17 A named value is simply a tuple with two terms, one being a value and the other being the name

of that value. For example in a street address a value may be “London” and the name of that

value would be “City”.

- 23 -

TD 406 Rev.1 (PLEN/15)

 Reference: Data in a communication between two applications that allows a shared

understanding of the individual things.

 This could be an identifier (including a GUID), a name, an address, or a route,

depending upon the needs.

Note:

 An entity may be known to be at a place in some functional or physical structure.

 A role may be known to be at a place in some process or behavioural structure.

Figure 6-3 below illustrates the naming/identifier-related attributes defined in the Generic

information model. They are Global Unique ID (GUID), Local ID, Name, and Label.

The model includes two abstract classes that provide names and identifiers, the GlobalClass and the

LocalClass.18 A GlobalClass represents a type of thing that has instances which can exist in their

own right (independently of any others). A LocalClass represents a type of thing that is inseparable

from a GlobalClass, but that is a distinct feature of that GlobalClass such that the instances of

LocalClass are able to have associations with other instances. The mandatory LocalId of the

LocalClass instance is unique in the context of the GlobalClass instance, from which it is

inseparable.

The model also includes Extension which is not related to naming/identification. Extension

provides an opportunity to define properties not declared in the class that extend the class enabling a

realization with simple ad-hoc extension of standard classes to be conformant.

Note that the GUID is applicable only to global type object classes (i.e. subclass of GlobalClass)

that their instances can exist on their own right, i.e., NCD, NetworkElement, LTP, FD, Link, FC,

and SdnController. The other naming/identifier-related attributes are applicable to both global type

object classes and local type object classes (i.e., subclass of LocalClass).19

18 The model also provides ConditionalPackage to supply names and identifiers to _Pac classes but

this is currently experimental.

19 The intention is that only classes from the Core Model are shown in the figure. The classes

shown are essentially illustrative. There is another figure in the model that captures Core Model

inheritance in detail. All classes from all fragments should inherit from GlobalClass, LocalClass

or ConditionalPackage. There is no issue with model dependency as the inheritance association is

maintained with the class that is inheriting properties. Although not mandatory, it would seem

advisable to maintain a figure per fragment that shows all classes from that fragment and their

inheritance.

- 24 -

TD 406 Rev.1 (PLEN/15)

Figure 6-3 Class Diagram for Naming and Identifier of Objects

The Core Foundation module also defines a State_Pac artifact, which is a package of state

attributes. The work on states is experimental at this stage (it is derived from ITU-T X.731). The

State_Pac is inherited by GlobalClass and LocalClass object classes. The State_Pac consists of the

following state-related attributes:

 Operational State:

o Indicates the operability of the entity.

o Read-only with values:

 DISABLED: The entity is totally inoperable and unable to provide service to

its users(s).

 ENABLED: The entity is partially or fully operable and available for use.

 AdministrativeControl (not derived from X.731):

o Reflects the current control action when the entity is not in the desired state.

o Read/Write with values:

 NO_CONTROL: There is no current control action active as the entity is in

the desired state.

 UNLOCK: The intention is for the entity to become unlocked and the entity

is not UNLOCKED.

- 25 -

TD 406 Rev.1 (PLEN/15)

 LOCK_PASSIVE: The intention is for the entity to become locked but no

effort is expected to move to the Locked state (the state will be achieved

once all users stop using the resource). The entity is not LOCKED.

 LOCK_ACTIVE: The intention is for the entity to become locked and it is

expected that an effort will be made to move to the Locked state (users will

be actively removed). The entity is not LOCKED.

 Administrative State (derived from X.731 and extended):

o Indicates the degree to which the capabilities of the entity are allowed for use.

o Read-only with values:

 LOCKED : The entity is administratively prohibited from performing

services for its users.

 UNLOCKED: The entity is administratively permitted to perform services

for its users. This is independent of its inherent operability.

 SHUTTING_DOWN_PASSIVE: The entity is administratively restricted to

existing instances of use only. There may be no new instances of use

enabled. This corresponds to a control of LOCK_PASSIVE.

 SHUTTING_DOWN_ACTIVE: The entity is administratively restricted to

existing instances of use only. There are specific actions to remove existing

uses. There may be no new instances of use enabled. This corresponds to a

control of LOCK_ACTIVE.

 Usage State:

o Indicates the degree to which the entity is used.

o Read-only with values:

 IDLE: The entity is not currently in use.

 ACTIVE: The entity is in use and has sufficient spare operating capacity to

provide for additional simultaneous uses.

 BUSY: The entity is in use but has no spare operating capacity to provide for

any further simultaneous uses.

- 26 -

TD 406 Rev.1 (PLEN/15)

Figure 6-4 States for all Objects

6.3 Termination Subset of CNM

Examples of LTPs (using
figures consistent with
those used in TM Forum
for PTP, CTP and FTP)

Port with various
layers and
flexibilities modeled
as LTPs (PTPs and
CTPs)

More precise view of port

Will use this
representation
to highlight the
LTP/LP
associations

LTP

LP

- 27 -

TD 406 Rev.1 (PLEN/15)

Figure 6-5 Representations of LTPs

In Figure 6-5 above the pictorial form shows a number of representations of LTPs (purple, grey and

green) representing the layering associated with physical ports (purple), their connectable clients

(green) and floating LTPs (grey). The right most pictorial form shows the relationship between the

LTP and the LP in terms of a detailed symbol derived from work by TM Forum and ITU-T20. An

LP instance represents all aspects of termination of a single LayerProtocol. An LTP is composed on

1 or more LPs where the LPs represent the stack of terminations relevant to the LTP as depicted in

the pictorial view. A termination stack may spread across several LTPs. The reason for this split

includes multiplicity and connection flexibility transitions (see also Figure 5-2 in clause Error!

Reference source not found.5.3 Error! Reference source not found.Pictorial diagram Key).

This association is used for
inverse multiplexing (inc
VCAT)

Figure 6-6 LTP relationships illustrated in a simple Network Element context

In Figure 6-6 above the pictorial form shows a number of LTPs (purple and green) representing the

layering associated with physical ports (purple) and their connectable clients (green) as described in

the previous section. This figure shows in more detail the partitioning of the layer stack between

LTPs. Several different relationships are used at the split, depending upon the orientation of traffic

flow.

Considering the left most LTP pair in the pictorial form and a signal entering the bottom of the

purple LTP (at a physical port), the signal would be de-multiplexed up to the top of the purple LTP

and then re-multiplexed as it travels down the green LTP. The association between the two is

essentially a degenerate 1:1 FC. The LTPs are split because of the change in flow multiplexing

orientation. The association supporting this relationship is shown in the UML fragment.

Considering the right most LTPs in the pictorial form and a signal entering the bottom of the purple

LTP (at a physical port), the signal would be de-multiplexed up to the top of the purple LTP and

then further de-multiplexed in the client LTPs. The LTPs are split because of a change in

multiplicity or the opportunity to connect with an FC. The association supporting this relationship is

shown in the UML fragment.

20 The work has been liaised by TM Forum and related to Recommendation ITU-T G.805.

- 28 -

TD 406 Rev.1 (PLEN/15)

Figure 6-7 LtpConnectsToPeerLtp illustrated in an Amplifier/Regenerator context

In the simple Figure 6-7 above the final LTP to LTP association is highlighted. This allows two

LTPs that are associated with physical ports without the need for an FC. This is only allowed in a

case when the relationship between the LTPs is such that the whole signal from one LTP must flow

to the other with no flexibility. The association effectively represents a degenerate FC.

6.4 Forwarding Subset of CNM

6.4.1 Basic Forwarding

- 29 -

TD 406 Rev.1 (PLEN/15)

Forwarding
fragment

Figure 6-8 Forwarding fragment

The pictorial form in Figure 6-8 above shows the ForwardingConstruct (FC) in the context of two

LTPs (a fragment of an earlier figure). The EndPoint (EP) of the FC is depicted as within the FC

emphasizing the strict part-whole relationship and lifecycle dependency of the EP on the FC. The

EPs are effectively ports on the FC component. The FC shown has two EPs but the model allows

for two or more EPs [2..*] where in some cases the EP could be selected as a source or destination

for switching. The protection switching capability is explained elsewhere in this document.

The [0..2] multiplicity of _ltpRefList allows for a bidirectional FC end to associate with two

unidirectional LTPs.

6.4.2 Forwarding Construct Specification and other details of Forwarding

Prior to embarking on a brief description of the FC specification and associated classes it is

important to explain the concept of specification classes in general. In this model the specification

classes provide a mechanism to express the restrictions of a particular case of application of a

specific class or set of classes. For example an FC may in general have [2..*] endpoints while a

specific case of FC may have exactly 4. This case may also be such that it has 2 switches and such

that these switches affect specific flows in the FC. The FcSpec is designed to allow the expression

of cases of this sort.

At this point only limited work has been done on specification in general with a focus on the

FcSpec and associated classes. It is anticipated that in general specification classes would be

developed for all entities in the model.

In the diagram below the FcSpec and supporting EndpointSetSpec describe the capabilities of the

FC in terms of MultiSwitchedUniFlows each of which has [1..*] IngressEndpointSets and [1..*]

EgressEndpointSets. Each MultiSwitchedUniFlow may have [0..1] ingress switches and [0..1]

egress switches where the ingress switch may select only one set member from one set and the

egress switch may select [1..*] set members from the egress set. The ingress and egress switch

selections are controlled by the ConfigurationAndSwitchControl element that may be:

- 30 -

TD 406 Rev.1 (PLEN/15)

 embedded in the switch when there is no coordination of switches required

 embedded in the FC when there is coordination of switches in the scope of the FC but no

wilder

 independent of the FC and described by the ConfigurationGroupSpec where there is multi-

FC coordination required

The behaviour of the ConfigurationAndSwitchControl element is described by ControlRules.

The model has been exercised for a number of different cases (not detailed here). Figure 6-9 below

provides the class diagram of the FC specification fragment.

Figure 6-9 Class Diagram of the Spec Model of Connection Control

The diagrams below show a pictorial view of some of the classes above (the colors used in the

figure are consistent with those used in the model above).

- 31 -

TD 406 Rev.1 (PLEN/15)

Switched Unidirectional Flow (this is the fundamental unit of specification of an FC)
[suf]

Unidirectional Flow (a switched flow with a rule on
the switch = True) [uf]

SC Switch Control rules and state machine

Ingress EgressSwitch

FC spec macro (showing a random selection of endpoint roles)

SC

i1

i2

e1

e2

e1

e2
Multi-cast Unidirectional Flow (uf with multiple egress) [muf]

Multi-ingress Switched Multi-cast Unidirectional Flow (suf
with multiple egress) [msmuf] Showing Switch Control
embedded

SC

e1

e2

i1
Switched egress Unidirectional Flow [seuf]
Showing Switch Control embedded

SC

i1

i2 SC

e1

e2

Switched ingress and egress Unidirectional Flow
Showing Switch Control embedded

FC spec/Instance

FCEndpoint (instance)

FCEndpoint showing
Ingress/Egress

FCEndpointSetSpec

Ingress/Egress
EndpointSet (in spec)

FCEndpointSpec
(single member of set)

Ingress/Egress
Endpoint (in spec)
(single members of set)

MultiSwitchedUniFlow

SC SwitchControl

navigable UML association

control

Common of the switch

Switch

Switch selection (spec)

Switch selection instance

LTP

Figure 6-10 Pictorial view of the Spec Model of Configuration Control

The diagrams below show a pictorial view of a case of FcSpec. The lower element of the diagram

shows specification class instances and the upper element shows an instance of FC abiding by the

spec.

Type = 2-way sector and bridge

Pp Rr

all = R1

uf1

p=1 r=1

P = protecting R = Resilient

Bb
b=1 uf2

msuf1

B = Bridge

Rr

SC

Actual FC

Figure 6-11 –Pictorial view of spec model and resulting FC instance

Figure 6-12 below provides the class diagram of further detailed FC and protection switching

related object classes. The figure shows development of the controller of the FcSwitch. This area of

model is experimental work in progress as highlighted by the «experimental» stereotypes.

- 32 -

TD 406 Rev.1 (PLEN/15)

Figure 6-12 Class Diagram of Connection related Object Classes

6.5 Topology Subset of CNM

The topology subset is summarized in the following figure.

- 33 -

TD 406 Rev.1 (PLEN/15)

Figure 6-13 Classes of the Topology Subset

The figure above shows a lightweight view of the model omitting the attributes (where appropriate

these will be described later in this section). The figure focuses on interrelationships and shows that:

 An FD may be a subordinate part of a NetworkElement, may coincide with an

NetworkElement or may be larger than, and independent of, any NetworkElement (see

for example FDs A.1 and A.3 in Figure 6-15)..

 An FD may encompass lower level FDs. This may be such that:

o An FD directly contained in a NetworkElement is divided into smaller parts

o An FD not encompassed by a NetworkElement is divided into smaller parts

some of which may be encompassed by NetworkElements

o The FD represents the whole network

Note that an FD at the lowest level of abstraction (i.e., a fabric) does not encompass

FDs while an FD at the highest level of abstraction (i.e., the FD representing the whole

network) is not encompassed by any higher level FDs.

 An FD encompasses Links that interconnect any FDs encompassed by the FD

Note that Offnet Links are not encompassed by any FD. All other Links are always

encompassed by one FD which may be the FD representing the whole network. As a

consequence, the FD representing the whole network shall always be instantiated.

 A Link may aggregate Links in several ways:

- 34 -

TD 406 Rev.1 (PLEN/15)

o In parallel where several links are considered as one

o In series where Links chain to form a Link of a greater span

 Note that this case requires further development in the model

 A Link has associated FDs that it interconnects

o A Link may interconnect 2 or more FDs21

 Note that it is usual for a Link to interconnect 2 FDs but there are cases

where many may be interconnected by a Link

 A Link has LinkEnds (LE) that represent the ports of the Link itself

o LEs are especially relevant for multi-ended asymmetric Link

 An FD aggregates LogicalTerminationPoints (LTPs) that bound it. The LTP represents

a stack of LayerProtocol terminations where the details of each is held in the

LayerProtocol (LP). The LTP may be:

o Part of a NetworkElement

o Conceptually independent from any NetworkElement

 An LE references LTPs on which the Link associated to the LE terminates

Both the Link and FD are TopologicalEntities (an abstract class, i.e. a class that will never

instantiate) and hence they can acquire contents from the conditional packages (_Pacs). The

conditional packages provide all key topology properties.

6.5.1 Basic Topology

The first two figures focus on the ForwardingDomain class and the recursive aggregation

relationship as well as the relationship between the ForwardingDomain, Link and the

NetworkElement.

21 An off-network link with two ends does not interconnect any FDs in the view.

- 35 -

TD 406 Rev.1 (PLEN/15)

Represents link at
boundary of
ForwardingDomain

Shown by ForwardingDomain
nesting (e.g. A is in B)

Allows for
multi-ended
Links

FD A encompasses
5 Links

B
A

A.1

A.2

A.3

A.5

A.4

A.2.3

A.1.1

A.2.2

A.1.2

A.1.3

A.2.1

C

Showing experimental
Link recursionA Link is wholly in a specific

ForwardingDomain if all
ForwardingDomains that it is associated
to are in that ForwardingDomain. Hence
no specific association is necessary in
the model.

Figure 6-14 ForwardingDomain recursion with Link

Figure 6-14 shows a UML fragment including the Link and ForwardingDomain (FD). For

simplicity it is assumed here that the Links and FDs are for a single LayerProtocol (LP) although an

FD can support a list of LPs.

The pictorial form shows a number of instances of FD interconnected by Links and shows nesting

of FDs. The recursive aggregation HigherLevelFdEncompassesLowerLevelFds relationship

(aggregation is represented by an open diamond) supports the ForwardingDomain nesting but it

should be noted that this is intentionally showing no lifecycle dependency between the lower

ForwardingDomains and the higher ones that nest them (to do this composition, a black diamond

would have been used instead of an open diamond). This is to allow for rearrangements of the

ForwardingDomain hierarchy (e.g., when regions of a network are split or merged) and to

emphasize that the nesting is an abstraction rather than decomposition. The underlying network still

operates regardless of how it is perceived in terms of aggregating ForwardingDomains. The model

allows for only one hierarchy.

In the example of Figure 6-14, there are fourteen FD instances with the following instances of the

“HigherLevelFdEncompassesLowerLevelFds” relationships:

 B encompasses two FDs: A and C

 A encompasses five FDs: A.1, A.2, A.3, A.4 and A.5

 A.1 encompasses three FDs: A.1.1, A.1.2 and A.1.3

 A.2 encompasses three FDs: A.2.1, A.2.2 and A.2.3

When one FD is removed, the “HigherLevelFdEncompassesLowerLevelFds” relationships are

modified. For example, if FD A.1 in Figure 6-14 is removed, the instances of the

“HigherLevelFdEncompassesLowerLevelFds” relationships will be modified as follows:

 B encompasses two FDs: A and C

- 36 -

TD 406 Rev.1 (PLEN/15)

 A encompasses seven FDs: A.1.1, A.1.2, A.1.3, A.2, A.3, A.4 and A.522

 A.2 encompasses three FDs: A.2.1, A.2.2 and A.2.3

An FD can also be added. Initially it will have no associated lower level FDs. Existing FDs can be

moved as appropriate to form the new hierarchy.

The association between Link and FD allows a Link to be terminated on two or more FDs (see

clause Error! Reference source not found.6.1.7 Error! Reference source not found.Link and

LinkEnd). Through this the model supports point to point Links as well as cases where the server

ForwardingConstruct is multi-point terminated giving rise to a multi-pointed Link. Multi-pointed

links occur in for PON and Layer 2 MAC in MAC configurations23.

It should be noted that the model includes LinkEnd which further details the relationship between

FD and Link. This is explained below.

A ForwardingDomain
may not be within an
NE

An NE may encompass
several unrelated
ForwardingDomains

B
A

A.1

A.2

A.3

A.5

A.4

A.2.3

A.1.1

A.2.2

A.1.2

A.1.3

A.2.1

C

Figure 6-15 ForwardingDomain recursion with link and NetworkElement

In Figure 6-15 above the pictorial form shows an overlay of NetworkElement on the

ForwardingDomains and a corresponding fragment of UML showing only the ForwardingDomain

and NetworkElement classes.

The figure emphasizes that at and below one particular level of abstraction of ForwardingDomain,

the ForwardingDomains are all bounded by a specific NetworkElement. This is represented in the

UML fragment by the composition association (black diamond) that explains that there is a lifecycle

dependency in that the ForwardingDomain at this level cannot exist without the NetworkElement.

The figure also shows that a ForwardingDomain needs not be bounded by a NetworkElement (as

explained in the UML fragment by the 0..1 composition), and that a ForwardingDomain may have a

smaller scope than the whole NetworkElement (even when considering only a single LayerProtocol

as noted earlier). In one case depicted (e.g., the right hand side NetworkElement encompassing two

FDs), the two ForwardingDomains in the NetworkElement are completely independent. In the other

22 Clearly the FD naming in the figure is for ease of reading the diagram and does not represent

hierarchy.

23 Work supporting this was liaised from TM Forum.

- 37 -

TD 406 Rev.1 (PLEN/15)

cases depicted (e.g., the left hand side NetworkElement encompassing three FDs), the subordinate

ForwardingDomains are themselves joined by Links emphasizing that the NetworkElement does

not necessarily represent the lowest level of relevant network decomposition.

The figure also emphasizes that just because one ForwardingDomain at a particular level of

decomposition of the network happens to be the one bounded by a NetworkElement does not mean

that all ForwardingDomains at that level are also bounded by NetworkElements.24

6.5.2 Advanced Topology

• For cases where there is no physical LTP a “floating”
LTP is used.

• Where the situation is fully virtualized a “floating”
LTP with only the pooling function is used.

• An inter-view relationship to link contents of a
“floating” LTP with the contents of a physically
bound LTP is shown (preliminary). This is essentially
internally to the controller

Figure 6-16 LTP “pooling” client LTPs

Figure 6-16 above shows how the Link terminates on the LTP via the LinkEnd (LE).

24 It should be noted that a NetworkElement is never within the bounds of an FD. The

NetworkElement is associated with levels in the FD hierarchy.

- 38 -

TD 406 Rev.1 (PLEN/15)

`

`

`

LinkConnection in Layer A
(not modelled)

Single layer protocol (Layer A) Link

Multi-layer protocol Link

Showing layering in elevation (above)

Showing plan view and multiple channels (above)

Multi-layer protocol adapter

Single layer protocol (Layer B) adapter

LinkConnection (not modelled)

Single layer protocol Link (layer A)

Multi-layer protocol Link

Single layer protocol Link (layer B)

Link End

Multi-layer protocol adapter

Single layer protocol (A) adapter

Single layer protocol LinkEnd

LTP bound to physical port (also applies to floating LTPPs)

LTP in FC Layer with shallow termination (with only ITU-T G.805 CP)

LTP in FC Layer with shallow termination (with only ITU-T G.805 CP)

Single layer protocol (B) capacity Capacity not available in B due to usage in A

Figure 6-17 Views of Link, LinkEnd and LTP showing LTP pooling

The LTP may have the capability25 to map to multiple client layer protocols where there is an

interaction between the client mappings (e.g., if capacity/channel x of client layer protocol A is used

then capacity/channel set y of client layer protocol B is no longer available). The capacity of the

Link is determined by evaluating the “intersection” of capabilities of the LTPs at the ends (which is

complex in a multi-ended case).

The used capacity is determined by considering which client LTPs exist as a result of their being

FCs.

A Link may be multi-layered and hence may represent the whole client capacity of an LTP or it

may be single layered.

25 This capability of the LTP is not currently modeled but work is under way to construct an LTP

specification model

- 39 -

TD 406 Rev.1 (PLEN/15)

`

`

“Physical” view

“Virtualised” view

Showing plan view for one layer (above) Showing layering in elevation (above)

LtpRelatesToLtpInOtherView is used to relate LTPs
at one level of virtualization with those at another

Figure 6-18 Views of “virtualization” of LTP

Some capacity may be taken from each of a number of Links supporting a particular layer protocol

and offered in a “virtualized” view perhaps for use in a particular application etc. The “virtualized”

view will normally be referenced in a different name space. The rules for grouping capacity into

Links in the “virtualized” view have not yet been documented. The same model is used for Links

and LTPs in the “virtualized” view as is used in the “physical” view.

6.5.3 Detailed properties of Topology

Figure 6-19 Topology detail

- 40 -

TD 406 Rev.1 (PLEN/15)

The figure above shows finalized, preliminary and experimental extensions of the Topology model.

The model recognizes that both ForwardingDomain and Link share topological properties (the

TopologicalEntity, which is abstract and hence not intended to be instantiated, provides the

linkage26). The classes related to TopologicalEntity, the _Pacs, are « strictComposition » and hence

are essentially part of the ForwardingDomain and of the Link. The _Pacs are optional as in some

cases of Link/ForwardingDomain they are essentially not relevant.

The figure below shows the _Pacs in more detail.

Figure 6-20 Topology _Pac detail

As shown in the figure an object class “TopologicalEntity” has been defined to collect topology-

related properties (characteristics etc.) that are common for FD and Link.

A TopologicalEntity is an abstract representation of the emergent effect of the combined

functioning of an arrangement of components (running hardware, software running on hardware,

etc). The effect can be considered as the realization of the potential for apparent communication

adjacency for entities that are bound to the terminations at the boundary of the TopologicalEntity.

26 TopologicalEntity has no direct attributes and only relationships that the ForwardingDomain and

Link inherit.

- 41 -

TD 406 Rev.1 (PLEN/15)

The TopologicalEntity enables the creation of constrained forwarding to achieve the apparent

adjacency. The apparent adjacency has intended performance degraded from perfect adjacency and

a statement of that degradation is conveyed via the attributes of the packages associated with this

class. In the model both ForwardingDomain and Link are TopologicalEntities.

This abstract class is used as a modeling approach to apply packages of attributes to both Link and

ForwardingDomain. Link and ForwardingDomain are the key TopologicalEntities.

The _Pacs are detailed in the following sections.

6.5.3.1 RiskParameter_Pac

The risk characteristics of a TopologicalEntity come directly from the underlying physical

realization.

The risk characteristics propagate from the physical realization to the client and from the server

layer to the client layer, this propagation may be modified by protection.

A TopologicalEntity may suffer degradation or failure as a result of a problem in a part of the

underlying realization.

The realization can be partitioned into segments which have some relevant common failure modes.

There is a risk of failure/degradation of each segment of the underlying realization.

Each segment is a part of a larger physical/geographical unit that behaves as one with respect to

failure (i.e. a failure will have a high probability of impacting the whole unit (e.g. all cables in the

same duct).

Disruptions to that larger physical/geographical unit will impact (cause failure/errors to) all

TopologicalEntities that use any part of that larger physical/geographical entity.

Any TopologicalEntity that uses any part of that larger physical/geographical unit will suffer impact

and hence each TopologicalEntity shares risk.

The identifier of each physical/geographical unit that is involved in the realization of each segment

of a Topological entity can be listed in the RiskParameter_Pac of that TopologicalEntity.

A segment has one or more risk characteristics.

Shared risk between two TopologicalEntities compromises the integrity of any solution that uses

one of those TopologicalEntities as a backup for the other.

Where two TopologicalEntities have a common risk characteristic they have an elevated probability

of failing simultaneously compared to two TopologicalEntities that do not share risk characteristics.

 riskCharacteristicList: A list of risk characteristics (RiskCharacteristic) for consideration in

an analysis of shared risk. Each element of the list represents a specific risk consideration.

 RiskCharacteristic: The information for a particular risk characteristic where there is a list of

risk identifiers related to that characteristic. It includes:

 riskCharacteristicName: The name of the risk characteristic. The characteristic may be

related to a specific degree of closeness. For example a particular characteristic may

apply to failures that are localized (e.g., to one side of a road) where as another

characteristic may relate to failures that have a broader impact (e.g., both sides of a road

that crosses a bridge). Depending upon the importance of the traffic being routed

different risk characteristics will be evaluated.

- 42 -

TD 406 Rev.1 (PLEN/15)

 riskIdentifierList: A list of the identifiers of each physical/geographic unit (with the

specific risk characteristic) that is related to a segment of the TopologicalEntity.

6.5.3.2 TransferCost_Pac

The cost characteristics of a TopologicalEntity are not necessarily correlated to the cost of the

underlying physical realization.

They may be quite specific to the individual TopologicalEntity, e.g., opportunity cost that relates to

layer capacity.

There may be many perspectives from which cost may be considered for a particular

TopologicalEntity and hence many specific costs and potentially cost algorithms.

Using an entity will incur a cost.

 costCharacteristicList: The list of costs (CostCharacteristic) where each cost relates to some

aspect of the TopologicalEntity.

 CostCharcteristic: The information for a particular cost characteristic

o costName: The cost characteristic will related to some aspect of the

TopologicalEntity (e.g., $ cost, routing weight). This aspect will be conveyed by

the costName.

o costValue: The specific cost.

o costAlgorithm: The cost may vary based upon some properties of the

TopologicalEntity. The rules for the variation are conveyed by the

costAlgorithm.

6.5.3.3 TransferTiming_Pac

A link will suffer effects from the underlying physical realization related to the timing of the

information passed by the link.

 fixedLatencyCharacteristic: A TopologicalEntity suffers delay caused by the realization of

the servers (e.g., distance related; FEC encoding etc.), along with some client specific

processing. This is the total average latency effect of the TopologicalEntity.

 jitterCharacteristic: High frequency deviation from true periodicity of a signal and therefore

a small high rate of change of transfer latency. Applies to TDM systems (and not packet).

 wanderCharacteristics: Low frequency deviation from true periodicity of a signal and

therefore a small low rate of change of transfer latency. Applies to TDM systems (and not

packet).

 queuingLatencyList: The effect on the latency of a queuing process. This only has

significant effect for packet based systems and has a complex characteristic

(QueuingLatency).

 QueuingLatency: Provides information on latency characteristic for a particular stated

trafficProperty.

6.5.3.4 TransferIntegrity_Pac

Transfer integrity characteristic covers expected (specified) error, loss and or duplication of signal

content as well as any damage of any form to total link and to the client signals.

- 43 -

TD 406 Rev.1 (PLEN/15)

 errorCharacteristic: describes the degree to which the signal propagated can be errored.

Applies to TDM systems as the errored signal will be propagated, but does not apply to

packet systems, as errored packets will be discarded.

 lossCharacteristic: Describes the acceptable characteristic of lost packets where loss may

result from discard due to errors or overflow. Applies to packet systems and not TDM (as

for TDM errored signals are propagated unless grossly errored and overflow/underflow

turns into timing slips).

 repeatDeliveryCharacteristic: Primarily applies to packet systems where a packet may be

delivered more than once (in fault recovery for example). It can also apply to TDM where

several frames may be received twice due to switching in a system with a large differential

propagation delay.

 deliveryOrderCharacteristic: Describes the degree to which packets will be delivered out of

sequence. Does not apply to TDM as the TDM protocols maintain strict order.

 unavailableTimeCharacteristic: Describes the duration for which there may be no valid

signal propagated.

 serverIntegrityProcessCharacteristic: Describes the effect of any server integrity

enhancement process on the characteristics of the TopologicalEntity.

6.5.3.5 TransferCapcity_Pac

The TopologicalEntity derives capacity from the underlying realization.

A TopologicalEntity may be an abstraction and virtualization of a subset of the underlying

capability offered in a view or may be directly reflecting the underlying realization.

A TopologicalEntity may be directly used in the view or may be assigned to another view for use.

The clients supported by a multi-layer TopologicalEntity may interact such that the resources used

by one client may impact those available to another. This is derived from the LTP spec details.

A TopologicalEntity represents the capacity available to user (client) along with client interaction

and usage.

A TopologicalEntity may reflect one or more client protocols and one or more members for each

profile.

 totalPotentialCapacity: An optimistic view of the capacity of the TopologicalEntity

assuming that any shared capacity is available to be taken.

Note that this area is still under development to cover concepts such as:

 exclusiveCapacityList: The capacity allocated to this TopologicalEntity for its exclusive use.

 sharedCapacityList: The capacity allocated to this TopologicalEntity that is not exclusively

available as it is shared with others.

 assignedAsExclusiveCapacityList: The capacity assigned from this TopologicalEnity to

another TopologicalEntity for its exclusive use.

 assignedAsSharedCapacityList: The capacity assigned to one or more other

TopologicalEntities for shared use where the interaction follows some stated algorithm.

 Capacity which includes:

 totalSize

- 44 -

TD 406 Rev.1 (PLEN/15)

 numberOfUsageInstances

 maximumUsageSize

 numberingRange

6.5.3.6 Validation_Pac

Validation covers the various adjacent discovery and reachability verification protocols. Also may

cover Information source and degree of integrity.

 validationMechanismList: Provides details of the specific validation mechanism(s) used to

confirm the presence of an intended topologicalEntity.

6.5.3.7 LayerProtocolTransition_Pac

Relevant for a Link that is formed by abstracting one or more LTPs (in a stack) to focus on the flow

and deemphasize the protocol transformation.

This abstraction is relevant when considering multi-layer routing.

The layer protocols of the LTP and the order of their application to the signal is still relevant and

need to be accounted for. This is derived from the LTP spec details.

This Pac provides the relevant abstractions of the LTPs and provides the necessary association to

the LTPs involved.

Links that included details in this Pac are often referred to as Transitional Links.

 transitionedLayerProtocolList: Provides the ordered structure of layer protocol transitions

encapsulated in the TopologicalEntity. The ordering relates to the LinkEnd role.

7 Future Area of the GIM

The clause contains place holders of areas that are being or will be modelled.

- 45 -

TD 406 Rev.1 (PLEN/15)

7.1 Synchronization (frequency and time/phase) module

7.2 Scheduling module

7.3 Logging module

7.4 Notification module

7.5 Performance management module

7.6 Fault management module

7.7 ECC management module

7.8 Policy management module

7.9 Physical Equipment management module

7.10 Generalized OAM/MEP functions

8 UML model files

8.1 Papyrus File

This section contains the information model files and the companion profile file specified using the

“Papyrus” modelling tool.

G.7711_v1.0_PAP.zi
p

 Model: consists of four files:

o .project,

o CoreModel.di,

o CoreModel.notation

o CoreModel.uml

 Profiles: consists of four files:

o .project,

o OpenModel_Profile.profile.di

o OpenModel_Profile.profile.notation

o OpenModel_Profile.profile.uml

In order to view and further extend or modify the information model, one will need to install the

open source Eclipse software and the Papyrus tool. The installation guide for Eclipse and Papyrus

can be found at https://www.eclipse.org/papyrus/updates/index.php.

8.2 Data Dictionary File

Attached below is theA data dictionary format of the G.7711 v1.0 information model in MS WORD

(.docx) document formatwill be generated. The data dictionary includes the description and

properties of the object classes and their attributes, including the and association attributes etc.

 Core Network ModuleModel data dictionary

https://www.eclipse.org/papyrus/updates/index.php

- 46 -

TD 406 Rev.1 (PLEN/15)

CoreNetworkModule
Object Classes-v0.02.docx

G.7710_v1.0_DD.do
cx

 Foundation Module data dictionary

FoundationModule
Object Classes-v0.02.docx

NOTE: The data dictionary is generated by the Gendoc

(http://projects.eclipse.org/projects/modeling.gendoc) tool using the following script:

G.7710_v1.0_DD_Sc
ript_for_Gendoc.docx

http://projects.eclipse.org/projects/modeling.gendoc

- 47 -

TD 406 Rev.1 (PLEN/15)

Annex A

UML Modelling Guideline

(This annex forms an integral part of this Recommendation.)

A.1 Introduction

This Annex defines the guidelines that have to be followed during the creation of a protocol-neutral

UML (Unified Modelling Language) information model. These UML Modelling Guidelines are

based on the UML guidelines defined in Recommendation ITU-T G.8052 and have been

harmonized with the UML modelling guidelines used in the industry, such as TM Forum [b-

3GPP/TMF-JWG] and ONF [b-ONF-UML-Guide].

UML defines a number of basic model elements, called UML artefacts. In order to assure consistent

modelling, only a selected subset of these artefacts is used in the UML model guidelines in this

Recommendation. The semantic of the selected artefacts is defined in [b-UML].

The description of each basic model artefact is divided into three parts

1. Short description

2. Graphical notation examples

3. Properties.

The guidelines have been developed using the Papyrus open source UML tool [b-Papyrus].

A.2 Source References

 Papyrus Eclipse UML Modeling Tool (https://www.eclipse.org/papyrus/)

 Unified Modeling Language™ (UML®) (http://www.uml.org/)

 OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4

 3GPP/TM Forum Model Alignment JWG: FMC Model Repertoire

(ftp://ftp.3gpp.org/TSG_SA/WG5_TM/Ad-hoc_meetings/Multi-

SDO_Model_Alignment/S5eMA20139.zip)

A.3 Overview

A.3.1 Modelling approach

The information model is split into a static part and a dynamic part; i.e., data model is decoupled

from operations model.

Important note:

It is important to understand that the UML class diagrams always show only parts of the underlying

model data base (data dictionary). E.g., object classes shown without attributes do not mean that the

object class has no attributes, they could be hidden in a diagram. The complete model is contained

in the data dictionary which contains all definitions.

https://www.eclipse.org/papyrus/
http://www.uml.org/
ftp://ftp.3gpp.org/TSG_SA/WG5_TM/Ad-hoc_meetings/Multi-SDO_Model_Alignment/S5eMA20139.zip
ftp://ftp.3gpp.org/TSG_SA/WG5_TM/Ad-hoc_meetings/Multi-SDO_Model_Alignment/S5eMA20139.zip

- 48 -

TD 406 Rev.1 (PLEN/15)

A.3.2 General Requirements

 The UML 2.4 (Unified Modeling Language) is used as a notation for the model.

 The model shall be protocol-neutral, i.e., not reflect any middleware protocol-specific

characteristics (like e.g., CORBA, HTTP, JMS).

 The model shall be map-able to various protocol-specific interfaces.

It is recommended to automate this mapping supported by tools.

 Traceability from each modeling construct back to requirements and use cases shall be

provided whenever possible.

A.4 UML Artifact Descriptions

A.4.1 Object Classes

Object classes are used to convey a static27 representation of an entity, including properties and

attributes; i.e., data model, the static part of the model.

A.4.1.1 Object Class Notation

Figure A.0.1: Graphical Notation for Object Classes

As highlighted in Figure A.0.1Figure A.4.1, an object class is represented with a name

compartment and an attributes compartment. The attributes compartment can be set in a diagram to

not expose the attributes or to expose some or all of the attributes.

In some diagrams the attributes are not exposed so as to reduce clutter, in others only a subset of the

attributes is exposed so as to focus attention. It is also possible to hide the attribute compartment of

a class in the class diagrams where a large number of classes need to be shown, as depicted in

Figure A.0.2Figure A.4.2.

Figure A.0.2: Graphical Notation for Object Classes without attributes compartment

The name compartment may also show stereotypes for the class where relevant. When showing

stereotypes the compartment will include the stereotype «openModelClass» (as all classes in the

model have this stereotype by default) and may also include other stereotypes.

In the general UML definition a class may have name, attribute and operation compartments, as

shown in Figure A.0.3Figure 4.3, but as in the model the static part and the dynamic part of the

model are decoupled, the operation compartment, is not used and always hidden.

27 Not about operations acting on the entity.

- 49 -

TD 406 Rev.1 (PLEN/15)

Figure A.0.3: Graphical Notation for Object Classes with attributes and deprecated

operations compartment

A.4.1.2 Object Class Properties

An object class has the following properties:

 Name

Follows Upper Camel Case (UCC). Each class in the model has a unique name. An example

of Upper Camel Case: SubNetworkConnection.

 Documentation

Contains a short summary of the usage. The documentation is carried in the “Comments”

field in Papyrus.

 Superclass(es)

Inheritance and multiple inheritance may be used to deal with shared properties.

 Abstract

Indicates if the object class can be instantiated or is just used for inheritance.

 Additional properties are defined in the «OpenModelClass» stereotype which extents

() by default ({required}) the «metaclass» Class:

Figure A.0.4: «OpenModelClass» Stereotype

 objectCreationNotification (only relevant in the purpose-specific modules of the

Information Model; see Error! Reference source not found.Figure A.3.1)

Defines whether an object creation notification has to be send when the object instance

is created.

 objectDeletionNotification (only relevant in the purpose-specific modules of the

Information Model; see Error! Reference source not found.Figure A.3.1)

Defines whether an object deletion notification has to be send when the object instance

is deleted.

 support

This property qualifies the support of the object class at the management interface. See

definition in section A.04.9.

- 50 -

TD 406 Rev.1 (PLEN/15)

 condition

This property contains the condition for the condition-related support qualifiers.

 Choice

This stereotype identifies an object class as a choice between different alternatives.

Figure A.0.5: Potential Choice annotation for Object Classes

 UML/Papyrus defined class properties that are not used in the model:

 Is leaf

 Is active

 Visibility

A.4.2 Attributes in Object Classes

Attributes contain the properties28 of an object class. Note that the roles of navigable association

ends become an attribute in the associated object class.

A.4.2.1 Attribute Notation

The notation is:

<visibility> <attribute name> : <attribute type> [<multiplicity>] = <default value>

Note: When no default is relevant or no default is defined, the “=” is not shown.

Figure A.0.6: Graphical Notation for Object Classes with Attributes

A.4.2.2 Attribute Properties

An attribute has the following properties:

 Name

Follows Lower Camel Case (LCC) and is unique across all attribute names in the model. An

example of Lower Camel Case: subNetworkConnectionIdentifier. The plural form is

"<attribute name>List".

Boolean typed attribute names always start with a verb like ‘is’, 'must', etc. (e.g.,

‘isAbstract’) and the whole attribute name must be composed in a way that it is possible to

answer it by "true" or "false".

28 In Papyrus an attribute is a property.

- 51 -

TD 406 Rev.1 (PLEN/15)

 Documentation

Contains a short summary of the usage. The documentation is carried in the “Comments”

field in Papyrus.

 Ordered

For a multi-valued multiplicity; this specifies whether the values in an instantiation of this

attribute are sequentially ordered; default is false.

 Unique
For a multi-valued multiplicity, this specifies if the values of this attribute instance are unique (i.e., no
duplicate attribute values); default is true.

Excerpt from -[3]: When Unique is true (the default) the collection of values may not contain
duplicates. When Ordered is true (false being the default), the collection of values is ordered. In
combination these two allow the type of a property to represent a collection in the following way:

Table A.0.1: Table 11.1/-[3] – Collection types for properties

Ordered Unique Collection type

false true Set

true true OrderedSet

false false Bag

true false Sequence

 Read Only

If true, the attribute may only be read, and not changed by the client. The default value is

false. The state is dependent on the additional attribute property writeable. I.e., if the

attribute cannot be set/changed by the client, it is read only.

 Type

Refers to a data type; see section A.04.8.

 Default Value

Provides the value that the attribute has to start with in case the value is not provided during

creation or already defined because of a system state.

In cases where a default value makes no sense (e.g., if representing the state of the system) it

is undefined which is shown by “--“.

 Multiplicity (*, 1, 1..*, 0..1, …)

Defines the number of values the attribute can simultaneously have.

 * is a list attribute with 0, one or multiple values;

 1 attribute has always one value;

 1..* is a list attribute with at least one value;

 0..1 attribute may have no or at most one value;

Default value is 1.

Other values are possible; e.g., “2..17”.

 Additional properties are defined in the «OpenModelAttribute» stereotype which extents

() by default ({required}) the «metaclass» Property:

- 52 -

TD 406 Rev.1 (PLEN/15)

Figure A.0.7: «OpenModelAttribute» Stereotype

 attributeValueChangeNotification (only relevant in the purpose-specific modules of the

Information Model; see Error! Reference source not found.Figure 3.1)

This property defines whether a notification has to be raised when the attribute changes

its value or not.

 isInvariant

Identifies if the value of the attribute can be changed after it has been created.

 valueRange

Identifies the allowed values for the attribute.

 support

This property qualifies the support of the attribute at the management interface. See

definition in section A.04.9.

 condition

This property contains the condition for the condition-related support qualifiers.

 Other properties:

 passedByReference

This property shall only be applied to attributes that have an object class defined as their

type; i.e., on a case by case basis.

The property defines if the attribute contains only the reference (name, identifier,

address) of the referred object instance(s) when being transferred across the interface.

Otherwise the attribute contains the complete information of the object instance(s) when

being transferred across the interface.

Figure A.0.8: «PassedByReference» Stereotype

 UML/Papyrus defined attribute properties that are not used in the model:

 Is derived

 Is derived union

- 53 -

TD 406 Rev.1 (PLEN/15)

 Is leaf

 Is static

 Is unique

 Visibility

A.4.3 Associations

Associations are defined between object classes. Associations have association-ends. The

association ends specify the role that the object at one end of a relationship performs.

A.4.3.1 Association Notation

The following examples show the different kinds of associations that are used in the model.

Figure A.0.9Figure 4.9 shows a bi-directional navigable association where each object class has a

pointer to the other. The role name becomes the name of the corresponding attribute. I.e., in the

example: ClassA will have an attribute named “_classBRefList” pointing to ClassB and vice versa.

Figure A.0.9: Bidirectional Association Relationship Notation

Figure A.0.Figure A.4.10 shows a unidirectional association (shown with an open arrow at the

target object class) where only the source object class has a pointer to the target object class and not

vice-versa.

Figure A.0.10: Unidirectional Association Relationship Notation

Figure A.0.Figure A.4.11 shows a uni-directional non-navigable association where each object

class does not have a pointer to the other; i.e., such associations are just for illustration purposes.

Figure A.0.11: – Non-navigable Association Relationship Notation

An aggregation is a special type of association in which objects are assembled or configured

together to create a more complex object. Aggregation protects the integrity of an assembly of

objects by defining a single point of control called aggregate, in the object that represents the

assembly.

- 54 -

TD 406 Rev.1 (PLEN/15)

Figure A.0.12: Aggregation Association Relationship Notation

A composite aggregation association is a strong form of aggregation that requires a part instance be

included in at most one composite at a time. If a composite is deleted, all of its parts are deleted as

well; i.e., the lifecycle of ClassB is tied to the lifecycle of ClassA.

Note: In the example below, ClassA names ClassB instances; defined by the «Names» stereotype.

Figure A.0.13: Composite Aggregation Association Relationship Notation

Figure A.0.14: Papyrus Settings for Composite Aggregation

A generalization association indicates a relationship in which one class (the child) inherits from

another class (the parent). A generalization relationship may be conditionally identified by the

«Cond» stereotype.

Or

Figure A.0.15: Generalization Relationship Notation (normal and conditional)

“A dependency is a relationship that signifies that a single or a set of model elements requires other

model elements for their specification or implementation. This means that the complete semantics of

the depending elements is either semantically or structurally dependent on the definition of the

- 55 -

TD 406 Rev.1 (PLEN/15)

supplier element(s)...“, an extract from -[2].

A dependency relationship may define naming identified by the «NamedBy» stereotype.

Figure 0.16: Dependency Relationship Notation (normal and naming)

A.4.3.2 Association properties

An association has the following properties:

 Name

Follows Upper Camel Case (UCC) and is unique across all association names defined in the

whole model.

The format is "<Class1Name><VerbPhrase><Class2Name>" where the verb phrase creates

a sequence that is readable and meaningful.

 Documentation

Contains a short summary of the usage. The documentation is carried in the “Comments”

field in Papyrus.

 Abstract

Associations which are just for explanation to the reader of the model are defined as

"abstract". Their ends are not navigable and have no role names. Abstract associations must

not be taken into account in a protocol specific implementation.

 Type

The following types are used:

 inheritance,

 simple association,

 composition,

 aggregation.

 Role Name

Follows Lower Camel Case (LCC) with an underscore “_” prefix and identifies the role that

the object plays at this end of the association. The plural form is "_<role name>List".

Only navigable association ends have role names and follow the definitions made for

attributes in section A.04.2.

 Role Type

The type of the role is fixed to the object class attached to the association end. Therefore it is

important to define the type as passedByReference or passedByValue. The

«PassedByReference» stereotype identifies that the role (becoming an attribute) that has the

stereotype associated, contains only the reference (name, identifier, address) to the referred

object instance(s) when being transferred across the interface. Otherwise the role (becoming

an attribute) contains the complete information of the object instance(s) when being

transferred across the interface.

- 56 -

TD 406 Rev.1 (PLEN/15)

 Role Multiplicity

Identifies the number of object instances that can participate in an instance of the

association.

 Additional properties:

 «Names»

The «Names» stereotype identifies that the association is used to define the naming.

 «namedBy»

 The «NamedBy» stereotype identifies that a dependency relationship is used to define

naming.

 «Cond»

The «Cond» stereotype identifies that the association is conditional. The condition is

also provided.

 «StrictComposite»

The «StrictComposite» stereotype can only be applied to associations with a composite

end (i.e., composite aggregation association). Means that the content of the composed

classes is part of the parent class and has no opportunity for independent lifecycle. The

composed classes are essentially carrying attributes of the parent class where the

composite is used to provide grouping of similar properties. The composed classes just

provide groups of attributes for the parent class; i.e., they are abstract and cannot be

instantiated.

Whereas in an association with a composite end that is not StrictComposite the

composed class is a part that has a restricted independent lifecycle. In this case an

instance of the composed class can be created and deleted in the context of the parent

class and should be represented as a separate instance from the parent in an

implementation. This is especially true where there is a recursive composition. It is

possible that in some cases the composed instance could move from one parent to

another so long as it exists with one parent only at all points of the transaction. This

move is not meaningful for a class associated via a StrictComposite association.

Figure A.0.17: Potential annotations for Associations

 UML/Papyrus defined attribute properties that are not used in the model:

 Visibility

A.4.4 Interfaces

An «Interface» is used to group operations, i.e., models the dynamic part of the model. Groupings

of operations can be used to modularize the functionalities of the specification.

Note: Interfaces (and operations) may only be defined in the purpose-specific modules of the

Information Model; see Error! Reference source not found.Figure 1-2.

- 57 -

TD 406 Rev.1 (PLEN/15)

A.4.4.1 «Interface» Notation

Interfaces are identified by the stereotype «Interface».

Figure A.0.18: Graphical Notation for «Interface» in the model

«Interfaces» usually have name, attributes and operations compartments. In the model the static part

and the dynamic part of the model are decoupled. Therefore, the attributes compartment is not used

and always empty. It is also possible to hide the attributes compartment in the interface diagrams.

Figure A.0.19: Graphical Notation for «Interface» without Attributes Compartment

Note: The graphical notation of an «Interface» may show an empty operation compartment so as to

reduce clutter even if the «Interface» has operations.

A.4.4.2 «Interface» Properties

An «Interface» has the following properties:

 Name

Follows Upper Camel Case (UCC) and is unique across all «Interface» names in the model.

 Documentation

Contains a short summary of the usage. The documentation is carried in the “Comments”

field in Papyrus.

 Superinterface(s)

Inheritance and multiple inheritance may be used.

 Abstract

Indicates if the «Interface» can be instantiated or is just used for inheritance.

 Additional properties are defined in the «OpenModelInterface» stereotype which extends (

) by default (required) the «metaclass» Interface:

- 58 -

TD 406 Rev.1 (PLEN/15)

Figure 0.20: «OpenModelInterface» Stereotype

 support

This property qualifies the support of the «Interface» at the management interface. See

definition in section 04.9.

 condition

This property contains the condition for the condition-related support qualifiers.

 UML/Papyrus defined interface properties that are not used in the model:

 Is leaf

 Visibility

A.4.5 Interface Operations

Operations can be defined within an «Interface». An «Interface» must have at least one

operation.

Note: Operations may only be defined in the purpose-specific modules of the Information Model;

see Error! Reference source not found.Figure 3.1.

A.4.5.1 Operation Notation

Figure A.0.21: Graphical Notation for «Interface» with Operations

A.4.5.2 Operation Properties

An operation has the following properties:

 Name

Follows Lower Camel Case (LCC) and is unique across all operation names defined in the

whole model.

 Documentation

Contains a short summary of the usage. The documentation is carried in the “Comments”

field in Papyrus.

 Pre-condition(s)

This property defines the conditions that have to be true before the operation can be started

- 59 -

TD 406 Rev.1 (PLEN/15)

(i.e., if not true, the operation will not be started at all and a general “precondition not met”

error will be returned, i.e., exception is raised).

 Post-condition(s)

This property defines the state of the system after the operation has been executed (if

successful, or if not successful, or if partially successful).

Note that partially successful post-condition(s) can only be defined in case of non-atomic

operations.

Note that when an exception is raised, it should not be assumed that the post-condition(s) are

satisfied.

 Parameter(s)

See section 04.6.

 Operation Exceptions

List the allowed exceptions for the operation.

The model uses predefined exceptions which are split in 2 types:

- generic exceptions which are associated to all operations by default

- common exceptions which needs to be explicitly associated to the operation.

Note: These exceptions are only relevant for a protocol neutral information model. Further

exceptions may be necessary for a protocol specific information model.

Generic exceptions:

 Internal Error: The server has an internal error.

 Unable to Comply: The server cannot perform the operation. Use Cases may identify

specific conditions that will result in this exception.

 Comm Loss: The server is unable to communicate with an underlying system or

resource, and such communication is required to complete the operation.

 Invalid Input: The operation contains an input parameter that is syntactically incorrect or

identifies an object of the wrong type or is out of range (as defined in the model or

because of server limitation).

 Not Implemented: The entire operation is not supported by the server or the operation

with the specified input parameters is not supported.

 Access Denied: The client does not have access rights to request the given operation.

Common exceptions:

 Entity Not Found: Is thrown to indicate that at least one of the specified entities does not

exist.

 Object In Use: The object identified in the operation is currently in use.

 Capacity Exceeded: The operation will result in resources being created or activated

beyond the capacity supported by the server.

 Not In Valid State: The state of the specified object is such that the server cannot

perform the operation. In other words, the environment or the application is not in an

appropriate state for the requested operation.

 Duplicate: Is thrown if an entity cannot be created because an object with the same

identifier/name already exists.

 Additional properties are defined in the «OpenModelOperation» stereotype which extents

() by default ({required}) the «metaclass» Operation:

- 60 -

TD 406 Rev.1 (PLEN/15)

Figure A.0.22: «OpenModelOperation» Stereotype

 isOperationIdempotent (Boolean)

Defines if the operation is idempotent (true) or not (false).

 support

This property qualifies the support of the operation at the management interface. See

definition in section 04.9.

 condition

This property contains the condition for the condition-related support qualifiers.

 UML/Papyrus defined operation properties that are not used in the model:

 Is leaf

 Is query

 Is static

A.4.6 Operation Parameters

Parameters define the input and output signals of an operation.

Note: Operations and their parameters may only be defined in the purpose-specific modules of the

Information Model; see Error! Reference source not found.Figure A.3.1.

A.4.6.1 Parameter Notation

The notation is:

<visibility> <direction> <parameter name> : <parameter type> [<multiplicity>] = <default value>

Note: When no default is relevant or no default is defined, the “=” is not shown

Figure A.0.23: Graphical Notation for «Interface» with Operations and Parameters

A.4.6.2 Parameter Properties

A parameter has the following properties:

- 61 -

TD 406 Rev.1 (PLEN/15)

 Name

Follows Lower Camel Case (LCC)

 Documentation

Contains a short summary of the usage. The documentation is carried in the “Comments”

field in Papyrus.

 Direction

Parameters can be defined as:

- input parameters

- output parameters

- in out parameters

 Type

Refers to a data type.

Note that a list of parameters can also be combined in a complex data type.

 Default Value

Defines the value that the parameter has in case the value is not provided. If it is mandatory

to provide a value, the default value is set to NA.

 Is Ordered

Defines for a multi-valued parameter that the order of the values is significant.

 Multiplicity

Defines the number of values the parameter can simultaneously have.

 Additional properties are defined in the «OpenModelParameter» stereotype which extents

() by default ({required}) the «metaclass» Parameter:

Figure A.0.24: «OpenModelParameter» Stereotype

 valueRange

Identifies the allowed values for the parameter.

 support

This property qualifies the support of the parameter at the management interface. See

definition in section A.04.9.

 condition

This property contains the condition for the condition-related support qualifiers.

 Other properties:

 passedByReference

This property shall only be applied to parameters that have an object class defined as

their type; i.e., on a case by case basis.

The property defines if the attribute contains only the reference (name, identifier,

address) to the referred object instance(s) when being transferred across the interface.

- 62 -

TD 406 Rev.1 (PLEN/15)

Otherwise the parameter contains the complete information of the object instance(s)

when being transferred across the interface.

Figure A.0.25: «PassedByReference» Stereotype

 UML/Papyrus defined parameter properties that are not used in the model:

 Is exception

 Is stream

 Is unique

 Visibility

A.4.7 Notifications

Note: Notifications may only be defined in the purpose-specific modules of the Information Model;

see Error! Reference source not found.Figure 3.1.

The UML «Signal» artifact is used to define the content of a notification. The information is

defined in the attributes of the «Signal».

Figure A.0.26: Graphical Notation for «Signal»

A.4.8 Types

Types are used as type definitions of attributes and parameters.

Data Types are divided into 3 categories:

- dataType

- enumeration

- primitiveType.

Papyrus already provides the following UML primitive types:

- 63 -

TD 406 Rev.1 (PLEN/15)

A.4.8.1 Type Notation

Figure A.0.27: Graphical Notation for «DataType»

Figure A.0.28: Graphical Notation for «Enumeration»

Figure A.0.29: Graphical Notation for «PrimitiveType»

A.4.8.2 Type Properties

A type has the following properties:

 Category

Three categories are used in the model:

- dataType

- enumeration

- primitive.

 Name

Follows Upper Camel Case (UCC) and is unique across all data type names defined in the

whole model.

 Documentation

Contains a short summary of the usage. The documentation is carried in the “Comments”

field in Papyrus.

- 64 -

TD 406 Rev.1 (PLEN/15)

 Data type attributes (only in dataTypes)

Follow the definitions made for attributes in section 04.2 with the following exceptions:

- the isInvariant property can be ignored and is fixed to "true"

- the notification property can be ignored and is fixed to "NA".

 Enumeration literals (only in enumerations)

The name contains only upper case characters where the words are separated by "_".

 Additional properties

 Choice

This stereotype identifies a data type as a choice between different alternatives.

 Exception

This stereotype defines a data type used for an operation exception.

Figure A.4.30: Potential annotations for Data Types

 UML/Papyrus defined attribute properties that are not used in the model:

 Is abstract

 Is leaf

A.4.9 Qualifiers

This clause defines the qualifiers applicable for model elements specified in this document, e.g. the

«openModelClass» (see section A.04.1.2), and the «OpenModelAttribute» (see section A.04.2.2).

The qualifications are M, O, CM, CO, C and ‘SS’. Their meanings are specified in this section. This

type of qualifier is called Support Qualifier.

 Definition of M (Mandatory) qualification:

The capability shall be supported.

 Definition of O (Optional) qualification:

The capability may or may not be supported.

 Definition of CM (Conditional-Mandatory) qualification:

The capability shall be supported under certain conditions, specifically:

When qualified as CM, the capability shall have a corresponding constraint defined in the

specification. If the specified constraint is met then the capability shall be supported.

 Definition of CO (Conditional-Optional) qualification:

The capability may be supported under certain conditions, specifically:

When qualified as CO, the capability shall have a corresponding constraint defined in the

specification. If the specified constraint is met then the capability may be supported.

 Definition of C (Conditional) qualification:

Used for items that have multiple constraints. Each constraint is worded as a condition for

one kind of support such as mandatory support, optional support or "no support". All

constraints must be related to the same kind of support. Specifically:

Each item with C qualification shall have the corresponding multiple constraints defined in

the specification. If all specified constraints are met and are related to mandatory, then the

- 65 -

TD 406 Rev.1 (PLEN/15)

item shall be supported. If all the specified constraints are met and are related to optional,

then the item may be supported. If all the specified constraints are met and are related to "no

support", then the item shall not be supported.

Note: This qualifier should only be used when absolutely necessary, as it is more complex to

implement.

 Definition of SS (SS Conditional) qualification:

The capability shall be supported by at least one but not all solutions.

 Definition of ‘-‘ (no support) qualification:

The capability shall not be supported.

A.5 UML Profile Definitions

A.5.1 Additional Properties Definitions

Section 04 has already described the additional properties for each UML artifact. All defined

stereotypes are shown as an overview in Figure A.0.6Figure A.5.1 and Table A.0.2Table A.5.1

below.

Figure A.0.61: UML Artifact «Stereotypes»

Table A.0.21: UML Artifact Properties defined in complex «Stereotypes»

- 66 -

TD 406 Rev.1 (PLEN/15)

Stereotype
Name of

property
Type Allowed values Default value

Associated to

metaclass

openModelClass

objectCreation

Notification
enumeration

NO,

YES,

NA

NA

Class

objectDeletion

Notification
enumeration

NO,

YES,

NA

NA

support enumeration

MANDATORY

OPTIONAL

CONDITIONAL_

MANDATORY

CONDITIONAL_

OPTIONAL

CONDITIONAL

MANDATORY

condition string none

OpenModelAttri

bute

attributeValue

Change

Notification

enumeration

NO,

YES,

NA

NA

Property

isInvariant Boolean true/false false

valueRange string NA

support enumeration

MANDATORY

OPTIONAL

CONDITIONAL_

MANDATORY

CONDITIONAL_

OPTIONAL

CONDITIONAL

MANDATORY

OpenModelOper

ation

isOperationIdem

potent
Boolean true/false false

Operation
support enumeration

MANDATORY

OPTIONAL

CONDITIONAL_

MANDATORY

CONDITIONAL_

OPTIONAL

CONDITIONAL

MANDATORY

condition string none

OpenModelPara

meter

valueRange string NA

Parameter support enumeration

MANDATORY

OPTIONAL

CONDITIONAL_

MANDATORY

CONDITIONAL_

OPTIONAL

CONDITIONAL

MANDATORY

condition string none

- 67 -

TD 406 Rev.1 (PLEN/15)

A.5.2 Modeling Lifecycle Definitions

The UML artefacts (packages, classes, attributes, interfaces, operations, parameters, data types,

associations and generalizations) can be appended with the following modeling lifecycle states (i.e.,

artefact lifecyle):

 Example

This state indicates that the entity is NOT to be used in implementation and is in the model

simply to assist in the understanding of the model (e.g., a specialization of a generalized

class where the generalized class is to be used as is and the specialization is simply offered

to more easily illustrate an application of the generalized class).

 Experimental

This state indicates that the entity is at a very early stage of development and will almost

certainly change. The entity is NOT mature enough to be used in implementation.

 Faulty

This state indicates that the entity should not be used in new implementation and that

attempts should be made to remove it from existing implementation as there is a problem

with the entity. An update to the model with corrections will be released.

 LikelyToChange

This state indicates that although the entity may be mature work in the area has indicated

that change will be necessary (e.g., there are new insights in the area or there is now

perceived benefit to be had from further rationalization). The entity can still be used in

implementation but with caution.

 Obsolete

This state indicates that the entity should not be used in new implementation and that

attempts should be made to remove it from existing implementation.

 Preliminary

This state indicates that the entity is at a relatively early stage of development and is likely

to change, but is mature enough to be used in implementation.

Figure A.0.72: UML Artefact Lifecycle «Stereotypes»

A.5.3 Profiles File

- 68 -

TD 406 Rev.1 (PLEN/15)

OpenModelProfile_Kepler_v0.0.1.zip

OpenModelProfile_Luna_v0.0.1.zip

Date: Feb. 20th 2015

A.6 Recommended Modelling Patterns

A.6.1 File Naming Conventions

For Further Study

A.6.2 Model Structure

For Further Study

A.6.3 Flexible Attribute Assignment to Object Classes

Since it is not possible to add attributes once an object instance has been created, it is necessary to

differentiate case (a) where attributes are assembled before the object instance is created, and case

(b) where further attributes (functions) are added after the object instance is created.

For case (a), attributes are grouped in object classes called “Pacs” and are associated to the base

object class using a conditional composition association (see section 06.3.1 below).

An example for (a) is a specific LTP instance which has specific Pacs associated, based on the

functions that this LTP supports. Once the LTP is created, it is no longer possible to add further

attributes or remove attributes.

 Object instances are (automatically) created as an assembly of the base object plus a list of Pacs

(depending on the supported functionality).

For case (b), attributes are grouped in “normal” object classes and are associated to the base object

class using a composition association.

An example for (b) is a specific already existing LTP instance which will be configured to do

performance monitoring (PM). In this case an additional PM object instance (created on the basis of

the corresponding object class (i.e., not Pac)) is separately instantiated and associated to the already

existing LTP. Note that it is also possible to remove the PM object instance from the LTP

afterwards without impacting the life cycle of the base LTP instance.

 Object instances are created on an explicit request and associated to already existing object

instances (depending on the requested additional functionality).

- 69 -

TD 406 Rev.1 (PLEN/15)

Figure A.0.1: Flexible Attribute Assignment to Object Classes

A.6.3.1 Use of Conditional Packages

Conditional packages are used to enhance (core) object classes / interfaces with additional attributes

/ operations on a conditional basis. The attributes / operations are defined in special object classes

called packages.

Figure A.0.2: Enhancing object classes using conditional packages

Package names follow the same rules as defined for object classes; i.e., UCC. The name ends with

the suffix "_Pac".

The role name of the navigable end pointing to the package follow the same rules as defined for

attributes; i.e., LCC. The name ends with the suffix "_Pac".

A.6.4 Use of XOR/Choice

A.6.4.1 Xor constraint

A.6.4.1.1 Description

“A Constraint represents additional semantic information attached to the constrained elements. A

constraint is an assertion that indicates a restriction that must be satisfied by a correct design of the

system. The constrained elements are those elements required to evaluate the constraint

specification…“, an extract from 9.6.1 Constraint of -[3].

For a constraint that applies to two elements such as two associations, the constraint shall be shown

as a dashed line between the elements labeled by the constraint string (in braces). The constraint

string, in this case, is xor.

A.6.4.1.2 Example

The figure below shows a ServerObjectClass instance that has relation(s) to multiple instances of a

class from the choice of ClientObjectCLass_Alternative1, ClientObjectClass_Alternative2 or

ClinetObjectCLass_Alternative3.

- 70 -

TD 406 Rev.1 (PLEN/15)

Figure A.0.3: {xor} notation

A.6.4.1.3 Name style

It has no name so there is no name style.

A.6.4.2 «Choice»

A.6.4.2.1 Description

The «Choice» stereotype represents one of a set of classes (when used as an information model

element) or one of a set of data types (when used as an operations model element).

This stereotype property, e.g., one out of a set of possible alternatives, is identical to the {xor}

constraint (see 06.4.1).

A.6.4.2.2 Example

Sometimes the specific kind of class cannot be determined at model specification time. In order to

support such scenario, the specification is done by listing all possible classes.

The following diagram lists 3 possible classes. It also shows a «Choice, InformationObjectClass»

named SubstituteObjectClass. This scenario indicates that only one of the three

«InformationObjectClass» named Alternative1ObjectClass, Alternative2ObjectClass,

Alternative3ObjectClass shall be realised.

The «Choice» stereotype represents one of a set of classes when used as an information model

element.

- 71 -

TD 406 Rev.1 (PLEN/15)

Figure A.0.4: Information model element example using «Choice» notation

Sometimes the specific kind of data type cannot be determined at model specification time. In order

to support such scenario, the specification is done by listing all possible data types.

The following diagram lists 2 possible data types. It also shows a «Choice» named ProbableCause.

This scenario indicates that only one of the two «DataType» named IntegerProbableCause,

StringProbableCause shall be realised.

The «Choice» stereotype represents one of a set of data types when used as an operations model

element.

Figure A.0.5: Operations model element example using «Choice» notation

Sometimes models distinguish between sink/source/bidirectional termination points. A generic class

which comprises these three specific classes can be modelled using the «Choice» stereotype.

- 72 -

TD 406 Rev.1 (PLEN/15)

Figure A.0.6: Sink/source/bidirectional termination points example using «Choice» notation

A.6.4.2.3 Name style

For «Choice» name, use the same style as «openModelClass» (see 04.1.2).

A.6.5 Diagram Guidelines

Classes and their relationships shall be presented in class diagrams.

Interfaces and their operations shall be presented in class diagrams.

It is recommended to create:

 An overview class diagram containing all classes related to a specific management area:

- The class name compartment should contain the location of the class definition (e.g.

"Qualified Name").

The class attributes should show the "Signature" (see section 7.3.45 of -[2] for the signature

definition).

 A separate inheritance class diagram in case the overview diagram would be overloaded

when showing the inheritance structure (Inheritance Class Diagram).

 A class diagram containing the user defined data types (Type Definitions Diagram).

 Additional class diagrams to show specific parts of the specification in detail.

 State diagrams for complex state attributes.

 State transition diagrams for attributes with defined value transitions.

 Activity diagrams for operations with high complexity.

A.6.6 Style Guides

For Further Study

- 73 -

TD 406 Rev.1 (PLEN/15)

Bibliography

[b-3GPP/TMF-JWG] 3GPP/TM Forum Model Alignment JWG: FMC Model Repertoire

(ftp://ftp.3gpp.org/TSG_SA/WG5_TM/Ad-hoc_meetings/Multi-

SDO_Model_Alignment/S5eMA20139.zip)

[b-ONF-CIM-Core-Model] ONF TR-512 ONF CIM Core Information Model

[b-ONF-CIM-Overview] ONF TR-513 ONF CIM Overview

[b-ONF-UML-Guide] ONF TR-514 UML Modelling Guidelines

[b-ONF-Papyrus-Guide] ONF TR-515 ONF Papyrus Guidelines

 [b-UML] Unified Modeling Language™ (UML®) (http://www.uml.org/)

[b-Papyrus] Papyrus Eclipse UML Modelling Tool (https://www.eclipse.org/papyrus/)

[b-TMF TR225] TM Forum TR225, Logical Resource: Network Function Model

https://www.eclipse.org/papyrus/

