TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

Series H Supplement 19 (10/2019)

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS

Usage of video signal type code points

CAUTION! PREPUBLISHED RECOMMENDATION

This prepublication is an unedited version of a recently approved Recommendation. It will be replaced by the published version after editing. Therefore, there will be differences between this prepublication and the published version.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this publication, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this publication is voluntary. However, the publication may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the publication is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the publication is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this publication may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the publication development process.

As of the date of approval of this publication, ITU [had/had not] received notice of intellectual property, protected by patents, which may be required to implement this publication. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2019

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Revised Supplement 19 to ITU-T H-series Recommendations

Usage of video signal type code points

Summary

Supplement 19 to ITU-T H-series Recommendations provides information on video signal property description code points and their combinations that are widely used in production and video content workflows.

This H-series supplement was developed collaboratively with ISO/IEC JTC 1/SC 29 and corresponds with ISO/IEC TR 23091-4 as a technically aligned twin text.

History

Edition	Recommendation	Approval	Study Group	Unique ${ m ID}^*$
1.0	ITU-T H Suppl. 19	2019-03-29	16	11.1002/1000/13895
2.0	ITU-T H Suppl. 19	2019-10-24	16	

Keywords

video signal type code points, video coding, video content, video production, baseband video, AVC, HEVC, CICP

^{*} To access the Supplement, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the Supplement's unique ID. For example, http://handle.itu.int/11.1002/1000/11830-en.

Introduction

This document discusses video signal property description code points and their combinations that are widely used in production and video content workflows. Video properties and values are usually expressed in "metadata" that can exist across production and distribution workflows. Knowledge of these properties and their combinations has value as content is processed in the end-to-end production-to-distribution workflow chain.

The combinations of all possible expressible video properties as code point values could hypothetically result in hundreds or thousands of permutations; but many of those combinations are rarely or never used in practice. For example, it is highly unlikely that perceptual quantization (PQ) transfer characteristics function specified in Recommendation ITU-R BT.2100 would be combined with the colour primaries specified in Recommendation ITU-R BT.601. Only a small subset of the possible combinations is used in practice.

This document is written to provide information to help the producers of various content processing tools to avoid processing mistakes that can cause video quality degradation due to having incorrect assumptions made about video property combinations. There are only a few limited sets of video property combinations that are widely used in present-day video production and distribution equipment chains. This document describes these limited sets of combinations that are currently widely used and describes how the associated signal type metadata is carried to aid in the automation of content workflows across various domains of capture, production, and distribution. Lastly, this document aims to help its readers, especially toolset developers, to repurpose tools to work properly across several domains (e.g., capture, production, production distribution, and service distribution) where similar video conversion functions (e.g., chroma subsampling or colour space conversions) may be performed.

This publication is the second edition of this Supplement. In the second edition, tables are added to describe the carriage of these combinations in baseband transmission formats. For high dynamic range and wide colour gamut usage, an additional combination describing usage of the IC_TC_P colour representation of Rec. ITU-R BT.2100 and content mastering with a mastering display having 4000 cd/m^2 peak brightness are described. Two new informative annexes are also added. The first of these describes commonly used video property combinations that are not specified in industry standards. The second annex indicates the relevance of the system identifier tags in consumer distribution specifications. Additional general refinements were also included to improve readability and clarity and improve the use of terminology.

Draft Supplement 19 to ITU-T H-series Recommendations

Usage of video signal type code points

1 Scope

This Supplement describes common industry representation practices for the usage of video signal type code points, as these properties are conveyed across video content production and distribution carriage systems.

2 References

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

2.1 Identical Recommendations | International Standards

- Recommendation ITU-T H.222.0 | ISO/IEC 13818-1 Information technology Generic coding of moving pictures and associated audio information – Part 1: Systems.
- Recommendation ITU-T H.262 | ISO/IEC 13818-2 Information technology Generic coding of moving pictures and associated audio information Part 2: Video.

2.2 Paired Recommendations | International Standards equivalent in technical content

- Recommendation ITU-T H.264, Advanced video coding for generic audiovisual services.
 ISO/IEC 14496-10, Information technology Coding of audio-visual objects Part 10: Advanced Video Coding Advanced Video Coding.
- Recommendation ITU-T H.265, High efficiency video coding.
- ISO/IEC 23008-2, Information technology High efficiency coding and media delivery in heterogeneous environments Part 2: High efficiency video coding.
- Recommendation ITU-T H.273, Coding-independent code points for video signal type identification.
- ISO/IEC 23091-2, Information technology Coding-independent code points Part 2: Video.

2.3 Additional references

- ITU-T H-Suppl. 15, Conversion and coding practices for HDR/WCG Y'CbCr 4:2:0 video with PQ transfer characteristics.
- ISO/IEC TR 23008-14, Information technology High efficiency coding and media delivery in heterogeneous environments – Part 14: Conversion and coding practices for HDR/WCG Y'CbCr 4:2:0 video with PQ transfer characteristics.
- ITU-T H-Suppl. 18, Signalling, backward compatibility and display adaptation for HDR/WCG video coding.
- ISO/IEC TR 23008-15, Information technology High efficiency coding and media delivery in heterogeneous environments – Part 15: Signalling, backward compatibility and display adaptation for HDR/WCG video.
- Apple Developer: AVCaptureColorSpace, https://developer.apple.com/documentation/avfoundation/avcapturecolorspace.
- ARIB STD-B32 Version 3.9 Video Coding, Audio Coding, and Multiplexing Specifications for Digital Broadcasting.
- ATSC A/341 ATSC Standard: Video HEVC.
- Blu-ray Disc White Paper (Ultra HD Blu-ray) Audio Visual Application Format Specifications for BD-ROM Version 3.2.
- CTA 861.4 Extension Updates to Dynamic HDR Metadata Signaling
- ETSI TS 101 154 Digital Video Broadcasting (DVB): Specification for the use of Video and Audio Coding in Broadcast and Broadband Applications.

ISO/IEC TR 23091-4:2019

- ISO/IEC 14496-12, Information technology Coding of audio-visual objects Part 12: ISO base media file format.
- ISO/IEC 14496-14, Information technology Coding of audio- visual objects Part 14: MP4 file format.
- ISO/IEC 14496-15, Information technology Coding of audio-visual objects Part 15: Carriage of network abstraction layer (NAL) unit structured video in ISO base media file format.
- Recommendation ITU-R BT.601-7, Studio encoding parameters of digital television for standard 4:3 and wide-screen 16:9 aspect ratios.
- Recommendation ITU-R BT.656-5 *Interface for digital component video signals in 525-line and 625-line television systems operating at the 4:2:2 level of Recommendation ITU-R BT.601.*
- Recommendation ITU-R BT.709-6, Parameter values for the HDTV standards for production and international programme exchange.
- Recommendation ITU-R BT.1120-9 Digital interfaces for studio signals with 1920x1080 image formats.
- Recommendation ITU-R BT.1886-0, Reference electro-optical transfer function for flat panel displays used in HDTV studio production.
- Recommendation ITU-R BT.2020-2, Parameter values for ultra-high definition television systems for production and international programme exchange.
- Recommendation ITU-R BT.2077-2, Real-time serial digital interfaces for UHDTV Signals.
- Recommendation ITU-R BT.2100-2, *Image parameter values for high dynamic range television for use in production and international programme exchange*.
- SMPTE ST 259, Television SDTV1 Digital Signal/Data Serial Digital Interface.
- SMPTE ST 292-1, 1.5 Gb/s Signal/Data Serial Interface.
- SMPTE ST 298, Universal Labels for Unique identification of Digital Data.
- SMPTE ST 335, Metadata Element Dictionary Structure.
- SMPTE ST 336, Data Encoding Protocol using Key-Length-Value.
- SMPTE ST 372, Dual Link 1.5 Gb/s Digital Interface for 1920 x 1080 and 2048 x 1080 Picture Formats.
- SMPTE ST 377-1, Material Exchange Format (MXF) File Format Specification.
- SMPTE ST 395, Television Metadata Groups Register Structure.
- SMPTE ST 424-3, Image Format and Ancillary Data Mapping for the Dual Link 3 Gb/s Serial Interface.
- SMPTE ST 425-1, Source Image Format and Ancillary Data Mapping for the 3 Gb/s Serial Interface.
- SMPTE ST 425-5, Image Format and Ancillary Data Mapping for the Quad Link 3 Gb/s Serial Interface.
- SMPTE ST 2003, Types Dictionary Structure.
- SMPTE ST 2022-6, Transport of High Bit Rate Media Signals over IP Networks (HBRMT).
- SMPTE ST 2036-3, Ultra High Definition Television Mapping into Single-link and Multilink 10 Gb/s Serial Signal/Data Interface.
- SMPTE ST 2067-20, Interoperable Master Format- Application #2.
- SMPTE ST 2067-21, Interoperable Master Format- Application #2 Extended Includes Access to Additional Content.
- SMPTE ST 2081-10, 2160-line and 1080-line Source Image and Ancillary Data Mapping for 6G-SDI.
- SMPTE ST 2081-11, 2160-line and 1080-line Source Image and Ancillary Data Mapping for Dual-link 6G-SDI.
- SMPTE ST 2081-12, 4320-line and 2160-line Source Image and Ancillary Data Mapping for Quad-link 6G-SDI.
- SMPTE ST 2082-10, 2160-line and 1080-line Source Image and Ancillary Data Mapping for 12G-SDI.
- SMPTE ST 2082-11, 4320-line and 2160-line Source Image and Ancillary Data Mapping for Dual-link 12G-SDI.
- SMPTE ST 2082-12, 4320-line and 2160-line Source Image and Ancillary Data Mapping for Quad-link 12G-SDI.
- SMPTE ST 2086, Mastering Display Color Volume Metadata Supporting High Luminance and Wide Color Gamut Images.
- SMPTE ST 2110-20, Professional Media Over Managed IP Networks: Uncompressed Active Video.
- SMPTE ST 2113:2019, Colorimetry of P3 Color Spaces.

3 Definitions

For the purposes of this Supplement, the following definitions and the definitions in the high efficiency video coding (HEVC) specifications (Rec. ITU-T H.265 | ISO/IEC 23008-2), advanced video coding (AVC) specifications (Rec. ITU-T H.264 | ISO/IEC 14496-10), and coding-independent code points (CICP) specifications (Rec. ITU-T H.273 | ISO/IEC 23091-2) apply.

- **3.1 3G-SDI**: serial digital interface with a transport capacity of 2.970 Gbit/s and 2.970/1.001 Gbit/s for transporting uncompressed digital video signals.
- **3.2 6G-SDI**: serial digital interface with a transport capacity of 5.94 Gbit/s and 5.94/1.001 Gbit/s for transporting uncompressed digital video signals.
- **3.3 10G-SDI**: serial digital interface with a transport capacity of 10.692 Gbit/s for transporting uncompressed digital video signals.
- **3.4 12G-SDI**: serial digital interface with a transport capacity of 11.88 Gbit/s and 11.88/1.001 Gbit/s for transporting uncompressed digital video signals.
- **3.5 colour coding characteristics:** combination of colour gamut, colour primaries, dynamic range, transfer function, colour representation, video range, and chroma sample location.
- **3.6 colour volume**: Space of all colours and intensities that a device or signal can reproduce or convey.
- **3.7 creative intent**: Desired vision of the content creator (e.g., a director, cinematographer, videographer, editor, or colourist) who adjusts and approves the appearance of rendered content in the production process.
- 3.8 dual-link SDI: two parallel serial digital interfaces for transporting uncompressed video signals.
- **3.9 electro-optical transfer function (EOTF)**: Function to map a non-linear video signal to display linear light.
- **3.10 full range**: Range in a fixed-point (integer) representation that spans the full range of values that could be expressed with that bit depth.
- **3.11 HD-SDI**: serial digital interface for transporting uncompressed digital HD video signals.
- **3.12** inverse electro-optical transfer function (inverse EOTF): Function that is the inverse of an EOTF.
- **3.13 inverse opto-electrical transfer function (inverse OETF):** Function that is the inverse of an OETF.
- **3.14 narrow range**: Range in a fixed-point (integer) representation that does not span the full range of values that could be expressed with that bit depth.

NOTE – Narrow range is, in some applications, referred to by synonyms such as: "limited range", "video range", "legal range", "SMPTE range" or "standard range".

- **3.15 opto-electrical transfer function (OETF)**: Function to map relative scene linear light to a non-linear video signal.
- **3.16 opto-optical transfer function (OOTF)**: Function to map relative scene linear light to display linear light.
- **3.17** quad-link SDI: four parallel serial digital interfaces for transporting uncompressed video signals.
- **3.18** random access point access unit (RAPAU): Access unit in a video bitstream containing an intra-coded picture with the property that all pictures following the intra-coded picture in output order can be correctly decoded without using any information preceding the random access point access unit in the bitstream.
- **3.19 SDI**: serial digital interface for transporting uncompressed video signals.
- **3.20 SD-SDI**: signal digital interface for transporting uncompressed digital SD video signals.
- **3.21 transfer function**: Function among any of the following: EOTF, inverse EOTF, OETF, inverse OETF, OOTF, or inverse OOTF.
- **3.22 U-SDI**: multilink (up to 24 links) serial digital interface with a transport capacity of 10.692 Gbit/s per link for transporting uncompressed digital video signals.

4 Abbreviations

For the purposes of this Supplement, the following abbreviations apply:

- 2K Informally used to refer to an HD resolution (1920×1080 for television or 2048×1080 for film)
- 4K Informally used to refer a UHD resolution (3840×2160 for television or 4096×2160 for film)

ISO/IEC TR 23091-4:2019

8K Informally used to refer to a UHD resolution (7680×4320 or 8192×4320)

AVC Advanced Video Coding (Rec. ITU-T H.264 | ISO/IEC 14496-10)

CICP Coding-Independent Code Points (Rec. ITU-T H.273 | ISO/IEC 23091-2)

EOTF Electro-Optical Transfer Function

GBR Green, Blue, and Red component colour system in linear light domain. Same as RGB, although emphasizing that the Green component is handled as the primary colour component by some technical elements of the video coding technology

NOTE – The colour representation does not indicate the media component order in a coded representation. For example, GBR represents the same component colour system as RGB.

G'B'R' Green, Blue, and Red component colour system in a non-linear domain associated with a transfer function which maps the linear light domain to a more perceptually uniform domain. Same as R'G'B', although emphasizing that the Green component is handled as the primary colour component by some technical elements of the video coding technology

NOTE – The colour representation does not indicate the media component order in a coded representation. For example, G'B'R' represents the same component colour system as R'G'B'.

HD High Definition

HDR High Dynamic Range

HEVC High Efficiency Video Coding (Rec. ITU-T H.265 | ISO/IEC 23008-2)

HLG Hybrid Log-Gamma (as defined in Rec. ITU-R BT.2100)

HVS Human Visual System

IC_TC_P Constant Intensity signal format (as defined in Rec. ITU-R BT.2100)

LCD Liquid Crystal Display

LED Light-Emitting Diode

LUT Look-up Table

MDCV Mastering Display Colour Volume

MXF Material eXchange Format (as defined in SMPTE ST 377-1)

N/A Not Applicable

N/R Not Required

NCG Narrow Colour Gamut (typically as per Rec. ITU-R BT.709)

NCL Non-Constant Luminance

OLED Organic Light-Emitting Diode

PQ Perceptual Quantizer (as defined in Rec. ITU-R BT.2100)

QP Quantization Parameter

RAPAU Random Access Point Access Unit

RGB Red, Green, and Blue component colour system in linear light domain

NOTE – The colour representation does not indicate the media component order in a coded representation. For example, RGB represents the same component colour system as GBR.

R'G'B' Red, Green, and Blue component colour system in a non-linear domain associated with a transfer function which maps the linear light domain to a more perceptually uniform domain

NOTE – The colour representation does not indicate the media component order in a coded representation. For example, R'G'B' represents the same component colour system as G'B'R'.

SD Standard Definition

SDR Standard Dynamic Range

SEI Supplemental Enhancement Information

OETF Opto-Electrical Transfer Function

OOTF Opto-Optical Transfer Function

UHD Ultra High Definition

UL Universal Label (as defined in SMPTE ST 377-1)

VUI Video Usability Information (a sequence-level syntax structure in HEVC and AVC bitstreams)

WCG Wide Colour Gamut (a gamut substantially wider than the gamut conveyed by Recommendation ITU-R BT.709,

e.g., as per Recommendation ITU-R BT.2020 or Recommendation ITU-R BT.2100)

XYZ The CIE 1931 colour space (wherein Y corresponds to the luminance signal)

Y'CbCr Luma (Y'), chroma blue (Cb) and chroma red (Cr) colour representation defined by a matrix transformation relationship to an R'G'B' colour system

NOTE – A Y'CbCr representation is commonly used for video/image distribution as a way of encoding RGB information. Such a representation is also commonly expressed as YCbCr, $Y'C_BC_R$, or $Y'C'_BC'_R$, and can also be known as YUV in some documents. The relationship between Y'CbCr and R'G'B' considered in this document is defined by matrix coefficients specified in Recommendation ITU-R BT.601, Recommendation ITU-R BT.709, Recommendation ITU-R BT.2020 or Recommendation ITU-R BT.2100. Unlike the CIE-Y component in the linear-light XYZ representation, the non-linear, approximately perceptually uniform Y' might not be representing true luminance, regardless of the transfer function.

5 Overview

This document discusses video signal property description code points and their combinations that are widely used in production and video content workflows. Video properties and values are usually expressed in "metadata" that can exist across production and distribution workflows. Knowledge of these properties and their combinations has value as content is processed in the end-to-end production-to-distribution workflow chain.

The combinations of all possible expressible video properties as code point values could hypothetically result in hundreds or thousands of permutations; but many of those combinations are rarely or never used in practice. For example, it is highly unlikely that the perceptual quantization (PQ) transfer characteristics function specified in Recommendation ITU-R BT.2100 would be combined with the colour primaries specified in Recommendation ITU-R BT.601. Only a small subset of the possible combinations is used in practice.

This document is written to provide information to help the producers of various content processing tools to avoid processing mistakes that can cause video quality degradation due to having incorrect assumptions made about video property combinations. There are only a few limited sets of video property combinations that are widely used in present-day video production and distribution equipment chains. This document describes these limited sets of combinations that are currently widely used and describes how the associated signal type metadata is carried to aid in the automation of content workflows across various domains of capture, production, and distribution. Lastly, this document aims to help its readers, especially toolset developers, to repurpose tools to work properly across several domains (e.g., capture, production, production distribution, and service distribution) where similar video conversion functions (e.g., chroma subsampling or colour space conversions) may be performed.

The coding-independent code points (CICP) specification for video (Rec. ITU-T H.273 | ISO/IEC 23091-2) defines code points and fields that identify properties of video signals. These code points are defined independently from how these properties are carried in a coded video-layer bitstream such as an HEVC or AVC bitstream, which could differ depending on bitstream format. The compressed representation is sometimes considered to be a temporary, compacted state for distribution or delivery of the video signal, while the reconstructed video signal output from a video decoder may be interpreted as having the same meaning as a video signal immediately prior to compression in the encoder.

Clauses 7.2 and 7.3 define system identifier tags for combinations of the described commonly used values of such video signal property combinations that apply across signal domains. In addition, these clauses also identify how the video property values are carried in the signal processing workflow. Clause 7.3 defines system identifier tags for commonly used values for mastering display colour volume descriptions. Annex A define system identifier tags used for additional combinations that are not specified as industry standards. Annex B defines system identifier tags that are used in some existing consumer distribution formats.

6 Workflow domains

Figure 1 illustrates workflow domains (capture, production, production distribution, and service distribution) in which video content may exist, be edited, or be converted. Typical content workflows across these domains are either theatrical/scripted (episodic) TV or live events. There are many similar video processing functions that can be performed in each domain and often these functions may be repeated in the next successive domain.

ISO/IEC TR 23091-4:2019

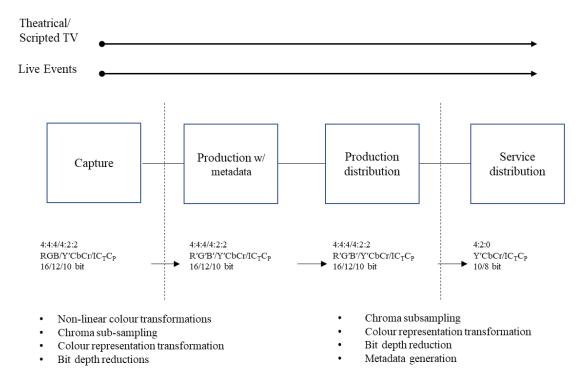


Figure 1 – Video workflows through different carriage domains

In the capture domain, content is created through sensors on cameras converting optical signals into a digital format. Content is retained at its highest informational format, although some conversions may be performed to reduce transport bandwidth demands.

In the interface to the production domain, content undergoes further processing transformations such as non-linear transformations, chroma subsampling (e.g., 4:4:4 to 4:2:2), colour representation changes (e.g., RGB to Y'CbCr NCL) and bit depth reduction (e.g., 16 bits per sample to 10 bits per sample). For theatrical/scripted TV workflows entering in the production domain, content can be added augmented with computer-generated imagery sources, overlaid with graphics, and colour graded using a mastering display. For live event workflows, there is always a real-time constraint, which limits content processing to real-time operations. After the colour grading, both static and dynamic metadata may be generated that are to be attached to the content workflow. However, for live events, the generation of highly customized metadata may not be practical and metadata may need to be generated further downstream by automated content analysis approaches.

In the production distribution domain, some additional processing is done to the content to further reduce transport bandwidth demands. This may include some sample-wise processing transformations (chroma subsampling and bit depth) and compression (e.g., using HEVC or AVC) but mostly employing spatial compression techniques.

For 4:2:0 chroma subsampling operations, it is important to make known the relative location alignment of the initial subsampling location processing of the content to avoid unnecessary quality degradation upon further content processing. For purposes of this document, this property is described in terms of the ChromaLocType variable as defined in HEVC, which further corresponds with the value of the syntax elements chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field in HEVC and AVC. For NCG material, the usual alignment corresponds to ChromaLocType equal to 0 (vertically interstitial). For wide colour gamut (WCG) material, the usual alignment corresponds to ChromaLocType equal to 2 (co-sited).

At the service distribution domain, the content version in the workflow is in final form, though the presentation of it may have some additional overlay graphics. Content processing at this interface continues to reduce signal information to address transport bandwidth distribution demands while still maximizing perceptual optimizations to retain content video quality. Operations reduce the content to a compressed representation of 4:2:0 Y'CbCr 8 or 10 bit video using HEVC or AVC for the compression representation. Alternatively, MPEG-2 (Rec. ITU-T H.262 | ISO/IEC 13818-2) can be used as a compressed representation for 4:2:0 Y'CbCr 8 bit video content. This content workflow then finishes with the content being distributed to the customer through broadcast, multicast, or unicast approaches and then being presented for viewing.

Many of the content processing operations may employ multiple third-party content processing tools. Currently most of such tools are designed and operate within a specific domain with general assumptions of how content was handled in the preceding domain. Tools may also have further constraints depending on the content resolutions (e.g., HD or UHD). Some applications restrict the utilized colour volume to be smaller than what can be expressed in a Recommendation ITU-T BT.2020 or Recommendation ITU-T BT.2100 container, such as the smaller P3D65 colour gamut (as specified in SMPTE ST 2113) and intensity range of common mastering or reference displays used in content production and delivery presentations. The approved colour volume, which may be smaller than the container volume, is often indicated with SMPTE ST 2086 metadata. Over time, it is expected that WCG and/or high dynamic range (HDR) applications will evolve to use more of the available container colour volume.

7 Common video signal type combinations

7.1 General

This clause enumerates common combinations of video properties and values that are currently used within the content industry. Common methods of conveying video property information are also described for the capture, production, production distribution, and service distribution carriage domains.

System identifier tags are provided in this document to succinctly identify each commonly used combination. Such system identifier tags may be used as out of band metadata for conversion tools, and by production/distribution teams, to identify the workflow path needed to process and distribute content.

Content conversion tools need the locations and values of stream properties and metadata values associated with the corresponding system identifier. In some cases, the information to identify and locate video properties of the stream information are described in a specific coded video stream specification.

For example, SMPTE MXF structured streams indicate parameters and values through universal label (UL) structures located in material exchange format (MXF) headers. Such ULs are a set of registered labels maintained by SMPTE (at registry.smpte-ra.org). An MXF UL structure is a 16-byte structure comprised of a UL header [4 bytes-"0"] (per SMPTE ST 298), a UL designator [4 bytes-"0"] (per SMPTE ST 336), and an item designator [8 bytes-"000"] (per SMPTE ST 335, SMPTE ST 395, and SMPTE ST 2003). SMPTE MXF sub-tables provide these 16-byte labels in addition to any values associated with the label.

As another example, HEVC or advanced video coding (AVC) bitstreams indicate parameters and values through video usability information (VUI) and supplemental enhancement information (SEI) constructs at the sequence parameter set level.

7.2 Colour coding characteristics

7.2.1 General

Colour coding characteristics can describe combinations of video properties that are needed to convert between colour volumes. Such conversions may include changes in bit depth, changes in colour subsampling, non-linear optimizations and may also include transformations based on carriage and bit rate restrictions. SD, HD, and UHD material are typically associated with certain colour coding characteristics properties as indicated in Table 1, but this information can be carried in different places or may be inferred depending on the storage or streaming format.

Table 1 – SD, HD, and UHD video colour coding characteristics properties

		Co	olour	Liş	ght	Co	ontainer sp	pace properties
	Tag	Gamut	Primaries	Dynamic Range	Transfer function	Colour Represen tation	Integer code level scaling	4:2:0 chroma sample location alignment (ChromaLocType)
	BT601_525		DT (01			Y'CbCr	Narrow	Vertically interstitial (ChromaLocType = 0)
QS	BT601_625	NCC	BT.601		BT.709	Y'CbCr	Narrow	Vertically interstitial (ChromaLocType = 0)
HD or SD	BT709_YCC	NCG	BT.709	SDR		Y'CbCr	Narrow	Vertically interstitial (ChromaLocType = 0)
	BT709_RGB					R'G'B'	Narrow	N/A
	FR709_RGB					R'G'B'	Full	N/A
	BT2020_YCC_NCL		BT.2020			Y'CbCr	Narrow	Co-sited (ChromaLocType = 2)
	BT2020_RGB					R'G'B'	Narrow	N/A
	FR2020_RGB					R'G'B'	Full	N/A
QH O	BT2100_PQ_YCC	WCG				Y'CbCr	Narrow	Co-sited (ChromaLocType = 2)
Ti Ti	BT2100_PQ_ICTCP	wcG	DT 2100	IIDD	PQ	IC _T C _P	Narrow	Co-sited (ChromaLocType = 2)
	BT2100_PQ_RGB		BT.2100	HDR		R'G'B'	Narrow	N/A
	BT2100_HLG_YCC				HLG	Y'CbCr	Narrow	Co-sited (ChromaLocType = 2)
	BT2100_HLG_RGB					R'G'B'	Narrow	N/A

In this document, as in various industry groups such as UltraHD Forum, EBU, and DVB, UHD applications are considered as those having at least one major property greater than HD (Rec. ITU-R BT.709), such as colour gamut, resolution, dynamic range, or frame rate (e.g., 1080p60 HDR/WCG is considered UHD herein).

Carriage formats for colour properties in each domain (capture, production, production distribution, and service distribution) contain the same payload but in different wrappers. In the capture and production domains, the colour coding characteristics information can be carried in an MXF wrapper using a generic picture essence descriptor as specified by Annex C of SMPTE ST 2067-21. Colour coding characteristics information in the distribution domain can be carried within the video stream as syntax information in the selected video format such as HEVC, AVC, or MPEG-2 through VUI or equivalent syntax. The full and narrow range scaling video property is not carried explicitly in all technologies and may need to be taken implicitly or through a system identifier. In common practice, Y'CbCr colour representation uses narrow range scaled levels.

In Table 2, the type of baseband carriage of video signals over serial digital interfaces are listed, dependent on data rate limitations of the interface which are specified by the resolution of the video signal.

Table 2 – Source format data (resolution) carriage over broadband SDI connections

Standard	Source format data (resolution)							
	S	D	HD			UHD		
	720×480	720×576	1280×720	1920×1080	2048×1080	3840×2160	4096×2160	7680×4320
ST 259M (SD-SDI)	V	V						
BT 656M (SD-SDI)	√	√						
ST 292-1 (HD-SDI)			V	V	V			
BT.1120-9 (12/2017) (HD-SDI)				V				
ST 372-1:2017 (Dual Link HD-SDI)				V	V			
ST 425-1:2017 (3G-SDI)				V	V			
BT 1120-9 (12/2017) (Dual link HD- SDI/3G-SDI)				$\sqrt{}$				
ST 425-5:2015 (Quad link 3G-SDI)						V	V	
ST 2081-10:2018 (6G-SDI)				√	V	V	V	
ST 2082-10:2018 (12G-SDI)						V	$\sqrt{}$	
ST 2082-12:2016 (Quad link 12G-SDI)						V	V	$\sqrt{}$
ST 2036-3:2018:2018 (Single/multi link 10G-SDI)						√		V
BT 2077-2 (U-SDI)						V		$\sqrt{}$

In this table, cells with check marks ($\sqrt{}$) indicate "used combinations"; cells without check marks indicate "not used combinations".

7.2.2 Colour properties

For colour coding characteristics, the video properties described in Table 2 ordinarily apply. Remarks on common usage are included in the Table 3.

Table 3 – Video colour description properties and their common usage

Carriage parameter names	Colloquial names	Common usage
ColourPrimaries [CICP] colour_primaries [HEVC or AVC] colour primaries [MXF]	Colour space, colour gamut	SDR video uses a Rec. ITU-R BT.709 colour representation. WCG video may restrict colour to the P3D65 gamut (SMPTE ST 2113) but in a Rec. ITU-R BT.2020 colour space container. HDR over time is expected to exhibit a more complete coverage of the Rec. ITU-R BT.2020 colour representation.
TransferCharacteristics [CICP] transfer_characteristics [HEVC or AVC] transfer characteristic [MXF]	Transfer curves, log curves, gamma curves	HDR video uses either PQ or HLG. SDR video typically uses the transfer characteristics for Rec. ITU-R BT.709, assuming the display characteristics corresponding to Rec. ITU-R BT.1886.
MatrixCoefficients [CICP] matrix_coeffs [HEVC] matrix_coefficients [AVC] coding equations [MXF]	Colour representation, GBR, NCL, YCC, IC _T C _P , YUV, Y'UV, R'G'B'	Specifies the encoding equations to convert RGB image components to the corresponding representation format. For R'G'B' representations, no matrix applies, which is typically indicated by the value 0. (The colour representation notation does not indicate the media component order in a coded representation.)
VideoFullRangeFlag [CICP] video_full_range_flag [HEVC or AVC] N/A [MXF]	Full range, narrow range, headroom, footroom, legal range, SMPTE range, QE.1, QE.2	Y'CbCr colour representations ordinarily use narrow range scaling for video.
ChromaLocType [HEVC] chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field [AVC or HEVC] N/A [CICP or MXF]	4:2:0 subsampled chroma location type	Indicates the horizontal and vertical positions of chroma samples (Cb, Cr, C _T , C _P) with respect to luma samples with subsample position accuracy. The alignment is typically horizontally co-sited with even-numbered columns of luma samples (indexed starting from 0). For SD and HD video, the alignment is typically vertically interstitial between rows of luma samples (ChromaLocType = 0). For UHD video, the alignment is typically vertically co-sited with even-numbered rows of luma samples (ChromaLocType = 0).

Table 4 indicates the code values for each property that are widely used for video content production and distribution systems.

Table 4 - Code point values widely used for colour coding characteristics properties

HEVC property	Code point value	Meaning		
	1	Rec. ITU-R BT.709 primaries		
	5	Rec. ITU-R BT.601 625-line systems primaries		
colour_primaries	6	Rec. ITU-R BT.601 525-line systems primaries		
colour_primaries	9	Rec. ITU-R BT.2020 and Rec. ITU-R BT.2100 primaries		
	9	(share the same code point since their values are identical)		
	12	SMPTE ST 2113 and EG 432-1 ref, (P3D65)		
		Rec. ITU-R BT.709, Rec. ITU-R BT.601, Rec. ITU-R		
	1, 6, 14, 15	BT.2020, and Rec. ITU-R BT.2100 transfer characteristics		
transfer_characteristics		(functionally equivalent values)		
	16	Rec. ITU-R BT.2100 PQ		
	18	Rec. ITU-R BT.2100 HLG (Hybrid Log-Gamma)		

HEVC property	Code point value	Meaning			
	0	R'G'B' (identity matrix applied to primaries after transfer			
	Ü	function)			
	1	Y'CbCr for Rec. ITU-R BT.709 primaries			
matrix coeffs	5	Y'CbCr for Rec. ITU-R BT.601 625-line primaries			
maurx_coerrs	6	Y'CbCr for Rec. ITU-R BT.601 525-line primaries			
	9	Y'CbCr for Rec. ITU-R BT.2020 and Rec. ITU-R BT.2100			
	9	primaries			
	14	IC _T C _P for Rec. ITU-R BT.2100			
	0	Vertically interstitial, horizontally co-sited			
ChromaLocType	1	Vertically interstitial, horizontally interstitial			
	2	Vertically co-sited, horizontally co-sited			

7.2.3 Common descriptions and carriage – standard dynamic range video with narrow colour gamut

This colour volume describes standard dynamic range (SDR) video with narrow colour gamut (NCG), which includes the majority of the production and distribution workflows currently used in the industry. There are several combinations of values of video properties that are used for this colour volume. Table 5 describes these combinations. There are several one-way operations that can be performed for this colour volume including bit depth reductions, colour sampling reductions, and full-to-narrow range scaling operations.

The following system identifier tags are described herein, as defined in Table 5:

- BT709 YCC
- BT709_RGB
- BT601_525
- BT601_625

Table 5 – SDR NCG colour coding characteristics descriptions

	System identifier	BT709_YCC	BT709_RGB	BT601_525	BT601_625
ır ies	Colour primaries	BT.709	BT.709	BT.601	BT.601
Colour properties	Transfer characteristics	BT.709	BT.709	BT.709	BT.709
<u>ā</u>	Colour representation	Y'CbCr	R'G'B'	Y'CbCr	Y'CbCr
er	Full/narrow range	Narrow	Narrow	Narrow	Narrow
Other	4:2:0 chroma sample location alignment	Interstitial	N/A	Interstitial	Interstitial
CICP parameters Rec. ITU-T H.273 ISO/IEC 23091-2	ColourPrimaries	1	1	6	5
rame -T H	TransferCharacteristics	1	1	6	6
CICP parameters Rec. ITU-T H.273 ISO/IEC 23091-2	MatrixCoefficients	1	0	6	5
CIC Rec.	VideoFullRangeFlag	0	0	0	0
neters -21	Colour primaries	06.0E.2B.34.04.01. 1.03.03.		06.0E.2B.34.04 .01.01.06.04.01 .01.01.03.01.00 .00	06.0E.2B.34.04 .01.01.06.04.01 .01.01.03.02.00 .00
rai 67	Transfer characteristic	06.0E.2	2B.34.04.01.01.01.	04.01.01.01.01.02.0	00.00
SMPTE MXF parameters SMPTE ST 2067-21	Coding equations	06.0E.2B.34.04.0 1.01.01.04.01.01. N/R 01.02.02.00.00		06.0E.2B.34.04.01.01.01.04.01.01 .01.02.01.00.00	
PTE]	Full/narrow level range	Inferred (indica	ated in black refere colour r	nce level, white ref	erence level,
SM	4:2:0 chroma sample location alignment	Inferred (ChromaLoc Type = 0)	N/A	Inferred (ChromaLoc Type = 0)	Inferred (ChromaLoc Type = 0)

Particular aspects of the usage described in Table 5 are clarified as follows:

- Recommendation ITU-R BT.601 colour volumes are used for SD material only.
- The transfer characteristics indicator values of 1, 6, 14, and 15 are functionally the same. Blu-ray BD-ROM
 3.1 ("4K") and the DVB UHD specifications list use of the transfer characteristics value of 14 for

SDR/WCG (Rec. ITU-R BT.2020) video. ATSC specifications list use of the transfer characteristics value of 1 for SDR NCG video.

- Matrix coefficients indicator values of 5 and 6 are functionally the same.
- The indicated chroma sample location alignment is only applicable for 4:2:0 chroma sampling. ChromaLocType (the generic label used in this document for the HEVC and AVC bitstream syntax elements: chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field), listed in Tables 1 and 3 of this document, indicates the 4:2:0 chroma sample position alignment.

7.2.4 Common descriptions and carriage – standard dynamic range video with wide colour gamut

This colour coding characteristics information describes SDR video with WCG, which is typically identified by the combination of the colour primary video property with the identified matrix coefficients. In some cases, the same colour property may be described with two different values depending on the colour primary container used. It is important for tools to process video according to the colour volume it is operating in to make sure the conversion is consistent.

The following system identifier tags are described, as defined in Table 6:

- BT2020_YCC_NCL
- BT2020_RGB

Table 6 - SDR WCG common colour coding characteristics descriptions

	System identifier	BT2020_YCC_NCL ¹	BT2020_RGB	
erties	Colour primaries	BT.2020	BT.2020	
Colour properties	Transfer characteristics	BT.2020	BT.2020	
Color	Colour representation	Y'CbCr	R'G'B'	
er	Full/narrow range	Narrow	Narrow	
Other	4:2:0 chroma sample location alignment	Co-sited	N/A	
CICP parameters Rec. ITU-T H.273 ISO/IEC 23091-2	ColourPrimaries	9	9	
ram -T H	TransferCharacteristics	14	14	
P ps ITU	MatrixCoefficients	9	0	
CIC Rec. ISC	VideoFullRangeFlag	0	0	
ters	Colour primaries	06.0E.2B.34.04.01.01.0D.04.01.01.01.03.04.0 0.00		
1rame	Transfer characteristic	06.0E.2B.34.04.01.01.0E		
SMPTE MXF parameters SMPTE ST 2067-21	Coding equations	06.0E.2B.34.04.01.01.0 D.04.01.01.01.02.06.00. 00	N/R	
PTE	Full/narrow level range	Inferred (indicated in b white reference leve		
SM	4:2:0 chroma sample location alignment	Inferred (ChromaLocType = 2)	N/A	

Particular aspects of the usage described in Table 6 are clarified as follows:

The transfer characteristics indicator values of 1, 6, 14, and 15 are functionally the same. Blu-ray BD-ROM
 3.1 ("4K") and the DVB UHD specifications list use of the transfer characteristics value of 14 for SDR/WCG (Rec. ITU-R BT.2020) video. ATSC specifications list use of the transfer characteristics value

¹ Most Y'CbCr colour formats are of the type known as NCL so this is not mentioned in the tag names for most formats. However, Rec. ITU-R BT.2020 has both an NCL format and an alternative Y'CbCr format, so NCL is mentioned explicitly in this tag name to distinguish between the two.

- of 1 for SDR video. ARIB STD B32 lists use of the transfer characteristics value 1 for HD and 14 for UHD for SDR WCG video.
- The indicated chroma sample location alignment is only applicable for 4:2:0 chroma sampling. ChromaLocType (the generic label used in this document for the HEVC and AVC bitstream syntax elements: chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field), listed in Tables 1 and 3 of this document, indicates the 4:2:0 chroma sample position alignment.

7.2.5 Colour coding characteristics and carriage – high dynamic range video with wide colour gamut

This colour coding characteristics information describes HDR video with WCG, which is typically associated with ultra high definition video.

The following system identifier tags are described, as defined in Table 7:

- BT2100_PQ_YCC
- BT2100_HLG_YCC
- BT2100_PQ_ICTCP
- BT2100_PQ_RGB
- BT2100_HLG_RGB

Table 7 - HDR WCG colour coding characteristics descriptions

	System identifier	BT2100_PQ_ YCC	BT2100_HLG_ YCC	BT2100_PQ_ ICTCP	BT2100_PQ_ RGB	BT2100_HLG _RGB
erties	Colour primaries	BT.2020 / BT.2100	BT.2020 / BT.2100	BT.2100	BT.2020 / BT.2100	BT.2020 / BT.2100
Colour properties	Transfer characteristics	BT.2100 PQ	BT.2100 HLG	BT.2100 PQ	BT.2100 PQ	BT.2100 HLG
Colo	Colour representation	Y'CbCr	Y'CbCr	IC _T C _P	R'G'B'	R'G'B'
ıer	Full/narrow range	Narrow	Narrow	Narrow	Narrow	Narrow
Other	4:2:0 chroma sample location alignment	Co-sited	Co-sited	Co-sited	N/A	N/A
CICP parameters Rec. ITU-T H.273 ISO/IEC 23091-2	ColourPrimaries	9	9	9	9	9
ram J-T I C 23	TransferCharacteristics	16	18 ²	16	16	18
CICP par Rec. ITU- ISO/IEC	MatrixCoefficients	9	9	14	0	0
CIC Rec	VideoFullRangeFlag	0	0	0	0	0
	Colour primaries 06.0E.2B.34.04.01.01.0D.04.01.01.03.04.00.00					
parameters 2067-21	Transfer characteristic	06.0E.2B.34.0 4.01.01.0D.04 .01.01.01.01.0 A.00.00	06.0E.2B.34.04. 01.01.0D.04.01. 01.01.01.0B.00. 00	06.0E.2B.34.0 4.01.01.0D.04 .01.01.01.01.0 A.00.00	06.0E.2B.34.0 4.01.01.0D.04 .01.01.01.01.0 A.00.00	06.0E.2B.34.04 .01.01.0D.04.0 1.01.01.01.0B. 00.00
SMPTE MXF paramet SMPTE ST 2067-21	Coding equations		4.01.01.0D.04.01. 2.06.00.00	06.0E.2B.34.0 4.01.01.0D.04 .01.01.01.02.0 7.00.00	N/R	N/R
	e reference level	l, colour range)				
S .	Full/narrow level range 4:2:0 chroma sample location alignment	Inferred (ChromaLoc Type = 2)	Inferred (ChromaLoc Type = 2)	Inferred (ChromaLoc Type = 2)	N/A	N/A

² For purposes of backward compatibility for an HEVC or AVC encoded Rec. ITU-R BT.2100 HLG bitstream to be interpreted as Rec. ITU-R BT.2020 (SDR WCG) video, the bitstream may be marked in the VUI with the transfer_characteristics syntax element value 14 as using Rec. ITU-R BT.2020 transfer characteristics while also sending an alternative transfer characteristics SEI message with the preferred_transfer_characteristics syntax element of the SEI message equal to 18 with each coded video sequence to identify the preferred interpretation as Rec. ITU-R BT.2100 HLG video. Such a usage is specified in ETSI 101 154.

Particular aspects of the usage described in Table 6 are clarified as follows:

- The colour primaries specified in Recommendation ITU-R BT.2020 and Recommendation ITU-R BT.2100 are the same.
- The indicated chroma sample location alignment is only applicable for 4:2:0 chroma sampling. ChromaLocType (the generic label used in this document for the HEVC and AVC bitstream syntax elements: chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field), listed in Tables 1 and 3 of this document, indicates the 4:2:0 chroma sample position alignment.

7.2.6 Baseband carriage of colour coding characteristics descriptions

Uncompressed video signals carried over different SDI interfaces can carry colour volume descriptions according to Table 8 and Table 9.

Table 8 - Baseband carriage of colour coding characteristics descriptions for SDR NCG and SDR WCG

Colour coding characteristics description			SDR N	SDR WCG			
System identi	System identifier		BT709_RGB	BT601_525	BT601_625	BT2020_YCC _NCL	BT2020_RGB
Rec. ITU-R	SMPTE						
BT.656-5 SDI	ST 259M (SD-SDI)			√	V		
BT.1120-9 (12/2017)	ST 292-1 1.5 Gb/s	V	V				
	ST 372-1 Dual 1.5 Gb/s	V	V				
	ST 425-1 3G	V	V				
N/A	ST 425-5 Quad 3G	V	V			V	V
BT 2077-2 (12/2017)	ST 2081- 10 6G	V	V			V	V
	ST 2082- 10 12G	V	V			V	V
	ST 2082- 12 Quad 12G	V	V			V	V
	ST 2036-3 (Single/ Multi-link 10G SDI)	V	V			V	V
N/A	ST 2036-4 (U-SDI)	√ ³	√ 3			V	V
N/A	ST 2110- 20 Uncompre ssed Video/IP	V	V			٧	V
CTA 861.4/HI Uncompressed		V	V	$\sqrt{}$	V	V	V

In this table, cells with check marks ($\sqrt{}$) indicate "used combinations"; cells without check marks indicate "not used combinations" and the combination is specified in ITU-R and/or SMPTE specifications. Baseband video properties may be used with camera log video properties.

³ In ST.2036-4 only 3840×2160 up to 60Hz is permitted. For Rec. ITU-R BT.2077-2, no combinations are permitted.

Table 9 – Baseband carriage of colour coding characteristics descriptions for HDR-WCG

Colour coding characteristics description		HDR WCG						
System identifier		BT2100_PQ_ YCC	BT2100_HLG_ YCC	BT2100_PQ_ ICTCP	BT2100_PQ_ RGB	BT2100_HLG_ RGB		
Rec. ITU-R	SMPTE							
BT.656-5 SDI	ST 259M (SD-SDI)							
BT.1120-9 (12/2017)	ST 292-1 1.5 Gb/s	$\sqrt{}$	V	√				
	ST 372-1 Dual 1.5 Gb/s	V	$\sqrt{}$	√	√	V		
	ST 425-1 3G	$\sqrt{}$	V	√	√	$\sqrt{}$		
N/A	ST 425-5 Quad 3G	\checkmark	$\sqrt{}$	\checkmark	\checkmark	\checkmark		
BT 2077-2	ST 2081-10 6G	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			
(12/2017)	ST 2082-10 12G	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			
	ST 2082-12 Quad 12G	\checkmark	$\sqrt{}$	√	√	√		
	ST 2036-3 (Single/Multi-link 10G SDI)	$\sqrt{}$	V	V	$\sqrt{}$	√		
	ST 2036-4 (U-SDI)	\checkmark	$\sqrt{}$	√	V	$\sqrt{}$		
ST 2110-20:2017 Uncompressed Video/IP		\checkmark	$\sqrt{}$	√	V	√		
CTA 861.4/H Uncompresse		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	V		

In this table, cells with check marks (\sqrt) indicate "used combinations"; cells without check marks indicate "not used combinations" and the combination is specified in ITU-R and/or SMPTE specs". Before 2017, many specifications do not have HDR and full range identifiers in the specifications. Note that baseband video properties may be used with camera log video properties.

7.3 Mastering display colour volume descriptions

7.3.1 Mastering display colour volume properties

A display colour volume can be defined as a solid in colorimetric space containing all possible colours that a display can produce. Mastering display colour volume (MDCV) information describes the colour volume through specification of the colour primaries, white point, and luminance range parameters of the display that was used for authoring/grading video content; i.e., it is the display where creative work performed during the mastering process achieved the creative intent of the content author. When the authored content is shown on other displays, MDCV information can be used to more closely reproduce the original creative intent than may otherwise be feasible.

For the MDCV descriptions, the following mastering display properties are included, with values in specific combinations that represent widely used mastering display setups used to grade content. This document discusses MDCV properties as described in SMPTE ST 2086 and in the corresponding SEI messages of HEVC and AVC, as listed below:

- Mastering display primaries
- Mastering display white point chromaticity
- Mastering display maximum luminance
- Mastering display minimum luminance

7.3.2 Common descriptions and carriage – mastering display colour volume descriptions

The following system identifier tags, as defined in Table 10 for HDR and Table 11 for SDR, are used to describe properties of commonly used mastering displays. (All commonly used mastering display systems have a D65 white point.)

BT709x100n05 – representing a mastering display LCD or LED environment for mastering of SDR content with displays having 100 cd/m2 of peak brightness, 0.05 minimum brightness, and a D65 white point setting within a Recommendation ITU-R BT.709 colour representation.

- P3D65x1000n0005 representing a mastering display OLED environment for mastering of HDR content with displays having 1000 cd/m2 of peak brightness, 0.0005 minimum brightness, and a D65 white point setting within a Recommendation ITU-R BT.2100 colour representation constrained to P3 colour gamut values.
- P3D65x4000n005 representing a mastering display LED LCD environment for mastering of HDR content with displays having 4000 cd/m2 of peak brightness, 0.005 minimum brightness, and a D65 white point setting within a Recommendation ITU-R BT.2100 colour representation constrained to P3 colour gamut values.
- BT2100x108n0005 representing a mastering display laser projector environment for mastering of HDR content for cinema presentations with displays having 108 cd/m2 of peak brightness, 0.0005 minimum brightness, and a D65 white point setting.

Carriage formats for a MDCV descriptions in each of the domains (capture, production, production distribution, and service distribution) contain the same payload but in different wrappers. In the capture and production domains, the MDCV information can be carried in an MXF wrapper using Generic Picture Essence descriptor as described by Annex C of SMPTE ST 2067-21. In the distribution domain using HEVC or AVC, the MDCV information is carried an MDCV SEI message (SEI message payload type 137) that needs to be repeated at least in every random-access point access unit (RAPAU).

Table 10 – HDR Mastering display colour volume descriptions

	System identifier		P3D65x1000n0005	P3D65x4000n0005	BT2100x108n0005	
Mastering display properties defined according to SMPTE ST 2086	Colour primaries (xR,yR) (red) Colour primaries (xG,yG) (gree Colour primaries (xB,yB) (blue	en)	{0.6800, 0.3200} {0.2650, 0.6900} {0.1500, 0.0600}	{0.6800, 0.3200} {0.2650, 0.6900} {0.1500, 0.0600}	{0.7080, 0.2920} {0.1700, 0.7970} {0.1310, 0.0460}	
lay pr g to SI 86	White point chromaticity (x,y)			{0.3127, 0.3290} (D65)		
ing displa	Maximum luminance [cd/m2]		1000	4000	108	
Master defined a	Minimum luminance [cd/m2]		0.0005 for OLED	0.005 for LED LCD	0.0005 for laser	
C MDCV SEI TU-T H.265 23008-2	Display_primaries_x[2]/y[2] (r Display_primaries_x[0]/y[0] (g Display_primaries_x[1]/y[1] (b	green)	{34000, 16000} {13250, 34500} {7500, 3000}	{34000, 16000} {13250, 34500} {7500, 3000}	{35400, 14600} {8500, 39850} {6550, 2300}	
VC M E. ITU- E. 230	White_point_x/y		{15635, 16450}			
HEVC or AVC MDCV SEI message Rec. ITU-T H.265 ISO/IEC 23008-2	Max/min_display_mastering_l	uminance	{10000000, 5}	{4000000, 50}	{1080000, 5}	
	MasteringDisplayPrimaries Registration identifier Coded decimal (red, green, blue)		060e2b34.0101010e.04200401.01010000		1010000	
ers			{34000, 16000} {13250, 34500} {7500, 3000}	{34000, 16000} {13250, 34500} {7500, 3000}	{35400, 14600} {8500, 39850} {6550, 2300}	
amet 67-21	MasteringDisplayWhitePoint	Registration identifier	060e2b34.0101010e.04200401.01020000			
T par ST 20	Chromaticity	Coded decimal	{15635, 16450}			
SMPTE MXF parameters SMPTE ST 2067-21	MasteringDisplayMaximum	Registration identifier	060e2b3	4.0101010e.04200401.0	1030000	
SMPT	Luminance	Coded decimal	10000000	10000000 40000000		
	MasteringDisplayMinimum	Registration identifier	060e2b3	4.0101010e.04200401.0	1030000	
	Luminance	Coded decimal	5	50	5	

Table 11 – SDR Mastering display colour volume descriptions

	System identifier	BT709x100n05		
lisplay lefined MPTE ST	Colour primaries (xR,yR) (red) Colour primaries (xG,yG) (green) Colour primaries (xB,yB) (blue)		{0.6400, 0.3300} {0.3000, 0.6000} {0.1500, 0.0600}	
Mastering display properties defined according to SMPTE 2086	White point chromaticity (x,y)		{0.3127, 0.3290} (D65)	
	Maximum luminance [cd/m2]		100	
N pi accoi	Minimum luminance [cd/m2]		0.05 for LCD/LED	
VC MDCV ssage I H.265 23008-2	Display_primaries_x[2]/y[2] (red) Display_primaries_x[0]/y[0] (green) Display_primaries_x[1]/y[1] (blue)		{32000, 16500} {15000, 30000} {7500, 3000}	
HEVC or AVC MDCV SEI message Rec. ITU-T H.265 ISO/IEC 23008-2	White_point_x/y		{15635, 16450}	
	Max/min_display_mastering_luminance		{1000000, 500}	
SMPTE MXF parameters SMPTE ST 2067-21	MasteringDisplayPrimaries	Registration identifier Coded decimal decimal (red, green, blue)	060e2b34.0101010e.042004 01.01010000 {32000, 16500} {15000, 30000} {7500, 3000}	
	MasteringDisplayWhitePoint Chromaticity	Registration identifier Coded decimal	060e2b34.0101010e.042004 01.01020000 {15635, 16450}	
	MasteringDisplayMaximum Luminance	Registration identifier	060e2b34.0101010e.042004 01.01030000	
	MasteringDisplayMinimum Luminance Coded decin Registration identifier		1000000 060e2b34.0101010e.042004 01.01030000	
	Lummance	Coded decimal	500	

Annex A (Informative)

Additional combinations not specified as industry standards

This annex identifies additional colour coding characteristics combinations that are used in practice but are not specified in industry standards.

The following system identifier tags are described, as defined in Table 12:

SDR NCG tags

• FR709_RGB

SDR WCG tags

- FR2020_RGB
- FRP3D65_YCC

Table 12 – Additional colour coding characteristics descriptions

	Colour coding characteristics description	SDR NCG	SDR WCG	
	System identifier	FR709_RGB	FR2020_RGB	FRP3D65_YCC
Colour properties	Colour primaries	BT.709	BT.2020	P3 D65
	Transfer characteristics	BT.709	BT.2020	BT.709
	Colour representation	R'G'B'	R'G'B'	Y'CbCr
Other	Full/narrow range	Full	Full	Full
	4:2:0 chroma sample location alignment	N/A	N/A	Interstitial (1)
CICP parameters Rec. ITU-T H.273 ISO/IEC 23091-2	ColourPrimaries	1	9	12
	TransferCharacteristics	1	14	1
	MatrixCoefficients	0	0	6
	VideoFullRangeFlag	1	1	1
SMPTE MXF parameter SMPTE ST 2067-21	Colour primaries	06.0E.2B.34.04.0 1.01.06.04.01.01. 01.03.03.00.00	06.0E.2B.34.04.0 1.01.0D.04.01.01. 01.03.04.00.00	06.0E.2B.34.04.0 1.01.0D.04.01.01. 01.03.06.00.00
	Transfer characteristic	06.0E.2B.34.04.0 1.01.01.04.01.01. 01.01.02.00.00	06.0E.2B.34.04.0 1.01.0E.04.01.01. 01.01.09.00.00	06.0E.2B.34.04.0 1.01.01.04.01.01. 01.01.02.00.00
	Coding equations	N/R	N/R	06.0E.2B.34.04.0 1.01.01.04.01.01. 01.02.01.00.00
	Full/narrow level range indicated in black reference level, white reference level, colour range	Inferred (indicated in black reference level, white reference level, colour range)	Inferred (indicated in black reference level, white reference level, colour range)	Inferred (indicated in black reference level, white reference level, colour range)
	4:2:0 chroma sample location alignment	N/A	N/A	Inferred (ChromaLoc Type = 1)

Particular aspects of the usage described in Table 12 are clarified as follows:

• The transfer characteristics indicator values of 1, 6, 14, and 15 are functionally the same. Blu-ray BD-ROM 3.1 ("4K") and the DVB UHD specifications list use of the transfer characteristics value of 14 for SDR/WCG (Rec.

ISO/IEC TR 23091-4:2019

ITU-R BT.2020) video. ATSC specifications list use of the transfer characteristics value of 1 for SDR video. ARIB STD B32 lists use of the transfer characteristics value 1 for HD and 14 for UHD for SDR WCG video.

• The indicated chroma sample location alignment is only applicable for 4:2:0 chroma sampling. ChromaLocType (the generic label used in this document for the HEVC and AVC bitstream syntax elements: chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field), listed in Tables 1 and 3 of this document, indicates the 4:2:0 chroma sample position alignment.

Annex B (Informative)

Relevance of system identifier tags in consumer distribution specifications

The following table identifies where tags described in this document would be relevant to various consumer standards and industry consortium specifications.

Table 13-Relevant tags in consumer distribution formats

Consumer distribution format	Relevant tags (not an exhaustive list)	
ARIB (STD-B32 3.9)	BT2100_HLG_YCC, BT2020_YCC_NCL, BT709_YCC	
ATSC 1.0 high definition (A/53)	BT709_YCC	
ATSC 1.0 standard definition (A/53)	BT601_525, BT601_625	
ATSC 3.0 (A/341)	BT2100_PQ_YCC, BT2100_HLG_YCC, BT2100_PQ_ICTCP, BT2020_YCC_NCL, BT709_YCC	
Blu-ray (BD-ROM 1.0)	BT709_YCC	
DVB high definition (ETSI TS 101 154 §5.2, §5.4, §5.7)	BT709_YCC	
DVB ultra-high definition (ETSI TS 101 154 §5.14)	BT2100_PQ_YCC, BT2100_HLG_YCC, BT2020_YCC_NCL, BT709_YCC	
DVD (DVD Forum)	BT601_525, BT601_625	
UltraHD Blu-ray (4K) (BD-ROM 3.1)	BT2100_PQ_YCC, BT2020_YCC_NCL	

H series – Supplement 19 (10/2019) – Prepublished version