
SG13-TD435/PLEN

Draft new Recommendation ITU-T Y.3535 (formerly Y.cccm-reqts)

Cloud Computing – Functional requirements for container

Summary

This Recommendation provides the overview and functional requirements of container in cloud

computing. It describes the technical aspects of container and provides the relationship between

containers and cloud computing. It also provides functional requirements for container in term of

container engine, container management system and cloud computing to support container.

Keywords

container, cloud computing, container engine, container image, container management system

- 2 -

SG13-TD435/PLEN

Table of Contents

1 Scope .. 3

2 References .. 3

3 Definitions ... 3

3.1 Terms defined elsewhere ... 3

3.2 Terms defined in this Recommendation .. 4

4 Abbreviations and acronyms ... 4

5 Conventions ... 5

6 Overview of container ... 5

6.1 Concept of container .. 5

6.2 Technical aspects of container ... 6

7 Container in cloud computing ... 10

8 Functional requirements for supporting container in cloud computing 11

8.1 Functional requirements of container .. 11

8.2 Functional requirement of cloud computing to support container 14

9 Security considerations .. 15

Appendix I Use cases of containers ... 16

Appendix II An example for illustration for the comparison between container and virtual

machine .. 29

Bibliography.. 30

- 3 -

SG13-TD435/PLEN

Draft new Recommendation ITU-T Y.3535 (formerly Y.cccm-reqts)

Cloud Computing – Functional requirements for container

1 Scope

This Recommendation provides the overview and functional requirements of container in cloud

computing. The scope of this Recommendation includes:

• Overview of container including concept and technical aspects;

• Container in cloud computing;

• Functional requirements of container;

• Use cases of container.

2 References

The following ITU-T Recommendations and other references contain provisions, which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the

currently valid ITU-T Recommendations is regularly published.

The reference to a document within this Recommendation does not give it, as a stand-alone

document, the status of a Recommendation.

[ITU-T Y.3500] Recommendation ITU-T Y.3500 (2014), Cloud computing - Overview and

Vocabulary.

[ITU-T Y.3502] Recommendation ITU-T Y.3502 (2014), Cloud computing - reference

architecture.

[ITU-T Y.3510] Recommendation ITU-T Y.3510 (2016), Cloud computing infrastructure

requirements.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 application [b-ITU-T H.764]: A functional implementation realized as software running in

one or spread over several interplaying hardware entities.

3.1.2 cloudservice [ITU-T Y.3500]: One or more capabilities offered via cloud computing invoked

using a defined interface.

- 4 -

SG13-TD435/PLEN

3.1.3 cloud service customer [ITU-T Y.3500]: A person or organization that consumes delivered

cloud services within a contract with a cloud service provider.

3.1.4 cloud service provider [ITU-T Y.3500]: An organization that provides and maintains

delivered cloud services.

3.1.5 hypervisor [ITU-T Y.3510]: A type of system software that allows multiple operating

systems to share a single hardware host.

3.1.6 virtual machine [b-ITU-T Y.3504]: The complete environment that supports the execution

of guest software.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 container: A set of software to provide isolation, resource control, and portability for

virtualization processing of the application.

NOTE 1 – Container runs on the kernel in a bare-metal machine or virtual machine.

NOTE 2 – The application implies business logic including a required library or binary to run in a container.

3.2.2 container image: A software package configured to execute all or part of an application for

a container.

NOTE – A software developer packages up all or the parts of applications into container image.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

API Application Programming Interface

CLI Command Line Interface

CSC Cloud Service Customer

CSN Cloud Service partNer

CSP Cloud Service Provider

GUI Graphical User Interface

IaaS Infrastructure as a Service

NaaS Network as a Service

NVMe Non-Volatile Memory Express

OS Operating System

PaaS Platform as a Service

RAM Random Access Memory

SaaS Software as a Service

SLA Service Level Agreement

SSD Solid-State Drive

VM Virtual Machine

- 5 -

SG13-TD435/PLEN

5 Conventions

In this Recommendation:

The keywords “is required to” indicate a requirement which must be strictly followed and from

which no deviation is permitted if conformance to this document is to be claimed.

The keywords “is recommended” indicate a requirement which is recommended but which is not

absolutely required. Thus this requirement need not be present to claim conformance.

6 Overview of container

6.1 Concept of container

Container enables software developers to rapidly develop and deploy applications using container

images. A container executes an application on top of a host operating system and it requires less

resources than a virtual machine because the container uses the resource of the host as necessary to

run the application. Container also provides isolation, resource control, and portability for

virtualization processing of applications as follows:

- Isolation: The container sets a separated kernel space and individual processor to each

application for isolation of an application used in the container from other applications

on a host.

- Resource control: To control the resource, container sets namespaces that allocate

resources.

NOTE 1 – Namespace includes network namespace, processor namespace, mount namespace,

user namespace, and etc. Namespace has the role of the isolation of system resources when a

process is running. Namespace also provides the independent space for each container and

prevent collisions with each other in the kernel system.

- Portability: Container image developed by software developer is built all or part of an

application. To use of container image, it is pushed to a container registry to share

with other hosts to support the portability. The uploaded container image in the

container registry is pulled to execute.

Figure 6-1shows the usage of an application, container image, container registry for a container. A

host OS includes the OS on the bare metal server or the guest OS on the virtual machine.

- 6 -

SG13-TD435/PLEN

Figure 6-1 – Usage of application, container image, container registry for container

The container registry in Figure 6-1 is the repository for the container images in order for the container

engine to store and access. Push refers to upload of the container image on hosts to the container

registry, and pull refers to download of the container image from a container registry.

NOTE 2 – The container registry includes local registry, private registry and public registry.

NOTE 3 – The container registry works in the forms of master-slave architecture. The master registry has

authentication and authorization to access to slave registry. Master registry also supports configuring and

updating image synchronization between two registries.

6.2 Technical aspects of container

6.2.1 Container engine

The container engine is a group of kernel processes to administrate the execution from container

image on the isolated kernel space. The container engine provides the following key features:

- The execution of an application with container image;

- The configuration of the isolated kernel space as well as securing process.

The container engine configures an isolated kernel space for the independent environment per

application. The isolated kernel space is logically separated by namespaces. The isolated kernel

space provides resource allocation, mounting or unmounting file system, allocating independent

processes and networks.

To execute an application in a container, the container works like follows:

- Pulling the container images from container registry;

- 7 -

SG13-TD435/PLEN

- Unpacking container images into a file system;

- Setting file system ownership;

- Running applications using kernel process;

- Exposing the external links of the application for user access.

The configuration of the isolated kernel space includes as follows:

- Setting a directory of a container file system for container image;

- Setting the limitation of memory, CPU and device access;

- Creating the application’s own namespace for resources;

- Configuring to prevent the system call which is not allowed;

- Setting the processor's secure access.

The isolated kernel space provides supporting the independent communication path allocation

between processes and assigning the independent hostname and users.

6.2.2 Container image

A container image is a software package configured to execute an application for a container. The

container image includes as following:

- Image object: a group of files to execute an application including library, file system, binary,

and etc. at layers in the container file system;

NOTE 1 – Image object is provided with the archived and compressed format.

- Image manifest: the information about a hierarchy of container images according to the file

system and operating system;

NOTE 2 – Image manifest provides the schema version of manifest, media type, image size and image

identification.

- Container file: the information about a container image for use with a container engine such

as the execution commands, resource information, service port, user, the architecture of host

machine, its relationship to file system changes in a container image, and etc.

Figure 6-2 – The example of container image

- 8 -

SG13-TD435/PLEN

6.2.3 Container file system

The container file system is composed of directories and files per container. The container file system

also is managed by the container engine to use container images.

NOTE – The container file system is provided in the host’s storage device such as main memory, SSD, HDD,

etc.

For the container file system as shown in Figure 6-3, the file system provides layers that are composed

of directories. A container image is located in a directory on the container layer and image layer. The

application uses the container images from the merged layer, which is mounted to a single directory

from the container layer and image layer.

- Image layer: provides images from container repository. The images in this layer are shared

with the merged layer to save the disk space. The application accesses the container image

in the image layer with read-only access right.

- Container layer: provides each container’s directory. The application accesses the container

image in the container layer with read and write access right.

- Merged layer: provides links of all files in the container layer and the image layer to

application. This layer allows access to all files by application.

Figure 6-3 – A example of the file system for container

To unify the container image in the container file system, sub-directories in the container layer and

image layer are mounted to be merged to the parent file system's directories to access logically the

container image by applications. The container file system also provides searching container images

for the entire file system shared on the system locally.

The container image in the image layer is stored from a container registry when the container is

executed. For storing container images from the container registry, the container image is pulled by

the container engine locally when the application uses the container. Also, the container image is

stored in advance before the execution for better performance. Once the container image is pulled, it

is reused by applications not to pull again in the image layer.

- 9 -

SG13-TD435/PLEN

When the capacity of the file system is exceeded with container images in the image layer, the

container images are backed up in other disk storage or remote storage.

6.2.4 Container management system

Container management system (CMS) provides container management for single container as well as

multiple containers as shown in Figure 6-4:

- CMS for the single container: The CMS is in charge of managing operations of the

container such as executing, versioning, configuring, and networking of the container

through container API;

- CMS for multiple containers: The CMS is responsible for managing containers on multiple

host OSs if the application is deployed in containers on multiple hosts. The CMS supports

extending containers to the distributed system and cluster in case of usage of multiple

containers at the same time.

Figure 6-4 – Concept of the container management system

The CMS is responsible for container life cycle management, load balancing and scheduling,

container clustering, monitoring, scaling and application discovery for the container as follows:

- Lifecycle management: a CMS manages the entire lifecycle of a container such as

creating, pausing, resuming, restarting, setting configures, and etc.;

- Load balancing and scheduling: a CMS performs the task of distributing network

traffic for the application so that the deployment is stable. It works to maximize the

scalability and availability of containers;

- Container clustering: a CMS creates a cluster by grouping multiple containers. A

cluster enables the stable provision of application services by logically connecting

- 10 -

SG13-TD435/PLEN

multiple containers. The CMS replaces or restart containers that are not working

within the cluster;

- Monitoring: a CMS monitors the status of containers and the cluster. It monitors the

availability of container and resource consumption (CPU, memory, storage etc.) of

the container;

- Scaling: a CMS support scaling of container to the cluster according to service

workload;

- Application discovering: a CMS performs the task of finding the application

running in the container and the location of the container.

7 Container in cloud computing

In cloud computing, a container is a kind of OS-level virtualization using virtualized resources that

are supported by cloud computing. And a number of virtual hosts are provided in cloud computing

and multiple containers are deployed and operated on each virtual host.

There are two ways of containers provision in the cloud computing. The first is the container on a

guest OS of a virtual machine as shown in Figure 7-1 (a), and the other is the container on the host

operating system as shown in Figure 7-1 (b).

Figure 7-1 – Container running features in cloud computing

Figure 7-2 shows the relationship between container and cloud computing. Cloud computing provides

an infrastructure for the container. A container is operated on host OS with or without a virtual

machine in cloud computing.

- 11 -

SG13-TD435/PLEN

Figure 7-2 – The relationship between cloud computing and container

In terms of cloud computing reference architecture [ITU-T Y.3502],

- CSP provides cloud services such as IaaS, PaaS and SaaS with the container. Also,

container uses cloud services to support an application. An application in the

container is designed in consideration with compatibility with the cloud service of the

virtual machine;

- CSN develops the application of container using container management and cloud

service, and CSP provides an interface to use cloud service for the convenience

development of CSN;

- CSC uses a cloud service with the container as well as application on the container.

8 Functional requirements for supporting container in cloud computing

8.1 Functional requirements of container

8.1.1 Functional requirements of container engine

1) It is required that a container engine provides the execution of application in the kernel.

NOTE 1 – The container engine uses the kernel processor to run the application with the execution

commands in container file.

2) It is required that a container engine provides the network interface which is isolated from

the host network.

NOTE 2 – Container engine sets the network namespace per application.

- 12 -

SG13-TD435/PLEN

NOTE 3 – Network namespace refers to the separation of the network used by the container and

the network used by the host using a virtual network interface and its routing to communicate

among applications and users.

NOTE 4 –Network namespace allocates the port mapped with the host network or the new IP

address to the application.

NOTE 5 – The network interface includes the interface for the multiple containers in multiple

nodes and multiple clusters.

3) It is required that a container engine provides a container file system for an application.

NOTE 6 – Container file system runs on high-performance storage devices for fast I/O.

NOTE 7 – The high-performance storage devices include a main memory, RAM, NVMe, their

combined storage and etc.

NOTE 8 – The combined storage includes ram-disk combined to block storage device, NVMe or

SSD connected with a network interface, the storage federated with other storages including cloud

storages, and etc.

4) It is recommended that a container engine provides the high availability of container file

system.

NOTE 9 – For high availability, container images in the image layer are shared with other hosts

through the shared storage.

NOTE 10 – Shared storage backs up and synchronizes container images in all image layers for

high availability.

5) It is recommended that a container engine provides the location information of the

container image in container file system for application to use.

NOTE 11 – The location information exists in the merged layer and provides the mount

information of directories in other layers.

6) It is required that a container engine provides the allocation of storage volume.

NOTE 12 – Storage volume is provided binding host file system, mounting host storage devices,

host directory and remotely connected storages.

NOTE 13 – Container engine allocates the storage volumes timely or persistently to applications.

7) It is required that a container engine provides the monitor of the usage for storage volume.

8) It is required that a container engine provides the standard I/O interface for a storage

volume to receive read/write commands.

9) It is required that a container engine provides the isolated kernel between applications.

NOTE 14 – An application is isolated with the namespace of the user, file system, process IDs,

memory and CPU limitation which is set by the container engine. The allocated namespaces

provide the independent space for each application to isolate resources in a kernel.

- 13 -

SG13-TD435/PLEN

10) It is required that a container engine provides the building of a container image to push to

the container registry.

NOTE 15 – Container engine rebuilds the running application based on container image and pulls

to container registry for reuse.

11) It is required that a container engine provides pulling container images to execute an

application from the container registry.

12) It is required that a container engine provides the packaged container image for easy

transport.

13) It is required that a container engine provides the image object in the container image.

NOTE 16 – Image object includes a library, file system, binary, and etc. in the container file

system.

14) It is required that a container engine provides the image manifest in the container image.

15) It is required that a container engine provides an application execution procedure from the

container file.

16) It is recommended that a container engine provides the reuse of the container file for

creating a new container image.

NOTE 17 – Container engine reuses the already created container file in container image and

recreate the new container file from a partial container file.

NOTE 18 – A partial container file is parts of the container file including the container information

to reuse, application name, OS, version, and etc.

NOTE 19 – Container engine verifies the version of a partial container files and container images,

creates container image and pushes the recreated container file to registry to reuse other

applications.

17) It is required that a container engine provides the search of the location of the container

image in the container registry.

NOTE 20 – The image ID allocated per container image is a hashed number for the searching

container image.

18) It is required that a container engine provides elimination of the duplicated container image

in a container file system for saving storage capacity.

19) It is recommended that a container engine provides the local registry for the container

image.

NOTE 21 – The local registry includes the image layer of the container file system.

8.1.2 Functional requirement of container management system

1) It is required that CMS provides the management of the single container.

NOTE 1 – The management of the single container includes the management of container lifecycle,

network, execution application, configuration for container engine, versioning, security, logs, hosts

and etc.

- 14 -

SG13-TD435/PLEN

2) It is required that CMS provides the authentication to access to container engine for a

single container.

3) It is required that CMS provides remote access to the container engine for a single

container.

4) It is required that CMS provides the management for multiple containers.

NOTE 2 – The management of multiple containers include managing containers on multiple host

OS, extending containers to the distributed system and clustering containers.

5) It is recommended that CMS provides the shared resource for multiple containers.

NOTE 3 – The shared resources include network, storage, and etc.

6) It is recommended that CMS provides monitoring of the status of the application for

availability.

NOTE 4 – The status of application includes whether the application is operating or not.

7) It is required that CMS provides monitoring the resource utilization of applications not to

exceed the limitation of the allocated resources.

NOTE 5 – The resource of the application includes CPU, memory, storage etc.

8) It is required that CMS provides load balancing to ensure the availability of containers.

NOTE 6 – The target for load balancing includes CPU, memory, storage, network and accelerator

such as GPU and TPU.

9) It is recommended that CMS provides application discovery to find the location of the

running application.

10) It is recommended that CMS provides scaling of the container according to the scaling

policy.

NOTE 7 – The scaling policy includes the scaling up or down of the number of containers based on

user policy such as load distribution of resources.

11) It is recommended that CMS provides the reallocation of resources for the container

according to the user’s requests.

12) It is recommended that CMS provides the optimization of resources utilization based on

workload.

13) It is recommended that CMS provides container clustering across multiple hosts.

14) It is recommended that CMS provides synchronization of container images between

container registries.

8.2 Functional requirement of cloud computing to support container

1) It is required that CSP provides container engines according to the kernel of the host.

NOTE 1 – Container engines depends on the kernel of the host OS.

- 15 -

SG13-TD435/PLEN

2) It is recommended that CSP provides CMS to CSN to develop the cloud service.

3) It is recommended that CSP provides cloud service which is implemented by container.

4) It is recommended that CSP provides containers on a guest OS of a virtual machine as well

bear-metal machine.

NOTE 2 – The container on a guest OS of a virtual machine is used without changes to the existing

cloud infrastructure.

5) It is recommended that CSP provides the performance evaluation of the application, which

runs on a virtual machine and container for CSN.

6) It is recommended that CSP provides the network management to use multiple CMS.

7) It is recommended that CSP provides compatibility between applications on containers and

VMs.

8) It is recommended CSP provides the host information on which the container is running.

NOTE 3 – The host information includes OS, bare-metal machine, virtual machine, and etc.

9) It is required that CSP provides multiple container registry to upload container images.

10) It is recommended CSP provide the information of container registry to CMS and CSN.

NOTE 4 – The information of the container registry includes the location of the registry, access

mechanism, permissions rules, and etc.

11) It is recommended that CSP provides secure access for a container.

NOTE 5 – Secure access includes the information of gateway, the configuration for firewall, and

etc.

9 Security considerations

Security aspects for consideration within the cloud computing environment are addressed by

security challenges for the CSPs, as described in [b-ITU-T X.1601]. In particular, [b-ITU T X.1601]

analyses security threats and challenges, and describes security capabilities that could mitigate these

threats and meet the security challenges.

[b-ITU-T X.1631] provides guidelines supporting the implementation of information security

controls for cloud service customers and cloud service providers. Many of the guidelines guide the

cloud service providers to assist the cloud service customers in implementing the controls, and

guide the cloud service customers to implement such controls. Selection of appropriate information

security controls, and the application of the implementation guidance provided, will depend on a

risk assessment as well as any legal, contractual, regulatory or other cloud-sector specific

information security requirements.

- 16 -

SG13-TD435/PLEN

Appendix I

Use cases of containers

(This appendix does not form an integral part of this Recommendation)

I.1 Fast Continuous Integration & Continuous Deployment

Title Fast Continuous Integration & Continuous Deployment

Identifier Fast-CI&CD

Description This use case is common in the software development scenario. By using

containers, the whole CI/CD process is accelerated and more convenient.

Roles CSN, CSP, CSC

Figure

(optional)

There are several steps in this use case:

(1) new software features are added by the CSN; (2) the updated codes are

committed into the code registry (3) which triggers the CI tool, to download

from code registry and perform unit and integration test in a test environment;

(4) once the new feature passed the test, the new container images will be built

and pushed into the container registry; (5) which triggers the CD tool to pull the

container image from container registry and re-deploy into the production

environment; (6)either the test or build failure will be notified to CSN; (7) the

CSC can access the new feature of the software.

Pre-conditions

(optional)

New software features are developed in source code by the CSN

Post-conditions

(optional)

New software features are deployed into production environment for CSC use

Derived

requirements

- Clause 8.2 requirement (6)

- 17 -

SG13-TD435/PLEN

I.2 Scaling of container clusters according to application workload

Title Scaling of container clusters according to application workload

Identifier Scaling of container

Description Instead of remaining static, the workload of most applications fluctuates due to

many factors, such as work/off-work hours, holidays, online marketing activities,

and even momentary increases or decreases of user requests.

In this use case, the CSP provide the micro-services (e.g. a web portal) for CSC

to request. The CSP configures and provisions the container cluster for the micro-

services through CLI (command line interface) or GUI (graphical user interface)

in physical or virtual machines. The CSP has the capabilities to monitor the

resource consumption of the container cluster (e.g. the container number in the

container cluster and CPU/memory/disk usage of each container). Whenever the

resource consumption exceeds a pre-defined threshold for expansion (e.g., the

average CPU usage of the container cluster exceeds 80% for successive 10

minutes), the CSP will notify CSP to expand the scale of the container cluster

following certain elastic scaling policy (e.g., add a group of two containers to the

cluster). Consequently, the service provided by CSP is able to handle more

requests from CSC, and the service level agreement could be fulfilled (e.g. CSP

perform SLA assurance activity). Similarly, on the contrary, when the resource

consumption of container cluster falls below a pre-defined threshold for

reduction (e.g., the average CPU usage of the container cluster falls lower than

30% for successive 10 minutes), the CSP will notify CSP to reduce the scale of

container cluster to save energy.

Roles CSP, CSC

Figure

(optional)

Pre-conditions

(optional)

- 18 -

SG13-TD435/PLEN

Post-conditions

(optional)

Derived

requirements

- Clause 8.1.1 requirement (1)

- Clause 8.1.2 requirement (6)

- Clause 8.1.2 requirement (9)

- Clause 8.1.2 requirement (10)

- Clause 8.1.2 requirement (11)

- Clause 8.2 requirement (3)

- Clause 8.2 requirement (4)

I.3 Container allocation for launching micro-service

Title Container allocation for launching micro-service

Identifier Container allocation

Description This use case describes how to deploy applications based on the container in the

cloud environment. In this scenario, the CSN is responsible for developing a

program that describes what it needs to create an application. The CSP create

container image using the program. When the CSP builds the container image

into a container, an application can be operated in this case, the CSP is

responsible for preparing container engines and deploying applications based on

the container. Detail procedures are as follows;

- CSN develops programs for the application

- CSN provides the CSP with configuration information to create microservices;

- CSP prepares container engines and allocates containers;

- CSP deploys applications based on the container.

Roles CSP, CSN

Figure

(optional)

- 19 -

SG13-TD435/PLEN

Pre-conditions

(optional)

The container engine has various operating systems(OS)

Post-conditions

(optional)

Derived

requirements

- Clause 8.1.1 requirement (17)

- Clause 8.1.1 requirement (19)

- Clause 8.1.2 requirement (8)

- Clause 8.2 requirement (1)

- Clause 8.2 requirement (5)

- Clause 8.2 requirement (8)

I.4 Load balancing containers in cloud application deployment

Title Load balancing containers in cloud application deployment

Description Application such as a microservice is difficult to operate and manage after

being deployed in a cloud environment because of its numerous independent

processes. Containers provide a way to run applications in a secure, isolated

environment, isolating applications from the infrastructure layer, and also

managing infrastructure as a program, significantly improving operational

management efficiency. The application container provides a running

environment that addresses the challenges of deploying microservice programs

in a cloud environment. Since the containers are deployed on different nodes

in a cloud environment, appropriate network services should also be used to

accomplish communication between containers.

Based on that background, this use case describes how the containers

communicate and coordinate with each other to accomplish the efficient

deployment of microservice cloud software.

In this scenario, CSN is responsible for creating micro-service and providing

simple container configuration. And the CSP is responsible for the scheduling

of computing resources flexibility, packaging code, test and deploying

software efficiently. In addition, CSP also supports network load balancing and

cross-node correlation to meet the communication and coordination

requirements between components under the micro-service architecture.

Whenever the micro-service changes, a new container image is built for later

deployment.

Roles CSN, CSP

- 20 -

SG13-TD435/PLEN

Figure (optional)

 - CSN creates micro-service and provides simple container configuration for

CSP;

- CSP schedules the computing resources, packages code, tests and deploys

software and provides log monitoring and management services. And CSP

supports network load balancing and cross-node correlation to meet the

communication and coordination requirements between components under

the microservice architecture.

Pre-conditions

(optional)

The containers can be deployed on different nodes in cloud environment.

Post-conditions

(optional)

Derived

requirement

- Clause 8.1.1 requirement (2)

- Clause 8.1.2 requirement (8)

- Clause 8.1.2 requirement (12)

I.5 Container clustering across multiple node

Title Container clustering across multiple node

Identifier Container clustering

Description This use case describes how to set up and manage the clustering of the node for

containers in a cloud environment. The node clustering with multiple containers is to

distribute the containers among multiple nodes and cluster them. Clustering of

containers can easily scale out and provide smooth service when it is in a large-scale

service request.

In this scenario, the container management function in CSP is responsible for

determining the node on which to install the application and installs the application

using the container image stored in the container image registry.

In this scenario, the container management function is responsible for monitoring

the service delivery status (response time, etc.) and resource usage of each node

installed in the service. If there is a problem with the service delivery on a

- 21 -

SG13-TD435/PLEN

particular node, the service is replaced by the one on which the service in the

clustering is installed. And the container management function looks at the status of

the service, and if it recognizes that the service is concentrated in a specific node

and is overloaded, the service manager distributes the service to a more relaxed

node. In other words, the container management function performs the load

balancing operation. And the container management function performs the task of

adding a new node to the cluster when it is necessary to expand the cluster to

expand the service.

Roles CSP

Figure

(optional)

Pre-

conditions

(optional)

The CSP provides node and for container.

Post-

conditions

(optional)

Derived

requirements

- Clause 8.1.1 requirement (2)

- Clause 8.1.2 requirement (1)

- Clause 8.1.2 requirement (2)

- Clause 8.1.2 requirement (3)

- Clause 8.1.2 requirement (4)

- Clause 8.1.2 requirement (5)

- Clause 8.1.2 requirement (6)

- Clause 8.1.2 requirement (13)

- Clause 8.2 requirement (7)

I.6 Container image distribution

Title Container image distribution

- 22 -

SG13-TD435/PLEN

Description
In this scenario, the container image registry has to distribute container images

to hundreds of cluster nodes. A single registry instance can no longer support a

huge number of requests. So multiple registry instances (e.g., S1, S2, …, SN) are

configured for load balance. In addition, image I1 is only for user U1, and the

other images are open to all users. In order to achieve this,

First, images (e.g., I1, I2) should be replicated (synchronized) from master-

registry instance M1 to slave-registry instance (e.g., S1, S2, …, SN).

Second, user U1 pulls image I1 from slave-registry instance S1 based on its

authority.

Roles CSP

Figure

(optional)

Pre-

conditions

(optional)

Container images are stored at master-registry instance.

Registry instances are configured with synchronization policies.

Post-

conditions

(optional)

Derived

requirements

- Clause 8.1.2 requirement (14)

- Clause 8.2 requirement (9)

- Clause 8.2 requirement (10)

I.7 The container file system

Title The container file system

Description This use case is about a container with a unifying file system and sharing images.

A container file system makes a specific directory or files appear as the root file

system which is independently used by one container. And container file system

also needs to manage the images efficiently.

For containers, the container file system runs on the host storage device (main

memory, SSD, HD, etc.). In the case of containers, the files required by the user

- 23 -

SG13-TD435/PLEN

are provided individually by using the Unifying File system included in the

existing kernel.

A unifying file system is a concept of mounting multiple file systems on a single

mount point, and instead of creating a new file system type, unifying all directory

entries is performed in the virtual file system (VFS) layer. With file system

consolidation, directory entries from the child file system are merged with

directory entries from the parent file system to create a logical combination of all

mounted file systems. Therefore, it is possible to manage and find files for the

entire file system shared on the system locally, and file management for the entire

share becomes easy.

As described above, the container file system is composed of an integrated file

system and is composed of layers. It consists of a merged access area, a container

layer, and an image layer. Each layer operates by creating and mounting a specific

directory on the host storage.

The container layer is a writable layer and is created on the top layer for each

container, allowing each container to have its own state. After the container is

created, all changes are made in this layer.

The image layer is a read-only layer that can be shared with other containers. In

addition, multiple images shared with other layers can be operated in the container

layer.

And the merged layer includes link information of the layer accessible to all file

systems of the container layer and the image layer and is shared with other

containers. This allows access to the file.

The image layer can be shared with many different systems to increase its

efficiency. As shown in the figure, the container image of the image layer

should be pulled from a public registry (e.g., Github) when the container is

deployed. In this case, to ensure performance, it is efficient to store the image

used in the container system locally or to bring it in advance. In this system, the

images that have already been pooled in shared storage can be reused with

shared storage. As mentioned above, many images of the image layer exist on

container storage, and the container images of the entire system are backed up

and stored in disk storage or remote storage. Adding images to the image layer

with sharing storage and could be available to the container layer as well, and

images are continuously provided in the merged layer.

Roles CSC, CSP

- 24 -

SG13-TD435/PLEN

Figure

(optional)

Pre-

conditions

(optional)

Post-

conditions

(optional)

Derived

requirements

- Clause 8.1.1 requirement (2)

- Clause 8.1.1 requirement (3)

- Clause 8.1.1 requirement (4)

- Clause 8.1.1 requirement (5)

- Clause 8.1.1 requirement (6)

- Clause 8.1.1 requirement (7)

- Clause 8.1.1 requirement (8)

- Clause 8.1.1 requirement (18)

I.8 The general use case of container

Title The general use case of container

Description The container is generally consisted of four components: a container runtime,

container engine, a container manager and isolated kernel.

The container manager manages the deployment of the containerized application,

containerized application life-cycle management (e.g., create, start, stop and

delete applications). And container manager supports user interface (such as CLI

and API) management for container engine.

The container engine is a program that runs on the host operating system. The

container engine creates and executes container with API.

Container runtime provides daemon or software exposing API based on

container engine. Container runtime provides low level capabilities such as

execution of application and interfaces for capabilities of container engine

- 25 -

SG13-TD435/PLEN

Isolated kernel provides secure kernel to operate the containerized applications in

independent kernel space. The isolated kernel logically separates the secured

namespace and resource allocation in the host OS/kernel.

Roles CSC, CSN, CSP

Figure

(optional)

Pre-

conditions

(optional)

Post-

conditions

(optional)

Derived

requirements

- Clause 8.1.1 requirement (2)

- Clause 8.1.1 requirement (3)

- Clause 8.1.1 requirement (6)

- Clause 8.1.1 requirement (9)

- Clause 8.1.1 requirement (11)

- Clause 8.1.1 requirement (12)

- Clause 8.1.2 requirement (6)

- Clause 8.2 requirement (5)

- Clause 8.2 requirement (11)

I.9 Building and registering container images

Title Building and registering container images

Description This use case shows how to build a container image and register it at the registry.

Figure 1 shows the building and pushing container images. A container engine in

each host builds a container image file as it is in the current state of the installed

and operated application. and those container images can be registered using

pushing commends.

This use case also shows how to use the container image. In figure 2, a host which

wants to use container images registered in the registry uses the pulling method

- 26 -

SG13-TD435/PLEN

to retrieve container images. After finishing downloading the container image,

the host creates a container using that image.

Roles CSP

Figure

(optional)

(1) Building container image and registering container image

(2) Pulling container image and creating container

Pre-

conditions

(optional)

Post-

conditions

(optional)

Derived

requirements

- Clause 8.1.1 requirement (10)

- Clause 8.1.1 requirement (11)

- Clause 8.1.1 requirement (13)

- Clause 8.1.1 requirement (14)

- Clause 8.1.1 requirement (15)

- Clause 8.1.2 requirement (14)

I.10 Container image creation

Title The use case for container image creation

Description In a container platform, it is essential to create and register images corresponding

to various execution environments. It can be deployed and managed in various

environments through the push and pull commands registered using the

- 27 -

SG13-TD435/PLEN

container registry instead of copying files directly to distribute the image built

in this way to the server.

Typically, to create a container, you create the final image through a series of

commands. An interface is required for the user to describe a series of

commands and to reflect them on the system.

To create a container, a user's container image is created with a container file in

which a series of commands are described.

As shown in the figure, containers are used in combination with various images

and the container file is manually written by the developer.

When applied to a system using a container file, each command in the file is

executed in order on the system, each image downloads the required image from

the local registry or remote registry to a fixed location on the container's file

system and writes it to the script. Images are created according to the content.

The container image is used by sharing the image of the part using the layered

file system of the actual container file system. It is structured to reuse images

common to each layer, and this follows the characteristics of the integrated file

system.

As such, in the case of a user-made container file, the desired container file can

be created by combining necessary parts among the container files previously

created through the partial container file.

In the partial container file in the figure, the requirements are the CSC’s

requirement to run the application service, the environment parameter

corresponding to the execution environment variable, and a partial container that

plays the same role as the base image used to create the existing container file.

Additional dependency data has dependency information between requirements

during the installation.

Container file maker refers to the dependency data and finally create the

container file through the combination of requirement, env parameter, and

partial container file.

Roles CSC, CSN, CSP

Figure

(optional)

- 28 -

SG13-TD435/PLEN

Pre-conditions

(optional)

Post-

conditions

(optional)

Derived

requirements

- Clause 8.1.1 requirement (1)

- Clause 8.1.1 requirement (11)

- Clause 8.1.1 requirement (16)

- Clause 8.1.1 requirement (18)

- 29 -

SG13-TD435/PLEN

Appendix II

An example for illustration for the comparison between container and virtual

machine

(This appendix does not form an integral part of this Recommendation)

This is the comparison between containers and virtual machines. The numbers in this table can be

changed rapidly.

Containers have similar resource isolation and allocation benefits as virtual machines but a different

architectural approach allows them to be much more portable and efficient. Each virtual machine

includes the application, the necessary binaries and libraries and an entire guest operating system -

all of which may be tens of Gigabytes in size.

Containers include the application and all of its dependencies, but share the kernel with other

containers. They run as an isolated process in user space on the host operating system. They are also

not tied to any specific infrastructure –containers can run on most types of servers and operating

systems, and most cloud infrastructures.

Comparison between virtual machines and containers

 Virtual machines Containers

Software stack Application +

Binary/Library+ OS

Application +

Binary/Library

Image size Tens of GB Tens to hundreds of MB

Instances per host Tens of Hundreds to thousands of

Deployment time Several minutes Several seconds

- 30 -

SG13-TD435/PLEN

 Bibliography

[b-ITU-T H.764] Recommendation ITU-T H.764 (2012), IPTV services enhanced script

language.

[b-ITU-T Y.3504] Recommendation ITU-T Y.3504 (2016), Functional architecture for Desktop

as a Service.

	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Overview of container
	6.1 Concept of container
	6.2 Technical aspects of container
	6.2.1 Container engine
	6.2.2 Container image
	6.2.3 Container file system
	6.2.4 Container management system

	7 Container in cloud computing
	8 Functional requirements for supporting container in cloud computing
	8.1 Functional requirements of container
	8.1.1 Functional requirements of container engine
	8.1.2 Functional requirement of container management system

	8.2 Functional requirement of cloud computing to support container

	9 Security considerations
	Appendix I Use cases of containers
	I.1 Fast Continuous Integration & Continuous Deployment
	I.2 Scaling of container clusters according to application workload
	I.3 Container allocation for launching micro-service
	I.4 Load balancing containers in cloud application deployment
	I.5 Container clustering across multiple node
	I.6 Container image distribution
	I.7 The container file system
	I.8 The general use case of container
	I.9 Building and registering container images
	I.10 Container image creation

	Appendix II An example for illustration for the comparison between container and virtual machine
	Bibliography

