

INTERNATIONAL TELECOMMUNICATION UNION

TELECOMMUNICATION

STANDARDIZATION SECTOR

STUDY PERIOD 2022-2024

SG13-TD74/WP1

STUDY GROUP 13

Original: English

Question(s): 20/13 Geneva, 4-15 July 2022

TD

Source: Editors

Title: Draft new Recommendation ITU-T Y.ML-IMT2020-SANDBOX: “Architectural

framework for Machine Learning Sandbox in future networks including IMT-2020”

Contact:
Abhay Shanker Verma

Telecom Engineering Centre (TEC)

India

Tel: + 91 9999554900

E-mail: as.verma@gov.in

Contact: Vijay Kumar Roy

Telecom Engineering Centre (TEC)

India

Tel: +91 7011000101

E-mail: vk.roy@gov.in

Contact: Ranjana Sivaram

Telecom Engineering Centre (TEC)

India

Tel: +91 9868136990

E-mail: ranjana.sivaram@gov.in

Contact: Vishnu Ram O.V.

Independent Consultant

India

Tel: +91 9844178052

E-mail: vishnu.n@ieee.org

Contact: Francesc Wilhelmi

Telecommunications Technological

Center of Catalunya (CTTC)

Spain

Tel: +34 93 645 29 00

E-mail: fwilhelmi@cttc.cat

Keywords:

High-level architecture, IMT-2020, machine learning, requirement, sandbox, simulator

Abstract: This document contains the draft new Recommendation Y.ML-IMT2020-SANDBOX

“Architectural framework for Machine Learning Sandbox in future networks including

IMT-2020”, output of Q20/13 meeting, Geneva, 4-15 July 2022 – for consent

This document is based on SG13- TD26/WP1 and according to the 4-15 July 2022 Q20/13

meeting's discussion and results on the following contributions:

C-# Source Title Qs Results/Notes

C161

Ministry of

Communications

(India)

Draft new

Recommendation

Y.ML-IMT2020-

SANDBOX

"Architectural

framework for

Machine Learning

Sandbox in future

networks

Q20/13

Accepted with modifications (4-15

July 2022) (in line with agreed

modifications for C200).

mailto:as.verma@gov.in
mailto:vk.roy@gov.in
mailto:ranjana.sivaram@gov.in
mailto:vishnu.n@ieee.org
mailto:fwilhelmi@cttc.cat

- 2 -

SG13-TD74/WP1

including IMT-

2020"

C200

Telecommunications

Technological

Center of Catalunya

(Spain), India

Modifications to

Draft new

Recommendation

Y.ML-IMT2020-

SANDBOX

"Architectural

framework for

Machine Learning

Sandbox in future

networks

including IMT-

2020"

Q20/13

Discussed and accepted with

modifications (4-15 July 2022):

1. Modified the conventions to

include colour legend for

architecture figure and added

conventions for ML pipeline as per

Y.3172.

2. Simplified and clarified portions

of the Introduction.

3. Modified the "NOTE"s in

requirements where it can help

readability and explanation.

4. Fixed editor’s notes and added

Ref point 11 in the architecture

figure.

5. Reordered clauses 8.3 and 8.4 on

APIs and sequence diagrams for

better readability.

6. Clarifications in the text to better

align components, requirements and

APIs.

- 3 -

SG13-TD74/WP1

Annexure-I

Draft new Recommendation ITU-T Y.ML-IMT2020-SANDBOX

Architectural framework for ML sandbox in future networks including IMT-2020

Summary

This Recommendation provides an architectural framework for machine learning (ML) sandbox in

future networks including IMT-2020. More precisely, it describes requirements and high-level

architecture for ML sandbox in future networks including IMT-2020.

Keywords

High-level architecture, IMT-2020, machine learning, requirement, sandbox, simulator

- 4 -

SG13-TD74/WP1

Table of Contents

1. Scope .. 5

2. References .. 5

3. Definitions .. 5

3.1 Terms defined elsewhere ... 5

3.2 Terms defined in this Recommendation .. 6

4. Abbreviations and acronyms .. 6

5. Conventions ... 7

6. Introduction .. 8

7. Requirements ... 9

7.1 Simulated ML underlay requirements ... 9

7.2 Operational requirements .. 10

7.3 Communication requirements ... 11

7.4 Metadata requirements .. 11

8. High-level architecture ... 12

8.1 ML sandbox within the high-level ML architecture ... 12

8.2 Components of the ML sandbox ... 14

8.2.1 Simulated ML underlay networks .. 15

8.2.2 Simulation manager ... 15

8.2.3 Evaluation ML pipeline ... 16

8.2.4 Data handling ... 16

8.2.5 Inference engine ... 17

8.3 APIs ... 17

8.3.1 Reference point 6.1 .. 17

8.3.2 Reference point 6.2 .. 19

8.4 Sequence Diagrams ... 20

8.4.1 Capability discovery .. 20

8.4.2 Health monitoring .. 22

8.4.3 Validate input/output data .. 23

8.4.4 MLFO-triggered operations ... 24

8.4.5 Sandbox asynchronous messages .. 27

9. Security considerations .. 28

Bibliography... 29

- 5 -

SG13-TD74/WP1

Draft new Recommendation ITU-T Y.ML-IMT2020-SANDBOX

Architectural framework for ML sandbox in future networks including IMT-2020

1. Scope

This Recommendation provides an architectural framework for the ML sandbox in the context of

integrating machine learning in future networks including IMT-2020. This Recommendation

provides requirements and high-level architecture of ML sandbox. Architectural components along

with corresponding reference points and APIs are specified.

2. References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision; users

of this Recommendation are therefore encouraged to investigate the possibility of applying the most

recent edition of the Recommendations and other references listed below. A list of the currently valid

ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T Y.3172] ITU-T Recommendation Y.3172 (2019), “Architectural framework for

machine learning in future networks including IMT-2020”

[ITU-T Y.3173] ITU-T Recommendation Y.3173 (2020) “Framework for evaluating

intelligence levels of future networks including IMT-2020”

[ITU-T Y.3174] ITU-T Recommendation Y.3174 (2020) “Framework for data handling to

enable machine learning in future networks including IMT-2020”

[ITU-T Y.3176] ITU-T Recommendation Y.3176 (2020) “Machine learning marketplace

integration in future networks including IMT-2020”

[ITU-T Y.3179] ITU-T Recommendation Y.3179 (2021) “Architectural framework for

machine learning model serving in future networks including IMT-2020”

3. Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 machine learning model [ITU-T Y.3172]: model created by applying machine learning

techniques to data to learn from.

3.1.2 machine learning pipeline [ITU-T Y.3172]: a set of logical nodes, each with specific

functionalities, that can be combined to form a machine learning application in a telecommunication

network.

3.1.3 machine learning sandbox [ITU-T Y.3172]: an environment in which machine learning

models can be trained, tested and their effects on the network evaluated.

3.1.4 machine learning function orchestrator [ITU-T Y.3172]: a logical node with functionalities

that manage and orchestrate the nodes in a machine learning pipeline.

3.1.5 machine learning marketplace [ITU-T Y.3176]: a component which provides capabilities

facilitating the exchange and delivery of machine learning models among multiple parties.

- 6 -

SG13-TD74/WP1

NOTE 1 – Examples of parties include suppliers and users of ML models. Capabilities provided to users

of ML models include functionalities to find, learn about, deploy (or download), and use ML models.

Capabilities provided to suppliers of ML models (e.g., data scientist) include functionalities to share (on-

board, upload), describe (learn about), and market their ML models.

NOTE 2 – A network operator may use a machine learning marketplace deployed internally and/or

externally to the network operator’s administrative domains. Internal and external marketplaces differ

only in the deployment perspective. A marketplace which is internal to a network operator may act as an

external marketplace to another network operator and vice versa.

3.1.6 machine learning model metadata [ITU-T Y.3176]: information which describes the

characteristics of a machine learning model.

NOTE – Machine learning model metadata includes, but is not limited to, name of the ML model, ML

model’s author, version of the ML model, license information of the ML model, description of the data

inputs and outputs of the ML model, and runtime environment of the ML model.

3.1.7 network intelligence level [ITU-T Y.3173]: level of application of automation capabilities

including those enabled by the integration of artificial intelligence techniques in the network.

3.1.8 machine learning model serving [ITU-T Y.3179]: a process of preparing and deploying machine

learning models in different deployment environments to enable the application of model inference to

machine learning underlay networks.

3.2 Terms defined in this Recommendation

3.2.1 evaluation ML pipeline: chaining of pipeline nodes and simulated network functions (NFs)

with served ML models whose goal is to evaluate a particular ML use case.

3.2.2 simulation component metadata: data describing the characteristics of a particular simulation

component.

NOTE – Examples of simulation component metadata are capabilities of simulated NFs, configurable

parameters, performance indicators, monitored parameters and interfaces.

3.2.3 simulation environment metadata: data describing the characteristics of a particular

simulation environment.

NOTE 1 – Simulation environment metadata can contain information such as installation/execution

requirements, simulation component metadata, performance indicators, connections, and maturity

indicators (e.g., alpha/beta versions).

NOTE 2 – Examples of format for representing simulation environment metadata are JavaScript

object notation (JSON) [b-JSON], comma-separated values (CSV) [b-CSV], or extensible markup

language (XML) [b-XML].

3.2.4 simulation profile: a list of parameters and their values which describe the ML use case to be

trained, evaluated, or tested at the ML sandbox.

NOTE – The list of parameters and their values may be derived from ML intent [ITU-T Y.3172] and

simulation environment metadata.

4. Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AF Application Function

AI Artificial Intelligence

- 7 -

SG13-TD74/WP1

AP Access Point

API Application Programming Interface

DBr Data Broker

DH Data Handling

DM Data Model

GAN Generative Adversarial Network

KPI Key Performance Indicator

ML Machine Learning

MLFO Machine Learning Function Orchestrator

NF Network Function

OAM Operation Administration and Maintenance

RAN Radio Access Network

RL Reinforcement Learning

SL Supervised Learning

UE User Equipment

UL Unsupervised Learning

uRLLC Ultra-Reliable Low-Latency Communication

V2X Vehicle-to-Everything

WLAN Wireless Local Area Network

5. Conventions

In this Recommendation:

- The keywords "is required to" indicate a requirement which must be strictly followed and

from which no deviation is permitted, if conformance to this Recommendation is to be claimed.

- The keywords "is recommended" indicate a requirement which is recommended but which is

not absolutely required. Thus, this requirement need not be present to claim conformance.

- The keywords "can optionally" indicate an optional requirement which is permissible, without

implying any sense of being recommended. This term is not intended to imply that the

vendor's implementation must provide the option, and the feature can be optionally enabled

by the network operator/service provider. Rather, it means the vendor may optionally provide

the feature and still claim conformance with this Recommendation.

- The color “solid blue” is used in Figure 2 and Figure 3 to indicate components and interfaces

that are newly defined in this document.

- ML pipeline – In this Recommendation, in alignment with the conventions of [ITU-T Y.3172]

when the symbol shown in Figure 1 is used, this denotes a subset (including proper subset) of

nodes in an ML pipeline. When this symbol is used in a figure, the symbol stands for the

subset of an ML pipeline's nodes not explicitly shown in that figure.

Figure 1 – Symbol used to denote a subset of nodes in an ML pipeline

- 8 -

SG13-TD74/WP1

6. Introduction

The integration of artificial intelligence (AI) and machine learning (ML) has been identified as one

of the key features of future networks. However, network operators have the challenge of maintaining

the operational performance and associated key performance indicators during or after this integration.

In addition, the introduction of ML techniques to IMT-2020 networks may raise concerns regarding

transparency, reliability, and availability of ML methods, techniques, and data.

Studying the trade-offs, advantages, and disadvantages while integrating various ML mechanisms is

important to understand their impact on the network. For example, reducing the generalization error

is the main concern in applying any kind of supervised learning (SL) approach, which can be high

even if the test error is kept low (this phenomenon is commonly known as overfitting). Similarly,

unsupervised learning (UL) aims to find patterns from data without any guidance (unlabelled data)

and hence lacks validation. On the other hand, reinforcement learning (RL) is based on the learning-

by-experience paradigm. RL has been shown to be of great utility for single-agent approaches in

controlled scenarios, however notable adverse effects can appear as a result of the competition raised

by multiple systems sharing the same resources (e.g., while providing heterogeneous services using

common network resources).

Thus, all kinds of learning can lead to unexpected and/or undesired behaviour in live networks. Even

if the performance of networking systems can be improved by ML techniques in the long term, it is

safe to assume that the system will unavoidably experience certain performance degradation during

a transitory regime. In some situations, this degradation of key performance indicators (KPI) may be

unacceptable for network operators, especially for demanding requirements of certain network-

oriented applications such as ultra-reliable low-latency communication (uRLLC) applications. In

other cases, the network may change quickly and may not reach a stable, long-term regime that is

expected to optimize the network’s performance.

NOTE – The transitory regime precedes the stability phase of an ML model when applied to a network.

Performance degradation can result from potential delays in serving models in the network, or from

trying suboptimal configurations during exploration periods in online learning.

Given the instability that ML methods can generate in communications systems, which can be

particularly exacerbated in online mechanisms including exploration phases, the sandbox subsystem

[ITU-T Y.3172] emerges as a promising solution for training, testing, and evaluating the performance

of ML models before being deployed in live networks. The ML sandbox is an isolated environment

in which machine learning models can be evaluated. The ML sandbox is therefore meant to reproduce

the behaviour/operation of live networking systems, thus improving the robustness and resilience of

future ML-enabled networking systems. ML sandbox includes a managed test network (e.g., a

testbed) or a software-based environment (e.g., using a simulator or emulator). Software-based

network environments can be particularly useful to overcome the limitations of limited training data

sets and laboratory-based testbeds. For instance, simulators can be used to frame cases that have not

been noticed before (i.e., anomalies), which would contribute to enabling failure prediction, anomaly

detection, and self-healing.

Through the management subsystem, network operators can manage the ML sandbox and thereby

address the challenges posed by ML-driven solutions for networks. The interfaces between the

machine learning function orchestrator (MLFO) and the ML sandbox allow the manageability of the

replicated network environment (e.g., simulation), the execution of test cases, and the evaluation of

ML models.

- 9 -

SG13-TD74/WP1

7. Requirements

The requirements for the ML sandbox’s architectural framework are divided into the following

categories:

• Simulated ML underlay requirements

• Operational requirements

• Communication requirements

• Metadata requirements

7.1 Simulated ML underlay requirements

REQ-ML-SANDBOX-001: The ML sandbox is required to simulate heterogeneous sources of data

(SRCs) and sinks (SINKs) of ML output.

NOTE 1 – SRCs and SINKs simulated in the ML sandbox include those within the IMT-2020 network

as well as application functionalities hosted in network slices. Examples of application functionalities

hosted in network slices are vehicle-to-everything (V2X) applications, Industry 4.0 applications, and

emergency applications.

REQ-ML-SANDBOX-002: The ML sandbox is required to support the dynamic instantiation of new

simulated SRCs and/or SINK nodes.

NOTE 2 – Instantiation of new simulated SRCs and SINK nodes is managed by MLFO.

REQ-ML-SANDBOX-003: The ML sandbox is required to consider policy inputs from the operator

while configuring the simulated ML underlay networks [ITU-T Y.3172].

NOTE 3 – Examples of policy inputs are those related to conflict resolution and resource management.

REQ-ML-SANDBOX-004: The ML sandbox is required to enable coordinated time synchronization

of operations executed in the ML sandbox as required by the specific use case.

NOTE 4 – The time synchronization may be coordinated by the MLFO by controlling the sequence

of operations executed in the ML sandbox. The sequence of operations triggered by the MLFO may

be according to the synchronisation requirements of the specific use case. An example of a sequence

of operations triggered by the MLFO is, generation of data by radio access network (RAN)-specific

simulator which is input into the corresponding ML model as SRC, followed by analysis in the ML

model, and finally application of ML inference into specific simulators for SINK.

REQ-ML-SANDBOX-005: The ML sandbox is recommended to consider the quality of data needed

for ML models (training or testing) while generating the simulated data.

NOTE 5 – The quality of data depends on the use case requirements. The requirements on the quality

are input in the ML intent. Examples are alignment and similarity with live networks, including user

equipment (UE) capabilities, granularity of reported UE measurements, frequency of channel

measurements, accuracy of measured parameters, etc.

REQ-ML-SANDBOX-006: The ML sandbox is recommended to support demand mapping [ITU-T

Y.3173] for configuring and updating the simulated ML underlay networks.

NOTE 6 – Demand mapping is achieved by continuous, run-time, matching of the ML intent with the

configuration options provided by the simulated ML underlay network. The configuration of the

simulated ML underlay networks may be continuously adjusted based on demand mapping.

NOTE 7 – Demand mapping may be implemented through the analysis of data patterns and ML

pipeline output and corresponding optimization of simulated ML underlay networks.

- 10 -

SG13-TD74/WP1

REQ-ML-SANDBOX-007: The ML sandbox is required to provide sanity checks to assess the

correct operation of the simulated ML underlay networks.

7.2 Operational requirements

REQ-ML-SANDBOX-008: The ML sandbox is required to support multiple evaluation ML

pipelines, which may be chained and interfaced with simulators from different levels of the network.

NOTE 1 – Network levels are defined in [ITU-T Y.3172].

REQ-ML-SANDBOX-009: The ML sandbox is required to support the monitoring and evaluation

of ML pipelines and simulation components according to specifications in the ML intent.

NOTE 2 – Examples of monitoring and evaluation output may include threshold-based asynchronous

notifications from the ML sandbox (to the MLFO), post-processing of ML output, metering, security

threat analysis, etc. Other output may include updated metadata which reflects the results of the

evaluations of the models in the ML sandbox.

REQ-ML-SANDBOX-010: The ML sandbox is required to support the testing and evaluation of

multiple ML pipelines at the same time, including aggregated impacts on the network due to them.

NOTE 3 – For example, different ML pipelines may use different types of models (e.g., based on RL

and SL). The type of model may be decided by the MLFO based on the use case. Simultaneous

evaluation of the different ML pipelines may be triggered for addressing an ML use case. The outputs

of these ML pipelines may be compared to make an optimal decision.

REQ-ML-SANDBOX-011: The ML sandbox is required to support training and testing ML models

that combine simulated and real data from the network.

NOTE 4 – The choice of data to be used is managed by the MLFO [ITU-T Y.3172].

NOTE 5 – The combination of simulated and real data may also include augmented data.

REQ-ML-SANDBOX-012: The ML sandbox is required to support dynamic resource management

for ML pipeline nodes instantiated in the ML sandbox.

NOTE 6 –The instances of ML pipeline nodes in the ML sandbox (e.g., simulated SRC node) may

need resource management mechanisms like dynamic resource allocation. The ML sandbox may use

various request handling mechanisms like load balancing towards ML pipeline nodes (e.g., ML

model) in the ML sandbox.

REQ-ML-SANDBOX-013: The ML sandbox is required to enable granular evaluation of ML test

cases.

NOTE 7 – In the case of batch jobs (combined test cases) which are triggered by the ML sandbox,

isolation of problems found in the evaluation stage need granular information on the specific test case

which failed. The ML sandbox is needed to enable such granular evaluation.

REQ-ML-SANDBOX-014: The ML sandbox is required to support monitoring and evaluating the

network intelligence level.

NOTE 8 – See [ITU-T Y.3173] for monitoring and evaluating network intelligence level.

REQ-ML-SANDBOX-015: The ML sandbox is required to support testing techniques to enhance

the robustness of the ML pipelines.

NOTE 9 – Examples of testing techniques include regression and/or integration testing techniques

for testing ML models, data generation techniques for ensuring quality and augmentation of simulated

data, simulation of failure scenarios, or rare scenarios for ML model training.

- 11 -

SG13-TD74/WP1

REQ-ML-SANDBOX-016: The ML sandbox is required to produce the output of simulations, tests,

and evaluations in a machine-readable format.

NOTE 10 – Metadata corresponding to the model may be updated with the results of the evaluations.

Such updated metadata may be used by MLFO in future selections of models.

7.3 Communication requirements

REQ-ML-SANDBOX-017: The ML sandbox is required to support data handling (DH) reference

points toward technology-specific simulated ML underlay networks.

NOTE 1 – Data handling reference points are defined in [ITU-T Y.3174].

REQ-ML-SANDBOX-018: The ML sandbox is required to support the transfer of trained models

across the different ML pipelines in the sandbox as well as to other subsystems in the ML overlay.

NOTE 2 – Application and reuse of trained models from the ML sandbox for many use cases are

examples of scenarios where the transfer of trained models across different ML pipelines in the ML

sandbox is required. The transfer and deployment of trained models in live networks to enable specific

use cases is an example of a scenario that requires the transfer of trained models from the ML sandbox

to other ML overlays.

REQ-ML-SANDBOX-019: The ML sandbox is required to support the transfer of data for training

or testing models across different ML pipelines in the sandbox as well as to other ML overlays.

REQ-ML-SANDBOX-020: The ML sandbox is required to support interfaces with ML

marketplaces to transfer ML models and corresponding metadata.

NOTE 3 – See reference point 13 in [ITU-T Y.3176] for the interface between ML marketplaces and

the ML sandbox. This interface serves both in the downlink (e.g., download models) and the uplink

(e.g., update models).

NOTE 4 – An example of metadata is the outcome of applying an ML model in a live or test network,

which can be used to enhance trust and confidence in an ML model available in the marketplace.

REQ-ML-SANDBOX-021: The ML sandbox is required to support data handling mechanisms

including metadata storage, communication interfaces with data models and ML underlay networks,

and data storage.

NOTE 5 – See [ITU-T Y.3174] for data handling mechanisms.

7.4 Metadata requirements

REQ-ML-SANDBOX-022: The ML sandbox is recommended to reuse the ML metadata store across

different ML underlay networks to allow interworking between evaluation ML pipelines and

simulated ML underlay networks.

NOTE 1 – API-g is stored in the management subsystem to allow the training, testing, and evaluation

of ML models in the simulated ML pipeline [ITU-T Y.3174].

NOTE 2 – DM and corresponding API-s used in the simulated ML underlay network are stored in

the management subsystem to allow the interworking between the data broker (DBr) and the

simulated NFs [ITU-T Y.3174].

REQ-ML-SANDBOX-023: The ML sandbox is recommended to derive the simulation profile from

ML intent inputs from the MLFO along with the simulation environment metadata and use it to

configure and update the simulated ML underlay networks.

- 12 -

SG13-TD74/WP1

NOTE 3 – The simulation profile may include a list of parameters and their values which describe the

ML use case to be trained, evaluated, or tested at the ML sandbox. The MLFO can provide ML intent

inputs offline or at runtime, based on triggers.

NOTE 4 – The simulation environment metadata describes the parameters of each simulator. This is

provided by the simulation designer.

REQ-ML-SANDBOX-024: The ML sandbox is recommended to use ML model metadata from the

ML Marketplace to adjust the simulated ML underlay networks and the evaluation scenarios.

NOTE 5 – For instance, the limitations of algorithms in terms of the amount of data (e.g.,

unsupervised learning) should be input as the amount of data to be generated (e.g., the number of

access points (AP) to be simulated, the total simulation time, the minimum number of events, etc.).

REQ-ML-SANDBOX-025: The ML sandbox is required to support simulation environment

metadata.

NOTE 6 – Simulation environment metadata can be provided to the serving framework for

considering the deployment environment while creating an inference engine (see clause 8.1.3 in [ITU-

T Y.3179]).

NOTE 7 – Simulation environment metadata includes the data models used by simulated NFs and APIs

to access these data.

NOTE 8 – Simulation environment metadata can be used by the data handling to select the type of

storage of data (REQ-ML-DH-011 in [ITU-T Y.3174]).

REQ-ML-SANDBOX-026: The ML sandbox is recommended to support isolation between different

instances of evaluation ML pipelines (instantiated for different ML underlay networks).

NOTE 9 – Examples of reasons for isolation are security, data privacy reasons, and support for slicing.

8. High-level architecture

The high-level architecture of the ML sandbox is described here in the context of architecture

frameworks described in [ITU-T Y.3172], [ITU-T Y.3174] and [ITU-T Y.3179]. Interactions

between the components of the ML sandbox subsystem and other components of the architecture

framework are elaborated with a specific focus on modifications to reference points. The components

of the ML sandbox subsystem and their functionalities are described.

8.1 ML sandbox within the high-level ML architecture

To simulate ML underlay networks, the ML sandbox includes simulated NFs, application functions

(AFs), and ML pipeline(s) whose elements are managed by the MLFO [ITU-T Y.3172]. The ML

sandbox is particularly useful to address dynamic networking systems since it allows validating the

effect of ML-based optimizations before being deployed in production environments. Besides,

because of the potential limitations of data coming from live networks (insufficient amount, privacy

issues, etc.), the ML sandbox can be used to generate synthetic data as a complement for a given

training procedure.

Figure provides the high-level architecture showing the main involved components and the ML

sandbox, which are intended to fulfil the requirements specified in clause 7.

NOTE 1– See clause 8.2 for further details regarding the ML sandbox architectural components

shown in Figure 2.

- 13 -

SG13-TD74/WP1

Figure 2: ML sandbox within the high-level ML architecture

Figure 2 showcases the ML sandbox subsystem and its main components in the context of the high-

level architectural framework defined in [ITU-T Y.3172]. It extends the high-level architecture for

ML model serving [ITU-T Y.3179] with specific architecture components of the ML sandbox and

their corresponding interactions.

The reference points shown in Figure 2 are as follows:

Reference points 1 and 2 act as internal reference points within the ML sandbox subsystem, between

the simulated ML underlay networks and the evaluation ML pipeline, and are used unmodified, as

defined in [ITU-T Y.3172], for training and update of ML models at the ML sandbox subsystem.

Reference point 3 is the reference point between the ML sandbox and ML pipeline subsystems [ITU-

T Y.3172]. It allows the ML pipelines to interface with the ML sandbox subsystem for training and

update of ML models. It is used only as a model management interface, as described in [ITU-T

Y.3179].

Reference point 4, as defined in [ITU-T Y.3174], is the interface between the ML pipeline and the

ML underlay network. It is used for the transfer of data between the ML underlay network and the

(evaluation) ML pipeline instantiated in the ML sandbox (see clause 8.2 in [ITU-T Y.3174]). Data

from the ML underlay networks and/or the simulated ML underlay networks may be used to train the

ML models in the ML sandbox subsystem.

Reference point 5, as defined in [ITU-T Y.3172], is the interface between the management subsystem

and the ML pipeline subsystem.

Reference point 6 is used for the management subsystem to manage the models applied to the ML

sandbox [[ITU-T Y.3172], including monitoring and evaluating network intelligence levels [ITU-T

Y.3173]. Reference point 6 has two parts:

• Reference point 6.1 [ITU-T Y.3174] is the interface between the management subsystem and

the simulated ML underlay network to orchestrate and manage simulated ML underlay

networks.

- 14 -

SG13-TD74/WP1

• Reference point 6.2 interfaces the management subsystem with the evaluation ML pipeline to

orchestrate and manage the evaluation ML pipeline.

NOTE 2– Data from the ML underlay networks and/or the simulated ML underlay networks

may be used to train ML models in the ML sandbox subsystem.

Reference point 7 is the interface between MLFO and other management and orchestration functions

of the management subsystem, used unmodified as defined in [ITU-T Y.3172].

Reference point 11 is the interface between the MLFO and the data handling components in the ML

overlay, used unmodified as defined in [ITU-T Y.3174].

Reference point 13 is the interface between the ML marketplace and the ML sandbox subsystem,

used unmodified as defined in [ITU-T Y.3176].

Reference point 15 is the interface between the management subsystem and the ML marketplace,

used unmodified as defined in [ITU-T Y.3176].

Reference point 16 is the interface between ML model serving subsystem and model repository, used

unmodified as defined in [ITU-T Y.3179].

Reference point 17 is the interface between the ML sandbox subsystem and ML model serving

subsystem, used unmodified as defined in [ITU-T Y.3179].

Reference point 18 is the interface between evaluation ML pipelines and the inference engine, used

from [ITU-T Y.3179].

NOTE 3 – The evaluation ML pipeline referred to here is the same as the ML pipeline in the ML

sandbox subsystem in [ITU-T Y.3179].

Reference point 19 is the interface between the management subsystem and the ML model serving

subsystem, used unmodified as defined in [ITU-T Y.3179].

Reference point 20 is the interface between the simulated ML underlay networks and the simulation

manager used for managing the simulated ML underlay networks. See clause 7.1 for more details.

8.2 Components of the ML sandbox

The ML sandbox contains the components defined in the following sub-clauses. The detailed

architecture of the ML sandbox subsystem is illustrated in Figure 3.

 Figure 3: Detailed architecture of the ML sandbox subsystem

- 15 -

SG13-TD74/WP1

8.2.1 Simulated ML underlay networks

The simulated ML underlay networks component is reused from [ITU-T Y.3172]. As explained in

[ITU-T Y.3172], the ML sandbox can use data generated from simulated ML underlay networks

(obtained via reference points 1 and 2), and/or live networks (obtained via reference point 3), for

training or testing of ML models.

In this document, two subcomponents of simulated ML underlay networks are introduced, simulated

NFs and AFs, and model evaluation plug-ins.

NOTE – An example of a simulated NF is a third-party simulation tool such as ns-3 [b-Riley-ns3].

8.2.1.1 Simulated NFs and AFs

As explained in [ITU-T Y.3174], simulated NFs and AFs provide the ability to support heterogenous

sources (SRC) of data and SINK functionality. In this document, these SRC and SINK are used for

training and testing the evaluation ML pipelines.

8.2.1.2 Model evaluation plug-ins

Model evaluation plug-ins are responsible for evaluating the performance of ML models as per the

requirements defined in the use case. The plug-ins interact with the simulated NFs and AFs using

technology-agnostic interfaces, which would enable the interaction with heterogeneous third-party

applications such as network simulators and the collection of ML model evaluation parameters.

NOTE – Examples of ML model KPIs are model accuracy, recall, and precision. Other parameters

evaluated could be inference latency and memory footprint. These parameters are to be specified in

the use case description provided in the ML intent [ITU-T Y.3172].

8.2.2 Simulation manager

The simulation manager manages the simulated ML underlay networks, specifically consisting of the

following subcomponents: simulation designer, simulation composer, monitoring agent, and

simulation post-processor.

Based on inputs from MLFO, the simulator manager takes into account metadata and policy inputs

from the operator while managing the simulated ML underlay networks. The simulation manager is

responsible for achieving demand mapping [ITU-T Y.3173] while configuring and updating the

simulated ML underlay networks. The simulation manager provides dynamic resource management

for ML pipeline nodes instantiated in the ML sandbox.

8.2.2.1 Simulation designer

Based on the input from MLFO regarding the simulation requirements for the use case, the simulation

designer prepares the set of simulation resources that compose the simulated ML underlay,

corresponding to the ML use case.

NOTE 1 – Inputs from MLFO may include time-synchronization of operations executed in the ML

sandbox as required by the specific use case.

NOTE 2 – The information to design simulated ML underlays can come from the use case (ML intent)

or data gathered by the live ML underlay.

NOTE 3 – As an example, in a traffic steering use case, ML models may be applied to predictively

managing the resource allocation in the network. The simulation designer arrives at the simulation

needs for this use case which may include data generation and simulated resource management

mechanisms and corresponding parameters and configurations. As another example, as a result of

network dynamics, some path-loss parameters used by the ML sandbox subsystem may vary over

- 16 -

SG13-TD74/WP1

time. To address this issue, the MLFO keeps track of those changes and provides feedback to the

simulation designer to update the necessary simulation parameters.

8.2.2.2 Simulation composer

The simulation composer uses the design from the simulation designer and identifies the specific

simulation components to use for the use case. It takes as input the configurations and KPIs as

specified in the use case. The simulation composer then deploys, installs, and instantiates the

simulated ML underlay components (e.g., NFs, AFs and model evaluation plug-ins) to be used for

simulating different types of network underlays and evaluating various types of ML models. The

simulation composer may chain and interface simulators from different levels of the network [ITU-T

Y.3172] with multiple ML pipelines.

NOTE – Based on the specified role and requirements of the simulation (derived from use cases), the

simulation composer may indicate the best simulation tool (e.g., a specific implementation of a RAN

simulator). Specific testing techniques like robustness testing may be applied.

8.2.2.3 Monitoring agent

The monitoring agent monitors and evaluates the simulations in the ML sandbox, including the

evaluation ML pipeline and the simulated ML underlay network. The monitoring agent enables

granular evaluation of ML test cases by MLFO.

In addition to the use-case-specific parameters obtained from MLFO, the following five dimensions

are considered [ITU-T Y.3173]: demand mapping, data collection, analysis, decision, and action

implementation.

The monitoring of data collection, action implementation, and analysis is done by the monitoring

agent (see clause 8.3 of [ITU-T Y.3173]). This may include monitoring the quality of data needed for

ML models (training or testing) while generating the simulated data, and sanity checks to assess the

correct operation of the simulated ML underlay networks.

8.2.2.4 Simulation post-processor

The simulation post-processor provides an interface whereby data from simulated ML underlays are

post-processed and presented in a standard-compliant manner to the MLFO, which performs model

evaluations and/or (re)training. This step is critical to handle heterogeneous sources of information.

NOTE – For instance, once the handler gets the raw logs generated by a simulator (e.g., a CSV file),

the post-processor extracts the relevant information to be used by the MLFO.

8.2.3 Evaluation ML pipeline

The evaluation ML pipeline is used for model evaluation in the ML sandbox environment as described

in [ITU-T Y.3172]. This component supports the transfer of evaluated and tested models and supports

interfaces with ML marketplaces to transfer ML models and corresponding metadata, in coordination

with the MLFO.

NOTE – The evaluation ML pipeline is similar to the ML pipeline defined in [ITU-T Y.3172], except

that it uses simulated ML underlay networks instead of live ML underlay networks. For example,

both the evaluation ML pipeline and live ML pipeline use reference point 4 and reference point 5.

8.2.4 Data handling

Data handling provides functionality for storage of data models and data for simulated ML underlay

networks, used unmodified as defined in [ITU-T Y.3174]. Components of DH as defined in clause

8.2 of [ITU-T Y.3174] are instantiated in the ML sandbox subsystem. Reference points 1 and 2 are

reused from [ITU-T Y.3172] and [ITU-T Y.3174] between evaluation ML pipelines and simulated

- 17 -

SG13-TD74/WP1

ML underlay networks. The ML sandbox utilizes DH to dynamically instantiate new simulated SRCs

and/or SINK nodes.

NOTE – DH is shown here for completeness. The role and interactions with DH remain the same as

defined in [ITU-T Y.3174], with the only difference of addressing evaluation ML pipelines with

respect to what is covered in [ITU-T Y.3174].

8.2.5 Inference engine

The inference engine provides ML model inference capability for ML pipeline(s), used unmodified

as defined in [ITU-T Y.3179].

8.3 APIs

Reference points 6.1 and 6.2 were shown in Figure 2 and introduced in clause 8.1. The realization of

the requirements of the ML sandbox necessitates interaction between the ML sandbox and various

other components of the high-level architecture. Reference points 6.1 and 6.2 enable APIs which are

used for such interactions.

The specific APIs that correspond to each reference point are described below.

NOTE – Interactions between the components using the APIs defined in this clause are depicted in

the sequence diagrams in clause 8.4.

8.3.1 Reference point 6.1

8.3.1.1 Capability discovery request API (Capability_Discovery)

API description: Using reference point 6.1 and complementary external interfaces with simulation

capabilities, the Capability_Discovery API discovers third-party simulation components that can be

used to perform use-case-specific simulations in the ML sandbox. According to the ML use case, the

MLFO finds and selects the candidate simulation environments from a list of updated capabilities.

Capability_Discovery-Request:

Direction: MLFO → ML sandbox subsystem

Table 8-1 describes the information elements of Capability_Discovery-Request.

Table 8-1 – Capability_Discovery-Request information elements

Information element Type
Mandatory/Optional

/Conditional
Description

Request identifier Integer Mandatory Identifier of the request, indicating

“capability discovery”

ML profile <Attribute,

value> array

Mandatory Includes metadata defining policies,

requirements, constraints, etc.

Capability_Discovery-Response:

Direction: ML sandbox subsystem → MLFO

Table 8-2 describes the information elements of Capability_Discovery-Response.

Table 8-2 – Capability_Discovery-Response information elements

Information element Type
Mandatory/Optional

/Conditional
Description

List of simulation

components

<Attribute,

value> array

Mandatory Updated capability list of the available

simulation components

- 18 -

SG13-TD74/WP1

Simulation

environment metadata

<Attribute,

value> array

Mandatory Metadata can contain information such as

installation/execution requirements,

capabilities of simulated NFs, performance

indicators, configurable parameters,

maturity (alpha/beta), etc.

NOTE 1 – As an example of third-party NF, ns-3 can be selected to simulate a specific deployment

of IEEE 802.11ax Wireless Local Area Networks (WLANs) [b-IEEE 802.11].

NOTE 2 – Based on the use case requirements, the list of potential NFs is narrowed. For instance,

NFs can have associated information (via simulation environment metadata) such as “running time”,

“billing aspects”, “accuracy”, etc.

8.3.1.2 Status reporting API (Monitor_Reporting)

API description: Using reference point 6.1, the Status reporting API reports the status of the

simulation components (e.g., health status), so that the MLFO can consider taking healing actions.

Monitor_Reporting (periodical or responsive):

Direction: ML sandbox subsystem → MLFO

Table 8-3 describes the information elements of Monitor_Reporting.

Table 8-3 – Monitor_Reporting information elements

Information element Type Mandatory/Optional

/Conditional

Description

Notification identifier Integer Mandatory Identifier of the request, indicating

“monitoring report”

Status Integer Mandatory Code indicating the current status of the

simulation components, e.g., health status

indicated by Green, Yellow, Orange, Red

Severity Integer Optional Code indicating the severity of the

potential anomalies identified (Critical,

Major, Minor, Normal, or Clear)

Monitoring logs String list Optional Raw data resulting from monitoring

Alerts <Attribute

, value>

array

Optional Threshold-based alerts

Suggested action

points

String list Optional List of suggested action points to fix the

potential reported issues

NOTE - Monitoring is carried out based on continuous flow of data generated by simulation

components, including simulation data (SRC & SINK nodes), regression tests, reporting from

simulation modules, etc.

8.3.1.3 Input/Output validation reporting API (Report_IO_Validation)

API description: Using reference point 6.1, the Report_IO_Validation API is used to report the status

of input/output data used/generated at/by the ML sandbox. This information can be used by the

MLFO to generate new data sets, re-train ML models with different configurations, update simulation

components, etc.

Report_IO_Validation:

Direction: ML sandbox subsystem → MLFO

Table 8-4 describes the information elements of Report_IO_Validation.

- 19 -

SG13-TD74/WP1

Table 8-4 – Report_IO_Validation -Response information elements

Information element Type
Mandatory/Optional

/Conditional
Description

Notification identifier Integer Mandatory Identifier of the request, indicating

“input/output validation result”

Validation type Integer Mandatory Indicates the type of validation performed

(e.g., input data to configure simulation

parameters or output training data validity)

Result of validation Integer Mandatory “Success” or “fail”

Warnings String list Optional Detailed information regarding potential

issues or misbehaviors observed from the

current input/output data

Error details String list Conditional Detailed information regarding the errors

thrown during the validation procedure

NOTE – The data to be validated includes input data (e.g., to check that demand mapping can be

fulfilled at the simulated ML underlay) and simulation output data (e.g., to assess the feasibility of

trained models, the accuracy of generated data, etc.). For instance, testing techniques such as

equivalence partitioning or centroid positioning [b-Zhang-Testing] can be applied to validate the

diversity and the quality of the data generated by simulators (e.g., as for validating the synthetic data).

8.3.1.4 Sandbox asynchronous messages API (Sandbox_Async)

API description: Using reference point 6.1, the Sandbox_Async API is used for the sandbox

asynchronous messages defined in clause 8.4.5.

Sandbox_Async:

Direction: ML sandbox subsystem → MLFO

Table 8-5 describes the information elements of Sandbox_Async.

Table 8-5 – Sandbox_Async information elements

Information element Type
Mandatory/Optional

/Conditional
Description

Message identifier Integer Mandatory Identifier of the message, indicating

“Sandbox asynchronous message”

Message code Integer Mandatory Code of the asynchronous message type

Additional

information

String list Conditional Additional information related to the

message type

8.3.2 Reference point 6.2

8.3.2.1 MLFO-triggered operations API (MLFO_Trigger)

API description: Using reference point 6.2, the MLFO_Trigger API is used for the MLFO-triggered

operations defined in clause 8.4.4.

MLFO_Trigger-Request:

Direction: MLFO → ML sandbox subsystem

Table 8-6 describes the information elements of MLFO_Trigger-Request.

Table 8-6 – MLFO_Trigger-Request information elements

Information element Type
Mandatory/Optional

/Conditional
Description

- 20 -

SG13-TD74/WP1

Message identifier Integer Mandatory Identifier of the message, indicating “ML-

triggered operation”

Operation code Integer Mandatory Code of the operation to be performed

Policies &

requirements

<Attribute,

value> array

Conditional Metadata including policies, requirements.

Simulation

environment metadata

<Attribute,

value> array

Conditional Metadata including simulation

configuration, available resources, time

constraints, etc.

MLFO_Trigger-Response:

Direction: ML sandbox subsystem → MLFO

Table 8-7 describes the information elements of MLFO_Trigger-Response.

Table 8-7 – MLFO_Trigger-Response information elements

Information element Type
Mandatory/Optional

/Conditional
Description

Message identifier Integer Mandatory Identifier of the message, indicating “ML-

triggered operation”

Response code Integer Mandatory Code of the operation response (OK, Bad

request, Error, etc.)

Response data (variable) Conditional Depending on the request type, different

response data types can be provided (e.g.,

training data set, trained ML model,

validated ML model)

8.4 Sequence Diagrams

This clause provides sequence diagrams that result from the ML sandbox operation. The sequence

diagrams are derived from the requirements in clause 7, the architectural framework defined in clause

8.1 and the APIs in clause 8.3.

8.4.1 Capability discovery

Simulation components provided by third parties can be used to perform use case-specific simulations

in the ML sandbox. This procedure enables the discovery of such simulation components stored in

third-party repositories. The sequence diagram is shown in Figure 4.

- 21 -

SG13-TD74/WP1

Figure 4: Capability discovery for third-party simulation components

Prerequisite: MLFO knows the list of third-party repositories, offline configured, trusted, secure

channels. Simulation components in the repositories are described using simulation environment

metadata.

Two mechanisms (proactive and reactive) are considered according to the nature of the capability

discovery notification. The steps in Figure 4 are explained below.

Proactive mechanism:

This includes the following steps, as shown in Figure 4:

1.1 Third-party simulator repositories update their simulation components to the ML sandbox.

These are to be evaluated in the ML sandbox in combination with the model evaluation plug-ins.

Further component updates can also be provided to the ML sandbox as and when a third-party

simulation repository (e.g., ns-3) releases specific features (e.g., MIMO support).

NOTE 1 – This step is done using an external interface, referred to as Ext-Repository_Update.

1.2 Information from the update message is processed to prepare an updated list of candidate

simulated NFs for evaluation in the ML sandbox.

NOTE 2 – This step is done by the simulation designer (see clause 8.2.2.1).

1.3 The corresponding updated simulation components are published to trusted MLFOs.

Reactive mechanism:

This includes the following steps as shown in Figure 4:

2.1 MLFO queries the ML sandbox for simulation capabilities based on simulation environment

metadata.

2.2 The ML sandbox sends the query to trusted third-party simulation component repositories.

NOTE 3 – This step is done using an external interface, referred to as Ext-Search_Repository.

2.3 Repositories respond with a list of simulation components matching the query.

- 22 -

SG13-TD74/WP1

NOTE 4 – This step is done using an external interface, referred to as Ext-Repository_Update.

2.4 Information from the response message is processed to prepare an updated list of candidate

simulated NFs for evaluation in the ML sandbox.

NOTE 5 – This step is done by the simulation designer (see clause 8.2.2.1).

2.5 The corresponding updated simulation components are published to trusted MLFOs.

Based on the use case requirements and the result of the capability discovery mechanism, MLFO

arrives at candidate simulation environments (list of NFs, simulation components, corresponding

configurations, connections, data handling adaptors). From the candidate simulation environments

provided by MLFO, an operator selects an optimal configuration and deploys it in the ML sandbox.

In addition, data handling and other underlay changes are also applied based on the selected

configuration.

NOTE 9 – Simulation resources in the repositories are described using simulation environment

metadata.

NOTE 10 – An example of third-party simulated NF is ns-3, used to simulate a specific deployment

of IEEE 802.11ax WLANs.

NOTE 11 – Based on the use case requirements, the list of potential NFs is decided. NFs can have

associated information (as part of simulation environment metadata) such as “running time”, “billing

aspects”, “accuracy”, etc.

8.4.2 Health monitoring

Health monitoring is meant to ensure the proper behaviour of the simulation components in the ML

sandbox. The sequence diagram is shown in Figure 5.

Figure 5: Health monitoring

Prerequisite: Simulation components have been set up and the ML intent allows for monitoring

simulation components.

1. ML sandbox sets up the resources for monitoring simulation components.

NOTE 1 – This step is done by the simulation designer (see clause 8.2.2.1).

- 23 -

SG13-TD74/WP1

2. Monitoring is carried out based on a continuous flow of data generated by simulation

components, including simulation data (SRC & SINK nodes), regression tests, reporting from

simulation modules, etc.

NOTE 2 – This step is done by the monitoring agent (see clause 8.2.2.3).

3. Data gathered from monitoring is processed and delivered in the form of reports.

NOTE 3 – This step is done by the simulation post-processor (see clause 8.2.2.4).

4. Periodic reports are generated and sent to the MLFO, according to ML intent specification.

Alternatively, threshold-based alerts can be activated when undesired events occur, which are

also reported to MLFO. MLFO may take action after processing periodic reports or threshold-

based alerts (see clause 8.4.4) and optionally send action points to the ML sandbox.

5. The ML sandbox applies action points (if any) suggested by MLFO and/or self-healing actions.

NOTE 5 – The simulator composer may take action for redefining the simulation environment

(e.g., switch to a more computation-intensive but accurate tool) if certain indicators of quality

are not met.

8.4.3 Validate input/output data

In this scenario, input data and simulated output data are validated. This includes checking the

feasibility of training models, the accuracy of generated data, etc. For instance, testing techniques

such as equivalence partitioning or centroid positioning can be applied to validate the diversity and

the quality of the data generated by simulators.

NOTE 1 – An example of validation of input data is to validate the synthetic data generated by

generative adversarial networks (GANs) [b-Castelli-GANs].

The sequence diagram is shown in Figure 6.

Figure 6: Validate input/output data

Prerequisite: Simulation components and evaluation ML pipeline have been set up.

- 24 -

SG13-TD74/WP1

For input data:

1.1 ML sandbox receives input configuration from the MLFO to configure input data generation

from the simulation environment.

1.2 Input data generation is validated.

NOTE 2 – This step is done by the simulation designer (see clause 8.2.2.1).

1.3 A response with the validation result is provided to MLFO.

1.4 MLFO may provide updated inputs to configure the simulation environment.

For simulated output data:

2.1 ML sandbox receives output data from the ML use case (training data set, trained ML model,

evaluation of ML model).

2.2 Output data is validated.

NOTE 3 – This step is done by the simulation post-processor (see clause 8.2.2.4).

2.3 The result of the validation is sent to MLFO.

2.4 MLFO may provide updated inputs to configure the simulation environment.

8.4.4 MLFO-triggered operations

The MLFO-triggered operations are generally defined in Figure 7.

Figure 7: MLFO-trigger operations

The MLFO_Trigger API requests and provides response to the following set of operations:

Setup environment for ML use case (SANDBOX-TRIGGER-001):

Prerequisite: capability discovery is done (see clause 8.2.1).

1. The MLFO sends a request to the ML sandbox to set up the environment for the ML use case

in the sandbox. This request contains the selected candidate simulation environment, as a

result of the procedure in clause 8.4.1.

2. ML sandbox prepares the environment via the simulation designer (see clause 8.2.2.1):

- 25 -

SG13-TD74/WP1

a. This step can optionally include download and install of simulation components.

b. Data handling for the simulated ML underlay includes integration with data brokers

and data storage units [ITU-T Y.3174]. A plugin to interact with third party

applications can also be employed for the setup.

3. A response is provided by ML sandbox to the MLFO.

NOTE 1 – Environment setup may use the policies from MLFO and demand mapping (e.g.,

ML intent may require isolation of resources). The ML underlay may also be configured based

on the use case specification and based on features extracted from the live ML underlay to be

simulated.

NOTE 2 – Setting up the evaluation ML pipeline may include the download of ML models

from marketplaces [ITU-T Y.3176] and ML model serving [ITU-T Y.3179] to create

evaluation ML pipelines.

NOTE 3 – Environment setup may include the installation of third-party applications or

setting up interfaces, establish connections via sockets, etc.

Validate environment for ML use case (SANDBOX-TRIGGER-002):

Prerequisite: Setup environment for ML use case is done (see clause 8.2.2).

1. MLFO requests to run sanity tests on a specific simulation environment for the ML use case.

2. The simulation designer selects and executes the test suite (interaction with third-party

applications can be done through the evaluation plugin).

3. The output of the test suite is processed and output to MLFO.

NOTE 4 – For instance, installing a third-party simulation tool may output a set of traces (or

logs) indicating the result of installing submodules. This information should be post-processed

to assess that the final installation procedure was successfully accomplished regarding the use

case requirement. Example: if the installation of the LTE module failed, but the use case was

meant for Wi-Fi (which module was successfully installed), then the result of the installation

is satisfactory.

4. The MLFO decides whether the validation results are acceptable or not (may include some

basic tests and KPIs).

Manage simulated ML underlay (SANDBOX-TRIGGER-003):

1. The MLFO sends a trigger for modifying/updating the simulated ML underlay. Information

on changes is included in the updated ML profile.

2. The simulation driver configures the simulated ML underlay accordingly (e.g., adapt

configuration parameters, specify desired output…). Besides, there is an information

exchange between the live and simulated ML underlays (mimic purposes).

3. The ML sandbox responds to the trigger with the information related to changes done in the

simulated ML underlay (OK/NOK, changelog, etc.).

NOTE 5 – As an example, as a result of network dynamics, some path-loss parameters used by

the ML sandbox subsystem may vary over time. To address this issue, the MLFO keeps track of

those changes and provides feedback to the Simulation designer to update the necessary

simulation parameters.

Evaluate output of ML model (SANDBOX-TRIGGER-004):

Prerequisite: The environment has been set up in ML sandbox for the ML use case.

- 26 -

SG13-TD74/WP1

1. The MLFO sends a request to the simulation composer in the ML sandbox to run the simulated

ML underlay.

2. The simulation composer uses the “evaluator plugin” to input the output of the ML model.

The plugin can also be used to interact with the third-party application (i.e., translate

commands from the MLFO to simulator-oriented instructions).

3. Evaluate the output of an ML model: the evaluation platform provides a report, which is

processed by the post-processor.

4. The processed report is sent back to the MLFO. The report can also include synthetic data for

training.

NOTE 6 – The information extracted from the simulated ML underlay needs to be post-processed

according to the desired output specified in the use case and the characteristics of the simulated

ML underlay. The evaluation result can be an OK/NOK message, a percentage of reliability, a set

of KPIs gathered from the evaluation procedure, etc.

NOTE 7 – Post-processing for third-party simulation tools may include the conversion of raw

data into meaningful information (e.g., average or deviation on KPIs).

ML model training (SANDBOX-TRIGGER-005):

Prerequisite: The ML model is served and evaluation blocks are ready.

1. The MLFO sends a trigger for training an ML model in the sandbox.

2. Model training is performed at the simulated ML underlay through the simulator composer.

3. The trained ML model is post-processed (e.g., compressed, pruned) according to the use case

and the policies and capabilities (time constraints, link capacity for exchanging information,

storage capabilities, etc.).

4. The trained model is included in the response sent to the MLFO.

Table 8-8 describes the operation codes used in the MLFO-triggered operations.

Table 8-5: Definition of MLFO-triggered operation codes (MLFO trigger types)

MLFO

trigger type
Parameters

Time sync /

dependencies
Description

SANDBOX-

TRIGGER-

001

Request type, ML

profile

Time sync = yes

(evaluation blocks)

Request to prepare the simulation

environment (both simulated ML underlay

and evaluation ML pipeline) to train, test,

and evaluate ML models in the ML

sandbox.

SANDBOX-

TRIGGER-

002

Request type,

validation type,

acceptance criteria

Time sync = yes

(sanity checklist, test

suite, etc.)

Request to validate (sanity check) the

deployed simulation environment. Used by

the MLFO to determine whether to take

action to fix potential deployment issues,

proceed with ML model evaluation in the

sandbox, etc.

SANDBOX-

TRIGGER-

003

Request type,

update type,

updated ML profile

Time sync = yes

(updated simulation

components)

Request to modify/update the simulated

ML underlay according to updates in

policies, changes in the live ML underlay,

potential failures of previous simulated

functions, etc.

- 27 -

SG13-TD74/WP1

SANDBOX-

TRIGGER-

004

Request type, ML

profile, ML model

output

Time sync = yes

(evaluation results)

Request to evaluate the impact of the output

of an ML model in the simulated ML

underlay, so that some insights can be

provided before applying that output to the

live ML underlay.

SANDBOX-

TRIGGER-

005

Request type, ML

profile

Time sync = no Request to train an ML model in the ML

sandbox.

8.4.5 Sandbox asynchronous messages

ML sandbox asynchronous messages are generally defined in Figure 8.

Figure 8: ML sandbox asynchronous messages

Prerequisite: Asynchronous messages are generated upon certain conditions are met, which are

specific to the different types of events.

1. Upon meeting the trigger conditions, the ML sandbox sends an asynchronous message to the

MLFO.

2. The message is processed and potential action points are defined.

3. The MLFO sends a response to the ML sandbox.

The sandbox asynchronous message codes are defined in Table 8-9.

Table 8-6: Definition of ML sandbox asynchronous message codes

Code Parameters Conditions Description

SANDBOX-

ASYNC-001

Status code / Error code /

detailed report

(conditional)

Threshold-based alert is

fired / miss-behavior is

detected / keep-alive

message

Report the health status of the

simulation components

SANDBOX-

ASYNC-002

Update type / changelog /

additional information on

implications of update

Updated on simulation

components is

notified/discovered to/by

the ML sandbox

Report an update on security,

accounting, licensing

requirements of simulation

components

- 28 -

SG13-TD74/WP1

SANDBOX-

ASYNC-003

Alert type / forecasted

results / additional

information on potential

failure points

Threshold-based alert

based on trend analysis

(e.g., service at risk)

Proactive behavior trend

identification of simulation

components and sandbox

resources

SANDBOX-

ASYNC-004

Report type / Updated

simulation component

metadata

Change on simulation

component is noticed

Report an update on simulation

component metadata

SANDBOX-

ASYNC-005

Report type / Updated

level of intelligence of

simulation components

Change on the

intelligence level of a

simulation component

Report the simulation

environment intelligence level

9. Security considerations

This Recommendation describes an architectural framework for the ML sandbox in the context of

integrating machine learning in future networks including IMT-2020: therefore, general network

security requirements and mechanisms in IP-based networks should be applied [ITU-T Y.2701] [ITU-

T Y.3101].

It is required to prevent unauthorized access to, and data leaking from, the ML sandbox, whether or

not there is a malicious intention, with the implementation of appropriate mechanisms, such as those

for authentication and authorization, and external attack protection.

- 29 -

SG13-TD74/WP1

Bibliography

[b-JSON] IETF RFC 8259 (2017), The JavaScript Object Notation (JSON) Data Interchange

Format (JSON)

[b-CSV] IETF RFC 4180 (2005), Common Format and MIME Type for Comma-Separated

Values (CSV) Files

[b-XML] W3C Recommendation (2008), Extensible Markup Language (XML) 1.0 (Fifth

Edition)

[b-ITU-T Y.Sup55] ITU-T Supplement ITU-T Y.3170-series (2019) “Machine learning in future

networks including IMT-2020: use cases”

[b-Riley-ns3] Riley, G. F., & Henderson, T. R. (2010). The ns-3 network simulator. In Modeling and

tools for network simulation (pp. 15-34). Springer, Berlin, Heidelberg.

[b-IEEE 802.11] IEEE 802.11 WLANs. The Working Group for WLAN Standards, 2015.

[b-Zhang-Testing] Zhang, J. M., Harman, M., Ma, L., & Liu, Y. (2020). Machine learning testing:

Survey, landscapes and horizons. IEEE Transactions on Software Engineering.

[b-Castelli-GANs] Castelli, M., Manzoni, L., Espindola, T., Popovič, A., & De Lorenzo, A. (2021).

Generative adversarial networks for generating synthetic features for Wi-Fi signal quality. PloS

one, 16(11), e0260308.
