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Annexure-I 

 

Draft new Recommendation ITU-T Y.ML-IMT2020-SANDBOX 

 

Architectural framework for ML sandbox in future networks including IMT-2020 

 

Summary 

This Recommendation provides an architectural framework for machine learning (ML) sandbox in 

future networks including IMT-2020. More precisely, it describes requirements and high-level 

architecture for ML sandbox in future networks including IMT-2020. 

Keywords 

High-level architecture, IMT-2020, machine learning, requirement, sandbox, simulator  
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Draft new Recommendation ITU-T Y.ML-IMT2020-SANDBOX 

 
Architectural framework for ML sandbox in future networks including IMT-2020 

1. Scope 

This Recommendation provides an architectural framework for the ML sandbox in the context of 

integrating machine learning in future networks including IMT-2020. This Recommendation 

provides requirements and high-level architecture of ML sandbox. Architectural components along 

with corresponding reference points and APIs are specified. 

2. References 

The following ITU-T Recommendations and other references contain provisions which, through 

reference in this text, constitute provisions of this Recommendation. At the time of publication, the 

editions indicated were valid. All Recommendations and other references are subject to revision; users 

of this Recommendation are therefore encouraged to investigate the possibility of applying the most 

recent edition of the Recommendations and other references listed below. A list of the currently valid 

ITU-T Recommendations is regularly published. The reference to a document within this 

Recommendation does not give it, as a stand-alone document, the status of a Recommendation. 

[ITU-T Y.3172]  ITU-T Recommendation Y.3172 (2019), “Architectural framework for 

machine learning in future networks including IMT-2020” 

[ITU-T Y.3173]  ITU-T Recommendation Y.3173 (2020) “Framework for evaluating 

intelligence levels of future networks including IMT-2020” 

[ITU-T Y.3174]  ITU-T Recommendation Y.3174 (2020) “Framework for data handling to 

enable machine learning in future networks including IMT-2020” 

[ITU-T Y.3176]  ITU-T Recommendation Y.3176 (2020) “Machine learning marketplace 

integration in future networks including IMT-2020” 

[ITU-T Y.3179]  ITU-T Recommendation Y.3179 (2021) “Architectural framework for 

machine learning model serving in future networks including IMT-2020” 

3. Definitions 

3.1 Terms defined elsewhere 

This Recommendation uses the following terms defined elsewhere: 

3.1.1 machine learning model [ITU-T Y.3172]: model created by applying machine learning 

techniques to data to learn from. 

3.1.2 machine learning pipeline [ITU-T Y.3172]: a set of logical nodes, each with specific 

functionalities, that can be combined to form a machine learning application in a telecommunication 

network.  

3.1.3 machine learning sandbox [ITU-T Y.3172]: an environment in which machine learning 

models can be trained, tested and their effects on the network evaluated. 

3.1.4 machine learning function orchestrator [ITU-T Y.3172]: a logical node with functionalities 

that manage and orchestrate the nodes in a machine learning pipeline. 

3.1.5 machine learning marketplace [ITU-T Y.3176]: a component which provides capabilities 

facilitating the exchange and delivery of machine learning models among multiple parties.  
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NOTE 1 – Examples of parties include suppliers and users of ML models. Capabilities provided to users 

of ML models include functionalities to find, learn about, deploy (or download), and use ML models. 

Capabilities provided to suppliers of ML models (e.g., data scientist) include functionalities to share (on-

board, upload), describe (learn about), and market their ML models.  

NOTE 2 – A network operator may use a machine learning marketplace deployed internally and/or 

externally to the network operator’s administrative domains. Internal and external marketplaces differ 

only in the deployment perspective. A marketplace which is internal to a network operator may act as an 

external marketplace to another network operator and vice versa. 

3.1.6 machine learning model metadata [ITU-T Y.3176]: information which describes the 

characteristics of a machine learning model.  

NOTE – Machine learning model metadata includes, but is not limited to, name of the ML model, ML 

model’s author, version of the ML model, license information of the ML model, description of the data 

inputs and outputs of the ML model, and runtime environment of the ML model. 

3.1.7 network intelligence level [ITU-T Y.3173]: level of application of automation capabilities 

including those enabled by the integration of artificial intelligence techniques in the network. 

3.1.8 machine learning model serving [ITU-T Y.3179]: a process of preparing and deploying machine 

learning models in different deployment environments to enable the application of model inference to 

machine learning underlay networks. 

3.2 Terms defined in this Recommendation 

3.2.1 evaluation ML pipeline: chaining of pipeline nodes and simulated network functions (NFs) 

with served ML models whose goal is to evaluate a particular ML use case. 

3.2.2 simulation component metadata: data describing the characteristics of a particular simulation 

component.  

NOTE – Examples of simulation component metadata are capabilities of simulated NFs, configurable 

parameters, performance indicators, monitored parameters and interfaces. 

3.2.3 simulation environment metadata: data describing the characteristics of a particular 

simulation environment.  

NOTE 1 – Simulation environment metadata can contain information such as installation/execution 

requirements, simulation component metadata, performance indicators, connections, and maturity 

indicators (e.g., alpha/beta versions). 

NOTE 2 – Examples of format for representing simulation environment metadata are JavaScript 

object notation (JSON) [b-JSON], comma-separated values (CSV) [b-CSV], or extensible markup 

language (XML) [b-XML]. 

3.2.4 simulation profile: a list of parameters and their values which describe the ML use case to be 

trained, evaluated, or tested at the ML sandbox. 

NOTE – The list of parameters and their values may be derived from ML intent [ITU-T Y.3172] and 

simulation environment metadata.   

4. Abbreviations and acronyms  

This Recommendation uses the following abbreviations and acronyms:  

AF  Application Function 

AI  Artificial Intelligence 
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AP  Access Point 

API   Application Programming Interface 

DBr  Data Broker 

DH  Data Handling 

DM  Data Model 

GAN  Generative Adversarial Network 

KPI  Key Performance Indicator 

ML  Machine Learning 

MLFO  Machine Learning Function Orchestrator 

NF  Network Function 

OAM  Operation Administration and Maintenance 

RAN  Radio Access Network 

RL  Reinforcement Learning 

SL  Supervised Learning 

UE  User Equipment 

UL  Unsupervised Learning 

uRLLC Ultra-Reliable Low-Latency Communication 

V2X  Vehicle-to-Everything 

WLAN Wireless Local Area Network 

5. Conventions 

In this Recommendation: 

- The keywords "is required to" indicate a requirement which must be strictly followed and 

from which no deviation is permitted, if conformance to this Recommendation is to be claimed. 

- The keywords "is recommended" indicate a requirement which is recommended but which is 

not absolutely required. Thus, this requirement need not be present to claim conformance. 

- The keywords "can optionally" indicate an optional requirement which is permissible, without 

implying any sense of being recommended. This term is not intended to imply that the 

vendor's implementation must provide the option, and the feature can be optionally enabled 

by the network operator/service provider. Rather, it means the vendor may optionally provide 

the feature and still claim conformance with this Recommendation. 

- The color “solid blue” is used in Figure 2 and Figure 3 to indicate components and interfaces 

that are newly defined in this document. 

- ML pipeline – In this Recommendation, in alignment with the conventions of [ITU-T Y.3172] 

when the symbol shown in Figure 1 is used, this denotes a subset (including proper subset) of 

nodes in an ML pipeline. When this symbol is used in a figure, the symbol stands for the 

subset of an ML pipeline's nodes not explicitly shown in that figure.  

 

Figure 1 – Symbol used to denote a subset of nodes in an ML pipeline 
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6. Introduction 

The integration of artificial intelligence (AI) and machine learning (ML) has been identified as one 

of the key features of future networks. However, network operators have the challenge of maintaining 

the operational performance and associated key performance indicators during or after this integration. 

In addition, the introduction of ML techniques to IMT-2020 networks may raise concerns regarding 

transparency, reliability, and availability of ML methods, techniques, and data.  

Studying the trade-offs, advantages, and disadvantages while integrating various ML mechanisms is 

important to understand their impact on the network. For example, reducing the generalization error 

is the main concern in applying any kind of supervised learning (SL) approach, which can be high 

even if the test error is kept low (this phenomenon is commonly known as overfitting). Similarly, 

unsupervised learning (UL) aims to find patterns from data without any guidance (unlabelled data) 

and hence lacks validation. On the other hand, reinforcement learning (RL) is based on the learning-

by-experience paradigm. RL has been shown to be of great utility for single-agent approaches in 

controlled scenarios, however notable adverse effects can appear as a result of the competition raised 

by multiple systems sharing the same resources (e.g., while providing heterogeneous services using 

common network resources). 

Thus, all kinds of learning can lead to unexpected and/or undesired behaviour in live networks. Even 

if the performance of networking systems can be improved by ML techniques in the long term, it is 

safe to assume that the system will unavoidably experience certain performance degradation during 

a transitory regime. In some situations, this degradation of key performance indicators (KPI) may be 

unacceptable for network operators, especially for demanding requirements of certain network-

oriented applications such as ultra-reliable low-latency communication (uRLLC) applications. In 

other cases, the network may change quickly and may not reach a stable, long-term regime that is 

expected to optimize the network’s performance. 

NOTE – The transitory regime precedes the stability phase of an ML model when applied to a network. 

Performance degradation can result from potential delays in serving models in the network, or from 

trying suboptimal configurations during exploration periods in online learning. 

Given the instability that ML methods can generate in communications systems, which can be 

particularly exacerbated in online mechanisms including exploration phases, the sandbox subsystem 

[ITU-T Y.3172] emerges as a promising solution for training, testing, and evaluating the performance 

of ML models before being deployed in live networks. The ML sandbox is an isolated environment 

in which machine learning models can be evaluated. The ML sandbox is therefore meant to reproduce 

the behaviour/operation of live networking systems, thus improving the robustness and resilience of 

future ML-enabled networking systems. ML sandbox includes a managed test network (e.g., a 

testbed) or a software-based environment (e.g., using a simulator or emulator). Software-based 

network environments can be particularly useful to overcome the limitations of limited training data 

sets and laboratory-based testbeds. For instance, simulators can be used to frame cases that have not 

been noticed before (i.e., anomalies), which would contribute to enabling failure prediction, anomaly 

detection, and self-healing. 

Through the management subsystem, network operators can manage the ML sandbox and thereby 

address the challenges posed by ML-driven solutions for networks. The interfaces between the 

machine learning function orchestrator (MLFO) and the ML sandbox allow the manageability of the 

replicated network environment (e.g., simulation), the execution of test cases, and the evaluation of 

ML models. 
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7. Requirements 

The requirements for the ML sandbox’s architectural framework are divided into the following 

categories: 

• Simulated ML underlay requirements 

• Operational requirements 

• Communication requirements 

• Metadata requirements 

7.1 Simulated ML underlay requirements 

REQ-ML-SANDBOX-001: The ML sandbox is required to simulate heterogeneous sources of data 

(SRCs) and sinks (SINKs) of ML output. 

NOTE 1 – SRCs and SINKs simulated in the ML sandbox include those within the IMT-2020 network 

as well as application functionalities hosted in network slices. Examples of application functionalities 

hosted in network slices are vehicle-to-everything (V2X) applications, Industry 4.0 applications, and 

emergency applications. 

REQ-ML-SANDBOX-002: The ML sandbox is required to support the dynamic instantiation of new 

simulated SRCs and/or SINK nodes. 

NOTE 2 – Instantiation of new simulated SRCs and SINK nodes is managed by MLFO. 

REQ-ML-SANDBOX-003: The ML sandbox is required to consider policy inputs from the operator 

while configuring the simulated ML underlay networks [ITU-T Y.3172]. 

NOTE 3 – Examples of policy inputs are those related to conflict resolution and resource management. 

REQ-ML-SANDBOX-004: The ML sandbox is required to enable coordinated time synchronization 

of operations executed in the ML sandbox as required by the specific use case.  

NOTE 4 – The time synchronization may be coordinated by the MLFO by controlling the sequence 

of operations executed in the ML sandbox. The sequence of operations triggered by the MLFO may 

be according to the synchronisation requirements of the specific use case. An example of a sequence 

of operations triggered by the MLFO is, generation of data by radio access network (RAN)-specific 

simulator which is input into the corresponding ML model as SRC, followed by analysis in the ML 

model, and finally application of ML inference into specific simulators for SINK.  

REQ-ML-SANDBOX-005: The ML sandbox is recommended to consider the quality of data needed 

for ML models (training or testing) while generating the simulated data. 

NOTE 5 – The quality of data depends on the use case requirements. The requirements on the quality 

are input in the ML intent. Examples are alignment and similarity with live networks, including user 

equipment (UE) capabilities, granularity of reported UE measurements, frequency of channel 

measurements, accuracy of measured parameters, etc.  

REQ-ML-SANDBOX-006: The ML sandbox is recommended to support demand mapping [ITU-T 

Y.3173] for configuring and updating the simulated ML underlay networks. 

NOTE 6 – Demand mapping is achieved by continuous, run-time, matching of the ML intent with the 

configuration options provided by the simulated ML underlay network. The configuration of the 

simulated ML underlay networks may be continuously adjusted based on demand mapping. 

NOTE 7 – Demand mapping may be implemented through the analysis of data patterns and ML 

pipeline output and corresponding optimization of simulated ML underlay networks. 
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REQ-ML-SANDBOX-007: The ML sandbox is required to provide sanity checks to assess the 

correct operation of the simulated ML underlay networks. 

7.2 Operational requirements 

REQ-ML-SANDBOX-008: The ML sandbox is required to support multiple evaluation ML 

pipelines, which may be chained and interfaced with simulators from different levels of the network.  

NOTE 1 – Network levels are defined in [ITU-T Y.3172].  

REQ-ML-SANDBOX-009: The ML sandbox is required to support the monitoring and evaluation 

of ML pipelines and simulation components according to specifications in the ML intent. 

NOTE 2 – Examples of monitoring and evaluation output may include threshold-based asynchronous 

notifications from the ML sandbox (to the MLFO), post-processing of ML output, metering, security 

threat analysis, etc. Other output may include updated metadata which reflects the results of the 

evaluations of the models in the ML sandbox. 

REQ-ML-SANDBOX-010: The ML sandbox is required to support the testing and evaluation of 

multiple ML pipelines at the same time, including aggregated impacts on the network due to them. 

NOTE 3 – For example, different ML pipelines may use different types of models (e.g., based on RL 

and SL). The type of model may be decided by the MLFO based on the use case. Simultaneous 

evaluation of the different ML pipelines may be triggered for addressing an ML use case. The outputs 

of these ML pipelines may be compared to make an optimal decision.  

REQ-ML-SANDBOX-011: The ML sandbox is required to support training and testing ML models 

that combine simulated and real data from the network. 

NOTE 4 – The choice of data to be used is managed by the MLFO [ITU-T Y.3172]. 

NOTE 5 – The combination of simulated and real data may also include augmented data. 

REQ-ML-SANDBOX-012: The ML sandbox is required to support dynamic resource management 

for ML pipeline nodes instantiated in the ML sandbox. 

NOTE 6 –The instances of ML pipeline nodes in the ML sandbox (e.g., simulated SRC node) may 

need resource management mechanisms like dynamic resource allocation. The ML sandbox may use 

various request handling mechanisms like load balancing towards ML pipeline nodes (e.g., ML 

model) in the ML sandbox. 

REQ-ML-SANDBOX-013: The ML sandbox is required to enable granular evaluation of ML test 

cases. 

NOTE 7 – In the case of batch jobs (combined test cases) which are triggered by the ML sandbox, 

isolation of problems found in the evaluation stage need granular information on the specific test case 

which failed. The ML sandbox is needed to enable such granular evaluation. 

REQ-ML-SANDBOX-014: The ML sandbox is required to support monitoring and evaluating the 

network intelligence level. 

NOTE 8 – See [ITU-T Y.3173] for monitoring and evaluating network intelligence level.  

REQ-ML-SANDBOX-015: The ML sandbox is required to support testing techniques to enhance 

the robustness of the ML pipelines. 

NOTE 9 – Examples of testing techniques include regression and/or integration testing techniques 

for testing ML models, data generation techniques for ensuring quality and augmentation of simulated 

data, simulation of failure scenarios, or rare scenarios for ML model training. 
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REQ-ML-SANDBOX-016: The ML sandbox is required to produce the output of simulations, tests, 

and evaluations in a machine-readable format. 

NOTE 10 – Metadata corresponding to the model may be updated with the results of the evaluations. 

Such updated metadata may be used by MLFO in future selections of models. 

7.3 Communication requirements 

REQ-ML-SANDBOX-017: The ML sandbox is required to support data handling (DH) reference 

points toward technology-specific simulated ML underlay networks. 

NOTE 1 – Data handling reference points are defined in [ITU-T Y.3174]. 

REQ-ML-SANDBOX-018: The ML sandbox is required to support the transfer of trained models 

across the different ML pipelines in the sandbox as well as to other subsystems in the ML overlay. 

NOTE 2 – Application and reuse of trained models from the ML sandbox for many use cases are 

examples of scenarios where the transfer of trained models across different ML pipelines in the ML 

sandbox is required. The transfer and deployment of trained models in live networks to enable specific 

use cases is an example of a scenario that requires the transfer of trained models from the ML sandbox 

to other ML overlays.  

REQ-ML-SANDBOX-019: The ML sandbox is required to support the transfer of data for training 

or testing models across different ML pipelines in the sandbox as well as to other ML overlays. 

REQ-ML-SANDBOX-020: The ML sandbox is required to support interfaces with ML 

marketplaces to transfer ML models and corresponding metadata. 

NOTE 3 – See reference point 13 in [ITU-T Y.3176] for the interface between ML marketplaces and 

the ML sandbox. This interface serves both in the downlink (e.g., download models) and the uplink 

(e.g., update models). 

NOTE 4 – An example of metadata is the outcome of applying an ML model in a live or test network, 

which can be used to enhance trust and confidence in an ML model available in the marketplace. 

REQ-ML-SANDBOX-021: The ML sandbox is required to support data handling mechanisms 

including metadata storage, communication interfaces with data models and ML underlay networks, 

and data storage. 

NOTE 5 – See [ITU-T Y.3174] for data handling mechanisms. 

7.4 Metadata requirements 

REQ-ML-SANDBOX-022: The ML sandbox is recommended to reuse the ML metadata store across 

different ML underlay networks to allow interworking between evaluation ML pipelines and 

simulated ML underlay networks.  

NOTE 1 – API-g is stored in the management subsystem to allow the training, testing, and evaluation 

of ML models in the simulated ML pipeline [ITU-T Y.3174]. 

NOTE 2 – DM and corresponding API-s used in the simulated ML underlay network are stored in 

the management subsystem to allow the interworking between the data broker (DBr) and the 

simulated NFs [ITU-T Y.3174]. 

REQ-ML-SANDBOX-023: The ML sandbox is recommended to derive the simulation profile from 

ML intent inputs from the MLFO along with the simulation environment metadata and use it to 

configure and update the simulated ML underlay networks. 
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NOTE 3 – The simulation profile may include a list of parameters and their values which describe the 

ML use case to be trained, evaluated, or tested at the ML sandbox. The MLFO can provide ML intent 

inputs offline or at runtime, based on triggers.  

NOTE 4 – The simulation environment metadata describes the parameters of each simulator. This is 

provided by the simulation designer. 

REQ-ML-SANDBOX-024: The ML sandbox is recommended to use ML model metadata from the 

ML Marketplace to adjust the simulated ML underlay networks and the evaluation scenarios.  

NOTE 5 – For instance, the limitations of algorithms in terms of the amount of data (e.g., 

unsupervised learning) should be input as the amount of data to be generated (e.g., the number of 

access points (AP) to be simulated, the total simulation time, the minimum number of events, etc.). 

REQ-ML-SANDBOX-025: The ML sandbox is required to support simulation environment 

metadata. 

NOTE 6 – Simulation environment metadata can be provided to the serving framework for 

considering the deployment environment while creating an inference engine (see clause 8.1.3 in [ITU-

T Y.3179]). 

NOTE 7 – Simulation environment metadata includes the data models used by simulated NFs and APIs 

to access these data. 

NOTE 8 – Simulation environment metadata can be used by the data handling to select the type of 

storage of data (REQ-ML-DH-011 in [ITU-T Y.3174]). 

REQ-ML-SANDBOX-026: The ML sandbox is recommended to support isolation between different 

instances of evaluation ML pipelines (instantiated for different ML underlay networks). 

NOTE 9 – Examples of reasons for isolation are security, data privacy reasons, and support for slicing. 

8. High-level architecture 

The high-level architecture of the ML sandbox is described here in the context of architecture 

frameworks described in [ITU-T Y.3172], [ITU-T Y.3174] and [ITU-T Y.3179]. Interactions 

between the components of the ML sandbox subsystem and other components of the architecture 

framework are elaborated with a specific focus on modifications to reference points. The components 

of the ML sandbox subsystem and their functionalities are described. 

8.1 ML sandbox within the high-level ML architecture  

To simulate ML underlay networks, the ML sandbox includes simulated NFs, application functions 

(AFs), and ML pipeline(s) whose elements are managed by the MLFO [ITU-T Y.3172]. The ML 

sandbox is particularly useful to address dynamic networking systems since it allows validating the 

effect of ML-based optimizations before being deployed in production environments. Besides, 

because of the potential limitations of data coming from live networks (insufficient amount, privacy 

issues, etc.), the ML sandbox can be used to generate synthetic data as a complement for a given 

training procedure. 

Figure  provides the high-level architecture showing the main involved components and the ML 

sandbox, which are intended to fulfil the requirements specified in clause 7.  

NOTE 1– See clause 8.2 for further details regarding the ML sandbox architectural components 

shown in Figure 2. 
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Figure 2: ML sandbox within the high-level ML architecture 

Figure 2 showcases the ML sandbox subsystem and its main components in the context of the high-

level architectural framework defined in [ITU-T Y.3172]. It extends the high-level architecture for 

ML model serving [ITU-T Y.3179] with specific architecture components of the ML sandbox and 

their corresponding interactions.  

The reference points shown in Figure 2 are as follows: 

Reference points 1 and 2 act as internal reference points within the ML sandbox subsystem, between 

the simulated ML underlay networks and the evaluation ML pipeline, and are used unmodified, as 

defined in [ITU-T Y.3172], for training and update of ML models at the ML sandbox subsystem. 

Reference point 3 is the reference point between the ML sandbox and ML pipeline subsystems [ITU-

T Y.3172]. It allows the ML pipelines to interface with the ML sandbox subsystem for training and 

update of ML models. It is used only as a model management interface, as described in [ITU-T 

Y.3179].   

Reference point 4, as defined in [ITU-T Y.3174], is the interface between the ML pipeline and the 

ML underlay network. It is used for the transfer of data between the ML underlay network and the 

(evaluation) ML pipeline instantiated in the ML sandbox (see clause 8.2 in [ITU-T Y.3174]). Data 

from the ML underlay networks and/or the simulated ML underlay networks may be used to train the 

ML models in the ML sandbox subsystem.  

Reference point 5, as defined in [ITU-T Y.3172], is the interface between the management subsystem 

and the ML pipeline subsystem. 

Reference point 6 is used for the management subsystem to manage the models applied to the ML 

sandbox [ [ITU-T Y.3172], including monitoring and evaluating network intelligence levels [ITU-T 

Y.3173]. Reference point 6 has two parts: 

• Reference point 6.1 [ITU-T Y.3174] is the interface between the management subsystem and 

the simulated ML underlay network to orchestrate and manage simulated ML underlay 

networks.  
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• Reference point 6.2 interfaces the management subsystem with the evaluation ML pipeline to 

orchestrate and manage the evaluation ML pipeline.  

NOTE 2– Data from the ML underlay networks and/or the simulated ML underlay networks 

may be used to train ML models in the ML sandbox subsystem. 

Reference point 7 is the interface between MLFO and other management and orchestration functions 

of the management subsystem, used unmodified as defined in [ITU-T Y.3172].  

Reference point 11 is the interface between the MLFO and the data handling components in the ML 

overlay, used unmodified as defined in [ITU-T Y.3174]. 

Reference point 13 is the interface between the ML marketplace and the ML sandbox subsystem, 

used unmodified as defined in [ITU-T Y.3176]. 

Reference point 15 is the interface between the management subsystem and the ML marketplace, 

used unmodified as defined in [ITU-T Y.3176]. 

Reference point 16 is the interface between ML model serving subsystem and model repository, used 

unmodified as defined in [ITU-T Y.3179]. 

Reference point 17 is the interface between the ML sandbox subsystem and ML model serving 

subsystem, used unmodified as defined in [ITU-T Y.3179]. 

Reference point 18 is the interface between evaluation ML pipelines and the inference engine, used 

from [ITU-T Y.3179]. 

NOTE 3 – The evaluation ML pipeline referred to here is the same as the ML pipeline in the ML 

sandbox subsystem in [ITU-T Y.3179]. 

Reference point 19 is the interface between the management subsystem and the ML model serving 

subsystem, used unmodified as defined in [ITU-T Y.3179]. 

Reference point 20 is the interface between the simulated ML underlay networks and the simulation 

manager used for managing the simulated ML underlay networks. See clause 7.1 for more details. 

8.2 Components of the ML sandbox 

The ML sandbox contains the components defined in the following sub-clauses. The detailed 

architecture of the ML sandbox subsystem is illustrated in Figure 3. 

 

 Figure 3: Detailed architecture of the ML sandbox subsystem  
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8.2.1 Simulated ML underlay networks 

The simulated ML underlay networks component is reused from [ITU-T Y.3172]. As explained in 

[ITU-T Y.3172], the ML sandbox can use data generated from simulated ML underlay networks 

(obtained via reference points 1 and 2), and/or live networks (obtained via reference point 3), for 

training or testing of ML models. 

In this document, two subcomponents of simulated ML underlay networks are introduced, simulated 

NFs and AFs, and model evaluation plug-ins. 

NOTE – An example of a simulated NF is a third-party simulation tool such as ns-3 [b-Riley-ns3]. 

8.2.1.1 Simulated NFs and AFs 

As explained in [ITU-T Y.3174], simulated NFs and AFs provide the ability to support heterogenous 

sources (SRC) of data and SINK functionality. In this document, these SRC and SINK are used for 

training and testing the evaluation ML pipelines. 

8.2.1.2 Model evaluation plug-ins 

Model evaluation plug-ins are responsible for evaluating the performance of ML models as per the 

requirements defined in the use case. The plug-ins interact with the simulated NFs and AFs using 

technology-agnostic interfaces, which would enable the interaction with heterogeneous third-party 

applications such as network simulators and the collection of ML model evaluation parameters.  

NOTE – Examples of ML model KPIs are model accuracy, recall, and precision. Other parameters 

evaluated could be inference latency and memory footprint. These parameters are to be specified in 

the use case description provided in the ML intent [ITU-T Y.3172]. 

8.2.2 Simulation manager 

The simulation manager manages the simulated ML underlay networks, specifically consisting of the 

following subcomponents: simulation designer, simulation composer, monitoring agent, and 

simulation post-processor.  

Based on inputs from MLFO, the simulator manager takes into account metadata and policy inputs 

from the operator while managing the simulated ML underlay networks. The simulation manager is 

responsible for achieving demand mapping [ITU-T Y.3173] while configuring and updating the 

simulated ML underlay networks. The simulation manager provides dynamic resource management 

for ML pipeline nodes instantiated in the ML sandbox. 

8.2.2.1 Simulation designer 

Based on the input from MLFO regarding the simulation requirements for the use case, the simulation 

designer prepares the set of simulation resources that compose the simulated ML underlay, 

corresponding to the ML use case.  

NOTE 1 – Inputs from MLFO may include time-synchronization of operations executed in the ML 

sandbox as required by the specific use case. 

NOTE 2 – The information to design simulated ML underlays can come from the use case (ML intent) 

or data gathered by the live ML underlay.  

NOTE 3 – As an example, in a traffic steering use case, ML models may be applied to predictively 

managing the resource allocation in the network. The simulation designer arrives at the simulation 

needs for this use case which may include data generation and simulated resource management 

mechanisms and corresponding parameters and configurations.  As another example, as a result of 

network dynamics, some path-loss parameters used by the ML sandbox subsystem may vary over 
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time. To address this issue, the MLFO keeps track of those changes and provides feedback to the 

simulation designer to update the necessary simulation parameters. 

8.2.2.2 Simulation composer 

The simulation composer uses the design from the simulation designer and identifies the specific 

simulation components to use for the use case. It takes as input the configurations and KPIs as 

specified in the use case. The simulation composer then deploys, installs, and instantiates the 

simulated ML underlay components (e.g., NFs, AFs and model evaluation plug-ins) to be used for 

simulating different types of network underlays and evaluating various types of ML models. The 

simulation composer may chain and interface simulators from different levels of the network [ITU-T 

Y.3172] with multiple ML pipelines. 

NOTE – Based on the specified role and requirements of the simulation (derived from use cases), the 

simulation composer may indicate the best simulation tool (e.g., a specific implementation of a RAN 

simulator). Specific testing techniques like robustness testing may be applied. 

8.2.2.3 Monitoring agent 

The monitoring agent monitors and evaluates the simulations in the ML sandbox, including the 

evaluation ML pipeline and the simulated ML underlay network. The monitoring agent enables 

granular evaluation of ML test cases by MLFO. 

In addition to the use-case-specific parameters obtained from MLFO, the following five dimensions 

are considered [ITU-T Y.3173]: demand mapping, data collection, analysis, decision, and action 

implementation.  

The monitoring of data collection, action implementation, and analysis is done by the monitoring 

agent (see clause 8.3 of [ITU-T Y.3173]). This may include monitoring the quality of data needed for 

ML models (training or testing) while generating the simulated data, and sanity checks to assess the 

correct operation of the simulated ML underlay networks. 

8.2.2.4 Simulation post-processor 

The simulation post-processor provides an interface whereby data from simulated ML underlays are 

post-processed and presented in a standard-compliant manner to the MLFO, which performs model 

evaluations and/or (re)training. This step is critical to handle heterogeneous sources of information. 

NOTE – For instance, once the handler gets the raw logs generated by a simulator (e.g., a CSV file), 

the post-processor extracts the relevant information to be used by the MLFO. 

8.2.3 Evaluation ML pipeline 

The evaluation ML pipeline is used for model evaluation in the ML sandbox environment as described 

in [ITU-T Y.3172]. This component supports the transfer of evaluated and tested models and supports 

interfaces with ML marketplaces to transfer ML models and corresponding metadata, in coordination 

with the MLFO. 

NOTE – The evaluation ML pipeline is similar to the ML pipeline defined in [ITU-T Y.3172], except 

that it uses simulated ML underlay networks instead of live ML underlay networks. For example, 

both the evaluation ML pipeline and live ML pipeline use reference point 4 and reference point 5.  

8.2.4 Data handling  

Data handling provides functionality for storage of data models and data for simulated ML underlay 

networks, used unmodified as defined in [ITU-T Y.3174]. Components of DH as defined in clause 

8.2 of [ITU-T Y.3174] are instantiated in the ML sandbox subsystem. Reference points 1 and 2 are 

reused from [ITU-T Y.3172] and [ITU-T Y.3174] between evaluation ML pipelines and simulated 
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ML underlay networks. The ML sandbox utilizes DH to dynamically instantiate new simulated SRCs 

and/or SINK nodes. 

NOTE – DH is shown here for completeness. The role and interactions with DH remain the same as 

defined in [ITU-T Y.3174], with the only difference of addressing evaluation ML pipelines with 

respect to what is covered in [ITU-T Y.3174]. 

8.2.5 Inference engine    

The inference engine provides ML model inference capability for ML pipeline(s), used unmodified 

as defined in [ITU-T Y.3179]. 

8.3 APIs 

Reference points 6.1 and 6.2 were shown in Figure 2 and introduced in clause 8.1. The realization of 

the requirements of the ML sandbox necessitates interaction between the ML sandbox and various 

other components of the high-level architecture. Reference points 6.1 and 6.2 enable APIs which are 

used for such interactions.  

The specific APIs that correspond to each reference point are described below.  

NOTE – Interactions between the components using the APIs defined in this clause are depicted in 

the sequence diagrams in clause 8.4.  

8.3.1 Reference point 6.1 

8.3.1.1 Capability discovery request API (Capability_Discovery) 

API description: Using reference point 6.1 and complementary external interfaces with simulation 

capabilities, the Capability_Discovery API discovers third-party simulation components that can be 

used to perform use-case-specific simulations in the ML sandbox. According to the ML use case, the 

MLFO finds and selects the candidate simulation environments from a list of updated capabilities. 

Capability_Discovery-Request:  

Direction: MLFO → ML sandbox subsystem 

Table 8-1 describes the information elements of Capability_Discovery-Request. 

Table 8-1 – Capability_Discovery-Request information elements 

Information element Type 
Mandatory/Optional 

/Conditional 
Description 

Request identifier Integer Mandatory Identifier of the request, indicating 

“capability discovery”  

ML profile <Attribute, 

value> array 

Mandatory Includes metadata defining policies, 

requirements, constraints, etc. 

Capability_Discovery-Response: 

Direction: ML sandbox subsystem → MLFO 

Table 8-2 describes the information elements of Capability_Discovery-Response. 

Table 8-2 – Capability_Discovery-Response information elements 

Information element Type 
Mandatory/Optional 

/Conditional 
Description 

List of simulation 

components 

<Attribute, 

value> array 

Mandatory Updated capability list of the available 

simulation components 
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Simulation 

environment metadata 

<Attribute, 

value> array 

Mandatory Metadata can contain information such as 

installation/execution requirements, 

capabilities of simulated NFs, performance 

indicators, configurable parameters, 

maturity (alpha/beta), etc. 

NOTE 1 – As an example of third-party NF, ns-3 can be selected to simulate a specific deployment 

of IEEE 802.11ax Wireless Local Area Networks (WLANs) [b-IEEE 802.11].  

NOTE 2 – Based on the use case requirements, the list of potential NFs is narrowed. For instance, 

NFs can have associated information (via simulation environment metadata) such as “running time”, 

“billing aspects”, “accuracy”, etc. 

8.3.1.2 Status reporting API (Monitor_Reporting)   

API description: Using reference point 6.1, the Status reporting API reports the status of the 

simulation components (e.g., health status), so that the MLFO can consider taking healing actions. 

Monitor_Reporting (periodical or responsive):  

Direction: ML sandbox subsystem → MLFO 

Table 8-3 describes the information elements of Monitor_Reporting. 

Table 8-3 – Monitor_Reporting information elements 

Information element Type Mandatory/Optional 

/Conditional 

Description 

Notification identifier Integer Mandatory Identifier of the request, indicating 

“monitoring report”  

Status Integer Mandatory Code indicating the current status of the 

simulation components, e.g., health status 

indicated by Green, Yellow, Orange, Red 

Severity Integer Optional Code indicating the severity of the 

potential anomalies identified (Critical, 

Major, Minor, Normal, or Clear) 

Monitoring logs String list Optional Raw data resulting from monitoring 

Alerts <Attribute

, value> 

array 

Optional Threshold-based alerts 

Suggested action 

points 

String list Optional List of suggested action points to fix the 

potential reported issues 

NOTE - Monitoring is carried out based on continuous flow of data generated by simulation 

components, including simulation data (SRC & SINK nodes), regression tests, reporting from 

simulation modules, etc. 

8.3.1.3 Input/Output validation reporting API (Report_IO_Validation) 

API description: Using reference point 6.1, the Report_IO_Validation API is used to report the status 

of input/output data used/generated at/by the ML sandbox. This information can be used by the 

MLFO to generate new data sets, re-train ML models with different configurations, update simulation 

components, etc. 

Report_IO_Validation:  

Direction: ML sandbox subsystem → MLFO 

Table 8-4 describes the information elements of Report_IO_Validation. 
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Table 8-4 – Report_IO_Validation -Response information elements 

Information element Type 
Mandatory/Optional 

/Conditional 
Description 

Notification identifier Integer Mandatory Identifier of the request, indicating 

“input/output validation result”  

Validation type Integer Mandatory Indicates the type of validation performed 

(e.g., input data to configure simulation 

parameters or output training data validity) 

Result of validation Integer Mandatory “Success” or “fail” 

Warnings String list Optional Detailed information regarding potential 

issues or misbehaviors observed from the 

current input/output data 

Error details String list Conditional Detailed information regarding the errors 

thrown during the validation procedure 

NOTE – The data to be validated includes input data (e.g., to check that demand mapping can be 

fulfilled at the simulated ML underlay) and simulation output data (e.g., to assess the feasibility of 

trained models, the accuracy of generated data, etc.). For instance, testing techniques such as 

equivalence partitioning or centroid positioning [b-Zhang-Testing] can be applied to validate the 

diversity and the quality of the data generated by simulators (e.g., as for validating the synthetic data). 

8.3.1.4 Sandbox asynchronous messages API (Sandbox_Async) 

API description: Using reference point 6.1, the Sandbox_Async API is used for the sandbox 

asynchronous messages defined in clause 8.4.5. 

Sandbox_Async:  

Direction: ML sandbox subsystem → MLFO 

Table 8-5 describes the information elements of Sandbox_Async. 

Table 8-5 – Sandbox_Async information elements 

Information element Type 
Mandatory/Optional 

/Conditional 
Description 

Message identifier Integer Mandatory Identifier of the message, indicating 

“Sandbox asynchronous message” 

Message code Integer Mandatory Code of the asynchronous message type 

Additional 

information 

String list Conditional Additional information related to the 

message type 

8.3.2 Reference point 6.2 

8.3.2.1 MLFO-triggered operations API (MLFO_Trigger) 

API description: Using reference point 6.2, the MLFO_Trigger API is used for the MLFO-triggered 

operations defined in clause 8.4.4. 

MLFO_Trigger-Request:  

Direction: MLFO → ML sandbox subsystem 

Table 8-6 describes the information elements of MLFO_Trigger-Request. 

Table 8-6 – MLFO_Trigger-Request information elements 

Information element Type 
Mandatory/Optional 

/Conditional 
Description 
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Message identifier Integer Mandatory Identifier of the message, indicating “ML-

triggered operation” 

Operation code Integer Mandatory Code of the operation to be performed 

Policies & 

requirements 

<Attribute, 

value> array 

Conditional Metadata including policies, requirements. 

Simulation 

environment metadata 

<Attribute, 

value> array 

Conditional Metadata including simulation 

configuration, available resources, time 

constraints, etc. 

 

MLFO_Trigger-Response:  

Direction: ML sandbox subsystem → MLFO 

Table 8-7 describes the information elements of MLFO_Trigger-Response. 

Table 8-7 – MLFO_Trigger-Response information elements 

Information element Type 
Mandatory/Optional 

/Conditional 
Description 

Message identifier Integer Mandatory Identifier of the message, indicating “ML-

triggered operation” 

Response code Integer Mandatory Code of the operation response (OK, Bad 

request, Error, etc.) 

Response data (variable) Conditional Depending on the request type, different 

response data types can be provided (e.g., 

training data set, trained ML model, 

validated ML model) 

8.4 Sequence Diagrams 

This clause provides sequence diagrams that result from the ML sandbox operation. The sequence 

diagrams are derived from the requirements in clause 7, the architectural framework defined in clause 

8.1 and the APIs in clause 8.3. 

8.4.1 Capability discovery 

Simulation components provided by third parties can be used to perform use case-specific simulations 

in the ML sandbox. This procedure enables the discovery of such simulation components stored in 

third-party repositories. The sequence diagram is shown in Figure 4. 
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Figure 4: Capability discovery for third-party simulation components 

Prerequisite: MLFO knows the list of third-party repositories, offline configured, trusted, secure 

channels. Simulation components in the repositories are described using simulation environment 

metadata. 

Two mechanisms (proactive and reactive) are considered according to the nature of the capability 

discovery notification. The steps in Figure 4 are explained below. 

Proactive mechanism: 

This includes the following steps, as shown in Figure 4: 

1.1 Third-party simulator repositories update their simulation components to the ML sandbox. 

These are to be evaluated in the ML sandbox in combination with the model evaluation plug-ins. 

Further component updates can also be provided to the ML sandbox as and when a third-party 

simulation repository (e.g., ns-3) releases specific features (e.g., MIMO support). 

NOTE 1 – This step is done using an external interface, referred to as Ext-Repository_Update. 

1.2 Information from the update message is processed to prepare an updated list of candidate 

simulated NFs for evaluation in the ML sandbox. 

NOTE 2 – This step is done by the simulation designer (see clause 8.2.2.1). 

1.3 The corresponding updated simulation components are published to trusted MLFOs.  

Reactive mechanism: 

This includes the following steps as shown in Figure 4: 

2.1 MLFO queries the ML sandbox for simulation capabilities based on simulation environment 

metadata.  

2.2 The ML sandbox sends the query to trusted third-party simulation component repositories.  

NOTE 3 – This step is done using an external interface, referred to as Ext-Search_Repository. 

2.3 Repositories respond with a list of simulation components matching the query. 
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NOTE 4 – This step is done using an external interface, referred to as Ext-Repository_Update. 

2.4 Information from the response message is processed to prepare an updated list of candidate 

simulated NFs for evaluation in the ML sandbox. 

NOTE 5 – This step is done by the simulation designer (see clause 8.2.2.1). 

2.5 The corresponding updated simulation components are published to trusted MLFOs.  

Based on the use case requirements and the result of the capability discovery mechanism, MLFO 

arrives at candidate simulation environments (list of NFs, simulation components, corresponding 

configurations, connections, data handling adaptors). From the candidate simulation environments 

provided by MLFO, an operator selects an optimal configuration and deploys it in the ML sandbox.  

In addition, data handling and other underlay changes are also applied based on the selected 

configuration. 

NOTE 9 – Simulation resources in the repositories are described using simulation environment 

metadata. 

NOTE 10 – An example of third-party simulated NF is ns-3, used to simulate a specific deployment 

of IEEE 802.11ax WLANs. 

NOTE 11 – Based on the use case requirements, the list of potential NFs is decided. NFs can have 

associated information (as part of simulation environment metadata) such as “running time”, “billing 

aspects”, “accuracy”, etc. 

8.4.2 Health monitoring 

Health monitoring is meant to ensure the proper behaviour of the simulation components in the ML 

sandbox. The sequence diagram is shown in Figure 5. 

  

Figure 5: Health monitoring 

Prerequisite: Simulation components have been set up and the ML intent allows for monitoring 

simulation components. 

1. ML sandbox sets up the resources for monitoring simulation components. 

NOTE 1 – This step is done by the simulation designer (see clause 8.2.2.1). 
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2. Monitoring is carried out based on a continuous flow of data generated by simulation 

components, including simulation data (SRC & SINK nodes), regression tests, reporting from 

simulation modules, etc. 

NOTE 2 – This step is done by the monitoring agent (see clause 8.2.2.3). 

3. Data gathered from monitoring is processed and delivered in the form of reports. 

NOTE 3 – This step is done by the simulation post-processor (see clause 8.2.2.4). 

4. Periodic reports are generated and sent to the MLFO, according to ML intent specification. 

Alternatively, threshold-based alerts can be activated when undesired events occur, which are 

also reported to MLFO. MLFO may take action after processing periodic reports or threshold-

based alerts (see clause 8.4.4) and optionally send action points to the ML sandbox. 

5. The ML sandbox applies action points (if any) suggested by MLFO and/or self-healing actions. 

NOTE 5 – The simulator composer may take action for redefining the simulation environment 

(e.g., switch to a more computation-intensive but accurate tool) if certain indicators of quality 

are not met. 

8.4.3 Validate input/output data 

In this scenario, input data and simulated output data are validated. This includes checking the 

feasibility of training models, the accuracy of generated data, etc. For instance, testing techniques 

such as equivalence partitioning or centroid positioning can be applied to validate the diversity and 

the quality of the data generated by simulators.  

NOTE 1 – An example of validation of input data is to validate the synthetic data generated by 

generative adversarial networks (GANs) [b-Castelli-GANs].  

The sequence diagram is shown in Figure 6. 

  

Figure 6: Validate input/output data 

Prerequisite: Simulation components and evaluation ML pipeline have been set up. 
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For input data: 

1.1 ML sandbox receives input configuration from the MLFO to configure input data generation 

from the simulation environment. 

1.2 Input data generation is validated. 

NOTE 2 – This step is done by the simulation designer (see clause 8.2.2.1). 

1.3 A response with the validation result is provided to MLFO. 

1.4 MLFO may provide updated inputs to configure the simulation environment. 

For simulated output data: 

2.1 ML sandbox receives output data from the ML use case (training data set, trained ML model, 

evaluation of ML model). 

2.2 Output data is validated. 

NOTE 3 – This step is done by the simulation post-processor (see clause 8.2.2.4). 

2.3 The result of the validation is sent to MLFO. 

2.4 MLFO may provide updated inputs to configure the simulation environment. 

8.4.4 MLFO-triggered operations 

The MLFO-triggered operations are generally defined in Figure 7.  

 

Figure 7: MLFO-trigger operations 

The MLFO_Trigger API requests and provides response to the following set of operations: 

Setup environment for ML use case (SANDBOX-TRIGGER-001):  

Prerequisite: capability discovery is done (see clause 8.2.1). 

1. The MLFO sends a request to the ML sandbox to set up the environment for the ML use case 

in the sandbox. This request contains the selected candidate simulation environment, as a 

result of the procedure in clause 8.4.1. 

2. ML sandbox prepares the environment via the simulation designer (see clause 8.2.2.1): 
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a. This step can optionally include download and install of simulation components. 

b. Data handling for the simulated ML underlay includes integration with data brokers 

and data storage units [ITU-T Y.3174]. A plugin to interact with third party 

applications can also be employed for the setup. 

3. A response is provided by ML sandbox to the MLFO.  

NOTE 1 – Environment setup may use the policies from MLFO and demand mapping (e.g., 

ML intent may require isolation of resources). The ML underlay may also be configured based 

on the use case specification and based on features extracted from the live ML underlay to be 

simulated. 

NOTE 2 – Setting up the evaluation ML pipeline may include the download of ML models 

from marketplaces [ITU-T Y.3176] and ML model serving [ITU-T Y.3179] to create 

evaluation ML pipelines.  

NOTE 3 – Environment setup may include the installation of third-party applications or 

setting up interfaces, establish connections via sockets, etc. 

Validate environment for ML use case (SANDBOX-TRIGGER-002):  

Prerequisite: Setup environment for ML use case is done (see clause 8.2.2). 

1. MLFO requests to run sanity tests on a specific simulation environment for the ML use case. 

2. The simulation designer selects and executes the test suite (interaction with third-party 

applications can be done through the evaluation plugin). 

3. The output of the test suite is processed and output to MLFO. 

NOTE 4 – For instance, installing a third-party simulation tool may output a set of traces (or 

logs) indicating the result of installing submodules. This information should be post-processed 

to assess that the final installation procedure was successfully accomplished regarding the use 

case requirement. Example: if the installation of the LTE module failed, but the use case was 

meant for Wi-Fi (which module was successfully installed), then the result of the installation 

is satisfactory. 

4. The MLFO decides whether the validation results are acceptable or not (may include some 

basic tests and KPIs). 

Manage simulated ML underlay (SANDBOX-TRIGGER-003): 

1. The MLFO sends a trigger for modifying/updating the simulated ML underlay. Information 

on changes is included in the updated ML profile. 

2. The simulation driver configures the simulated ML underlay accordingly (e.g., adapt 

configuration parameters, specify desired output…). Besides, there is an information 

exchange between the live and simulated ML underlays (mimic purposes). 

3. The ML sandbox responds to the trigger with the information related to changes done in the 

simulated ML underlay (OK/NOK, changelog, etc.). 

NOTE 5 – As an example, as a result of network dynamics, some path-loss parameters used by 

the ML sandbox subsystem may vary over time. To address this issue, the MLFO keeps track of 

those changes and provides feedback to the Simulation designer to update the necessary 

simulation parameters. 

Evaluate output of ML model (SANDBOX-TRIGGER-004): 

Prerequisite: The environment has been set up in ML sandbox for the ML use case. 
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1. The MLFO sends a request to the simulation composer in the ML sandbox to run the simulated 

ML underlay. 

2. The simulation composer uses the “evaluator plugin” to input the output of the ML model. 

The plugin can also be used to interact with the third-party application (i.e., translate 

commands from the MLFO to simulator-oriented instructions). 

3. Evaluate the output of an ML model: the evaluation platform provides a report, which is 

processed by the post-processor. 

4. The processed report is sent back to the MLFO. The report can also include synthetic data for 

training. 

NOTE 6 – The information extracted from the simulated ML underlay needs to be post-processed 

according to the desired output specified in the use case and the characteristics of the simulated 

ML underlay. The evaluation result can be an OK/NOK message, a percentage of reliability, a set 

of KPIs gathered from the evaluation procedure, etc. 

NOTE 7 – Post-processing for third-party simulation tools may include the conversion of raw 

data into meaningful information (e.g., average or deviation on KPIs). 

ML model training (SANDBOX-TRIGGER-005): 

Prerequisite: The ML model is served and evaluation blocks are ready. 

1. The MLFO sends a trigger for training an ML model in the sandbox. 

2. Model training is performed at the simulated ML underlay through the simulator composer. 

3. The trained ML model is post-processed (e.g., compressed, pruned) according to the use case 

and the policies and capabilities (time constraints, link capacity for exchanging information, 

storage capabilities, etc.). 

4. The trained model is included in the response sent to the MLFO.  

Table 8-8 describes the operation codes used in the MLFO-triggered operations. 

Table 8-5: Definition of MLFO-triggered operation codes (MLFO trigger types) 

MLFO 

trigger type 
Parameters 

Time sync / 

dependencies 
Description 

SANDBOX-

TRIGGER-

001 

Request type, ML 

profile 

Time sync = yes 

(evaluation blocks) 

Request to prepare the simulation 

environment (both simulated ML underlay 

and evaluation ML pipeline) to train, test, 

and evaluate ML models in the ML 

sandbox. 

SANDBOX-

TRIGGER-

002 

Request type, 

validation type, 

acceptance criteria 

Time sync = yes 

(sanity checklist, test 

suite, etc.) 

Request to validate (sanity check) the 

deployed simulation environment. Used by 

the MLFO to determine whether to take 

action to fix potential deployment issues, 

proceed with ML model evaluation in the 

sandbox, etc. 

SANDBOX-

TRIGGER-

003 

Request type, 

update type, 

updated ML profile  

Time sync = yes 

(updated simulation 

components) 

Request to modify/update the simulated 

ML underlay according to updates in 

policies, changes in the live ML underlay, 

potential failures of previous simulated 

functions, etc. 
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SANDBOX-

TRIGGER-

004 

Request type, ML 

profile, ML model 

output 

Time sync = yes 

(evaluation results) 

Request to evaluate the impact of the output 

of an ML model in the simulated ML 

underlay, so that some insights can be 

provided before applying that output to the 

live ML underlay. 

SANDBOX-

TRIGGER-

005 

Request type, ML 

profile 

Time sync = no Request to train an ML model in the ML 

sandbox. 

8.4.5 Sandbox asynchronous messages 

ML sandbox asynchronous messages are generally defined in Figure 8.  

 

Figure 8: ML sandbox asynchronous messages 

Prerequisite: Asynchronous messages are generated upon certain conditions are met, which are 

specific to the different types of events. 

1. Upon meeting the trigger conditions, the ML sandbox sends an asynchronous message to the 

MLFO. 

2. The message is processed and potential action points are defined. 

3. The MLFO sends a response to the ML sandbox.  

The sandbox asynchronous message codes are defined in Table 8-9. 

Table 8-6: Definition of ML sandbox asynchronous message codes 

Code Parameters Conditions Description 

SANDBOX-

ASYNC-001 

Status code / Error code / 

detailed report 

(conditional) 

Threshold-based alert is 

fired / miss-behavior is 

detected / keep-alive 

message 

Report the health status of the 

simulation components 

 

SANDBOX-

ASYNC-002 

Update type / changelog / 

additional information on 

implications of update 

Updated on simulation 

components is 

notified/discovered to/by 

the ML sandbox 

Report an update on security, 

accounting, licensing 

requirements of simulation 

components 
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SANDBOX-

ASYNC-003 

Alert type / forecasted 

results / additional 

information on potential 

failure points 

Threshold-based alert 

based on trend analysis 

(e.g., service at risk) 

Proactive behavior trend 

identification of simulation 

components and sandbox 

resources 

SANDBOX-

ASYNC-004 

Report type / Updated 

simulation component 

metadata 

Change on simulation 

component is noticed 

Report an update on simulation 

component metadata 

SANDBOX-

ASYNC-005 

Report type / Updated 

level of intelligence of 

simulation components 

Change on the 

intelligence level of a 

simulation component 

Report the simulation 

environment intelligence level 

9. Security considerations  

This Recommendation describes an architectural framework for the ML sandbox in the context of 

integrating machine learning in future networks including IMT-2020: therefore, general network 

security requirements and mechanisms in IP-based networks should be applied [ITU-T Y.2701] [ITU-

T Y.3101].  

It is required to prevent unauthorized access to, and data leaking from, the ML sandbox, whether or 

not there is a malicious intention, with the implementation of appropriate mechanisms, such as those 

for authentication and authorization, and external attack protection. 
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