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Technical Report on Proof of Concept activities 

1 Scope 

This document provides a report on the Proof of Concept activities under ITU FG AN WG3. This 

report provides the technical summary of the activities done under PoC and it covers the following: 

- Requirements for the Proof of Concept  

- Description of the Proof of Concept and results 

2 References 

[FGAN-O-023] ITU-T Focus Group on Autonomous Networks Technical Specification 

“Architecture framework for Autonomous Networks” 

[ITU-T Y.Supp 71] ITU-T Supplement 71 to ITU-T Y-3000 series Recommendations, “Use 

cases for Autonomous Networks” https://www.itu.int/rec/T-REC-Y.Sup71-202207-P/en   

[ITU-T Y.3172] ITU-T Recommendation Y.3172, “Architectural framework for machine 

learning in future networks including IMT-2020” 

[ITU-T Y.3176] ITU-T RecommendationY.3176, “Machine learning marketplace integration 

in future networks including IMT-2020" 

[ITU-T Y.3177] ITU-T Recommendation Y.3177, “Architectural framework for artificial 

intelligence-based network automation and fault management in future networks including IMT-

2020” 

[ITU-T Y.3320] ITU-T Recommendation Y.3320, “Global information infrastructure, internet 

protocol aspects and next-generation networks” 

[ITU-T Y.3525] ITU-T Recommendation Y.3525, “Cloud computing – Requirements for 

cloud service development and operation management” 

3 Definitions 

None 

3.1 Terms defined elsewhere 

None  

3.2 Terms defined in this document 

None 

https://www.itu.int/rec/T-REC-Y.Sup71-202207-P/en
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4 Abbreviations and acronyms 

This document uses the following abbreviations and acronyms: 

EC – Evolution Controller 

OC – Operational Controller 

CC – Curation Controller 

CL – Closed Loop 

SC – Selection Controller 

RL – Reinforcement Learning 

5 Conventions 

In this Technical Report, in alignment with the conventions of [Supplement 55 to ITU-T Y- 

series Recommendations] possible requirements which are derived from a given use case, 

are classified as follows:  

The keywords "it is critical" indicate a possible requirement which would be necessary to 

be fulfilled (e.g., by an implementation) and enabled to provide the benefits of the use 

case. 

The keywords "it is expected" indicate a possible requirement which would be important 

but not absolutely necessary to be fulfilled (e.g., by an implementation). Thus, this possible 

requirement would not need to be enabled to provide complete benefits of the use case.  

The keywords "it is of added value" indicate a possible requirement which would be 

optional to be fulfilled (e.g., by an implementation), without implying any sense of 

importance regarding its fulfilment. Thus, this possible requirement would not need to be 

enabled to provide complete benefits of the use case.  

6 Introduction 

As explained in [ITU-T Y.Supp 71], the main concepts behind autonomous networks which 

are elaborated here are exploratory evolution, real-time responsive experimentation and 

dynamic adaptation. Use cases along these concepts in networks were studied in [ITU-T 

Y.Supp 71], especially using, a basic building block called “controller”. Controllers are used 

in the use cases to further elaborate autonomous networks and the key concepts required 

to enable them. Controller is defined in [FGAN-O-023] as a workflow, open loop or closed 

loop [ITU-T Y.3115] composed of modules, integrated in a specific sequence, using interfaces 

exposed by the modules, which can be developed independently of the system under control before 
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integration into the system under control, to solve a specific problem or satisfy a given requirement. 

An architecture framework was also defined in [FGAN-O-023], with the key purpose and goal of 

the architecture as to support the continuous evolutionary-driven creation, validation, and 

application of a set of controllers to a network and its services such that the network and its services 

may become autonomous. An autonomous network is a network which can generate, adapt, 

and integrate controllers at run-time using network-specific information and can realize 

exploratory evolution, real-time responsive online experimentation and dynamic adaptation.  

ITU  FG-AN organized a Build-a-thon challenge in 2021 to demonstrate and validate important use 

cases for autonomous networks, creating PoC implementations and tools in the process relating to 

emergency management. Interactions between a higher closed-loop in the OSS and a lower closed-

loop in the RAN to intelligently share RAN resources between the public and emergency responder 

slice were used as the background scenario for this PoC. The outcomes of the challenge were 

submitted by the various teams that participated in creating the PoC as contributions and was the 

main learnings were submitted as ITU J-FET paper [TBD]. The main outputs of the Build-a-thon 

challenge in 2021 include: (1) the implementation of a higher closed-loop “controllers” in a 

declarative fashion (intent), (2) the design and implementation of a lower closed-loop with Cloud 

Radio Access Network (C-RAN) to trigger “imperative actions” in the “underlay” based on the 

intent, (3) implementation of a simulation environment for data pipeline between various 

components; formulation of methods/algorithms for “influencing” lower layer loops using specific 

logic/models, and (4) the integration of the closed-loops and systems into an Open Radio Access 

Network (O-RAN)-based software platform, ready to be tested in the 5G Berlin testbed. The 2021 

PoC study focused on intent parsing, traffic monitoring, resource computing, and allocation 

autonomously. The closed-loops were implemented with several micro-services deployed as docker 

containers with specific functions such as monitoring, computing, ML selection, and resource 

allocation. 2021 was a collaborative study where we developed and implemented a hierarchical 

closed-loop that autonomously handles an emergency use case. Clause 8 below describes this PoC.  

As a follow up, Build-a-thon challenge in 2022 focussed on creation of a crowdsourced, baseline 

representation for AN closed loops (controllers), reviewing and analysing them, and publishing 

them in an open repository. The aim of the exercise was to produce reference implementations of 

parser, “AN orchestrator”, “openCN” [ITU-T Y.Supp 71], Evolution controller [FGAN-O-023] and 

to trigger technical discussions on the standard format for representing closed loops (controllers) 

with FG AN members and other stakeholders. This would pave the way for further downstream 

extensions on top of the baseline. The main activities included (1) the implementation of a reference 

TOSCA orchestrator to demonstrate the parsing and validation of the format in a  closed loop (2) 

development of an evolution/exploration mechanisms to create new closed loops based on existing 

closed loops or controllers. Clause 9 below describes this PoC.  

As a future direction, build-a-thon Challenge 2023 is planned too, to further build upon the use 

cases designed as part of the 2021 and 2022 Build-a-thons, study the autonomy engine defined in 

[FGAN-O-023], especially regarding the possibility to plugin different evolution 

mechanisms as a service with clear but limited interfaces and interoperability with different 

knowledge bases with clear but limited interfaces.  
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7 Requirements for the PoC  

This clause describes the requirements for the PoC. 

Requirement 
Description 

Gen-Build-a-thon-PoC-001 
It is critical that PoC development activity, builds upon a key 

concept in FG AN, especially aims to prove the concept 

practically with code, test setup and demo setup. 

Gen-Build-a-thon-PoC-002 
It is critical that PoC development activity create well-

documented artefacts and opensource code. 

Gen-Build-a-thon-PoC-003 
It is critical that the maturity of the PoC is evaluated using 

test scenarios in the accompanying documentation. 

Gen-Build-a-thon-PoC-004 
It is critical that the mapping with discussions in FG AN use 

cases, and relationship with a focussed closed loop 

example(s), is documented in the PoC. 

Gen-Build-a-thon-PoC-005 
It is critical that PoC (proof of concept) demonstrates the 

feasibility (or lack of it) of specific architecture approaches. 

 
 

2021-Build-a-thon-PoC-006 
It is critical that Demonstration is focussed on a unique 

scenario.  

2021-Build-a-thon-PoC-007 
It is expected that AI/ML based closed loops be used to 

intelligently deploy and manage slice for emergency 

responders in an emergency scenario. 

2021-Build-a-thon-PoC-008 
It is expected that A higher closed loop in the OSS be used 

for detecting which area is affected by the emergency and 

deploy a slice for emergency responders to that area. 

2021-Build-a-thon-PoC-009 
It is expected that The lower loop can use the policy derived 

by the higher loop to intelligently share RAN resources 

between the public and emergency responder slice. 

2021-Build-a-thon-PoC-010 
It is expected that the lower loop intelligently manage ML 

pipelines across the edge and emergency responder devices 

by using split AI/ML models or offloading of inference tasks 

from the devices to the edge. 

 
 

2022- Build-a-thon-PoC-011 
It is critical that The reference closed loops are provided as 

examples, parts of controllers (may not be complete, real life 

use cases) but representative enough for participants in the 

PoC to understand how to build a closed loop. 

2022- Build-a-thon-PoC-012 
It is expected that participants submit other use case 

implementations in the same format as the reference 

examples. 

2022- Build-a-thon-PoC-013 
It is critical that FG AN will collect the submitted closed 

loop files, and parse them using a pre-published reference 

code. 

2022- Build-a-thon-PoC-014 
It is expected that participants submit the Evolution 

controllers, and given the entries in openCN, evaluate the 

Evolution controllers by changing utilities, testing for levels 

of autonomy/adaptability. 
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2023-Build-a-thon-PoC-015 
It is expected that participants are able to submit use cases 

with minimal syntactical limitations e.g. using natural 

language. 

2023-Build-a-thon-PoC-016 
It is expected that Knowledge Base [FGAN-O-023] is 

collated and updated using the use cases collected using 

minimal syntactical limitations. 

2023-Build-a-thon-PoC-017 
It is expected that evolution mechanisms are plugged in 

(along with the Knowledge Base) with well-specified 

interfaces. 

 

8 2021 PoC Description 

The main scope of 2021 PoC study was to study the interactions between a higher closed-loop in 

the OSS and a lower closed-loop in the RAN to intelligently share RAN resources between the 

public and emergency responder slice were used as the background scenario for this PoC. In this 

context, the following main activities were achieved: 

• We designed and implemented closed-loops using a declarative specification. In the design,  the 

Mobile Network Operators (MNOs) instruct the OSS to detect certain emergencies and provide 

connectivity to emergency responders according to predefined SLA. The operator input is provided 

as an intent using Topology and Orchestration Specification for Cloud Applications (TOSCA). 

The resulting YAML file is parsed, and the resulting components are instantiated in a virtualized 

environment. 

• A network testbed with a C-RAN architecture composed of Remote Radio Units (RRUs), 

Baseband Unit (BBU) pool, and the core network was designed and implemented. In the 

architecture, a Software-Defined Network (SDN) and RAN controllers work as information 

sources and agents that dynamically change the mobile and the computer network. An AI agent 

performs different actions (e.g. resource allocation) in the testbed according to the application, 

using the information provided by SDN and RAN controllers to train and execute the test stage 

neural networks. This study shows that validating and applying closed-loop decisions for 

prioritizing resource allocation for network slices can significantly increase emergency response 

efficiency. 

• We implemented a simulation environment to generate data for model training and testing 

purposes and to serve as a simulation underlay for testing. Two simulation cases were considered: 

a standalone case and a New Radio (NR) dual connectivity case. The results show that prioritized 

resource allocation can be simulated in different network topologies. The simulations enable us to 

study various configurations and analyze them to optimize the allocations. Representation of 

various configurations using text files helps us to create simulation topologies easily. Thus, the 

SRC (source) node (generating data corresponding to resource usage) and SINK node (applying 

various configurations in the form of NED files) are possible in the simulation environment. 

• The formulation and implementation of various algorithms for an O-RAN-based controller 

architecture to verify the resource allocation schemes over various domains is actualized. Two 

algorithms were investigated to analyze the Physical Resource Block (PRB) utilization in RAN. 

Results were presented considering the need for resources of each slice can vary over time under 

dynamic networking conditions. The results show the importance of closed-loop implementations 

in NS, especially for intelligent management of RAN resources during emergency scenarios. 

• Lastly, the PoC describes the integration of the algorithms and closed-loops above into an O-RAN-

based software platform, ready to be tested in the 5G Berlin testbed [b-FGAN-I-093 ]. We present 

the integration of the algorithms in an O-RAN near Real-Time RAN Intelligence Controller (RIC) 
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with the Acumos model repository.  

Section 8.1 describes all the contents related to PoC implementation, Section 8.2 describes the 

design of closed-loops using a declarative specification, Section 8.3 describes a network testbed 

with a C-RAN architecture composed of RRUs, baseband unit BBU pool, and core network, 

Section 8.4 presents the creation of a simulation environment to generate data for model training 

and testing purposes and serve as a simulation underlay for testing, Section 8.5 describes the 

various algorithms which can be integrated with an O-RAN-based controller architecture to verify 

the resource allocation schemes, Section 8.6 describes the implementation of the above algorithms 

in an O-RAN near Real-Time RAN Intelligence Controller (RIC) and its integration with the 

Acumos model repository, Section 8.7 describes the integration of these algorithms and closed-

loops into O-RAN-based software platform, ready to be tested in the 5G Berlin testbed, Section 8.8 

presents the observations from the implementation of the 2021 PoC. 

8.1 The PoC Design and Implementation 

This study proposes the use of analytics in Service Management and Orchestrator (SMO) [b-oran-

arch] in combination with predictive resource allocations to specific edge locations based on 

detected emergencies to implement the PoC. A high-level strategy/policy to reallocate resources 

among the slices in the non-real-time RAN Intelligence Controller (non-RT RIC), forms the first 

level of the closed-loop. The decision in the higher level closed-loop in the non-RT RIC to 

reallocate resources may depend, among other things, on the type of emergency, e.g., a natural 

disaster such as an earthquake, law and order situation, traffic accidents, etc. A RAN-level may 

complement this higher-level closed-loop that uses other inputs from emergency responders to 

arbitrate resources among RAN nodes. Such lower-level closed-loops may be hosted nearer to the 

edge, e.g., near-RT RIC. The policy input from the higher loop may indicate, among other 

parameters, the different sources of data for the lower loop, such as system and service data. A 

RAN level closed-loop might also decide to offload inference tasks from ER devices to either the 

edge or use a split AI/ML model to run inference tasks on edge and ER devices. This decision 

might be taken based on the available network and computing resources. Some layers of the AI/ML 

model may be hosted in the wearable devices of the emergency responders, which will help in 

locating persons under distress using various inputs such as Global Positioning System (GPS) 

coordinates  

Workflows for the closed-loops at the different levels are independent of each other. The only 

interaction between closed-loops is via high-level intents over the inter-loop interface. The closed-

loops can create new closed-loops in other network domains without human intervention. Each loop 

can evolve independently, although loops are deployed hierarchically. It can use different models 

and ML pipelines as required. Each loop may move up or down the autonomy levels as defined in 

ITU standard, Recommendation ITU-T Y.3173. The closed-loops can split and provision AI/ML 

models to other closed-loops in an automated fashion. In addition, we provide a low orchestration 

delay, better privacy, and flexibility for verticals (e.g., industrial campus networks) by making 

closed-loops in the edge domain autonomous. Higher loops can use historical knowledge to 

optimize and generalize lower loops using high-level intent, resulting in increased efficiency of 

lower loops while preserving their autonomy (e.g., the higher loop might know certain ML models 

that are good for cyclone emergency management based on previous cyclones). Fig. 1 presents the 

workflow sequence for the simulation/testbed.  
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8.2 Design of closed-loops using a declarative specification  

The high complexity of management of future networks, which includes the ability to provide new 

innovative services using complex network configurations, has led to requirements for autonomous 

behaviour. To enable low latency response by emergency responders, the use of autonomous 

networking concepts, including the following factors, were found important: (1) application of 

intent-based mechanisms to coordinate closed-loops and (2) translation of intents into decisions and 

actions. These mechanisms allow seamless design, deployment, and management of emergency 

resources in the networks using operator-friendly intents.  

Several studies have been conducted regarding close-loops. For example, Gomes, et al. [b-Gomes] 

presented a method for formulating and managing closed-loops using requirements communicated 

through intents. They propose new management functions for intent delegation, escalation, and 

reporting while focusing on how intent management can be integrated into the ZSM  framework. 

Luzar, et al. [b-Luzar] compared four TOSCA-compliant orchestrators; Opera, Yorc, Indigo, and 

Cloudify. This comparison was made regarding ease of usage, open-source availability, licenses, 

and operating systems supported by the orchestrator. Ram O.V, et al. [b-Ram]  carried out a gap 

analysis of existing frameworks in autonomous networks. Fig. 2 shows a high-level flow chart of 

the intent for closed-loops activity, starting with the design of the controllers. An intent is written 

according to the design of the controllers. This high-level intent is parsed, and appropriate closed-

loops are set up to meet the objective of the intent. 

 

Fig. 1 – Overview of the intent-based design and implementation of hierarchical closed-loops, including simulation and 
testbed domain. 
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Fig. 2 – The high-level flow chart of the study toward intent for closed-loops. 

 

Fig. 3 – Example - Declarative intent in  YAML format. 

Fig. 3 shows an excerpt from the service model showing the definition of the model node. The 

intent specifies the model node with attributes, including the URL for pulling the ML model from a 

repository.  Additional attributes like catalog ID, revision ID, and solution ID may be used to 

identify the model. For the implementation, Opensource orchestrator xopera [b-oasis] was 

considered, and simple controller requirements were derived. 

 

Fig. 4 shows the setup considered in this activity demo. The intent is written in TOSCA YAML 

v1.3. The intent is to create a three-node closed-loop comprising of a source, model, and sink nodes 

(corresponding to data collection, analysis, and application). This intent is parsed by the xopera 

orchestrator [b-oasis] for the deployment of the closed-loop. The model metadata and repository are 

defined based on the standard, Recommendation ITU-T Y.3176. 
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Fig. 4 – Setup design for creation and parsing of example intent. 

Fig. 5 shows the outputs specified for the three nodes (source, model, and sink).  The outputs 

specified are the attributes of the nodes, which consist of the Application Programming Interface 

(APIs). Fig. 6 shows the parsing of the service model for the deployment of the three nodes. The 

APIs in the intents are parsed into three JSON (JavaScript Object Notation) files. Three docker 

containers are created for implementation, which uses the APIs for data collection, analysis, and 

adaptation. Dummy data based on the 3Vs (Velocity, Variety, and Volume) and dummy h5 model 

are downloaded from corresponding repositories according to the specified links. This study shows 

that a closed-loop can be represented and designed using a standard template demonstrated here 

using a three-node closed-loop (i.e. SRC node, ML node, and SINK node). 

 

Fig. 5 – Creation and parsing of intent in YAML. 
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Fig. 6 – Deployment of the nodes. 

8.3 “Imperative actions” in the “underlay” based on the intent  

Validating and applying closed-loop decisions in the network is one of the major challenges in the 

intelligent allocation of resources for an emergency. The capability to build flexible and realistic 

AI-based scenarios with different network topologies for 5G and quickly deploy and assess them is 

important in emergency scenarios. This section describes a network testbed with a C-RAN 

architecture composed of RRUs, a BBU pool, and a core network. A network testbed called 

"Connected AI" is described in [b-Nahum]. The SDN and RAN controllers work as information 

sources about the network. Furthermore, they work as agents to dynamically change the mobile and 

the computer network. An AI agent performs different actions in the testbed according to the 

application using the information provided by SDN and RAN controllers to train and execute in the 

test stage. The ML workloads are orchestrated along the cluster to provide the AI agent processes. 

Results from this study show that the validation and application of closed-loop decisions for 

prioritizing resource allocation for network slices can significantly increase the efficiency of 

emergency response. This was demonstrated using priority assigned to an Unmanned Aerial 

Vehicle (UAV) drone based on a three-node closed-loop, i.e., source (SRC) node, ML node (AI 

Agent) and sink (SINK) node defined into ITU ML proposed architecture [ITU-T Y.3172]. 

8.3.1 Connected AI (CAI) network testbed 

The CAI testbed deploys a 5G mobile network with a virtualized and orchestrated structure using 

containers while focusing on integrating  AI applications [b-Nahum]. It uses open-source 

technologies to deploy and orchestrate the Virtual Network Functions (VNFs) to flexibly create 

various mobile network scenarios with distinct fronthaul and backhaul topologies. Distinctive 

features of the testbed are its low cost and the support for using AI to optimize the network 

performance.  

Fig. 7 shows the testbed structure with a C-RAN architecture composed of RRUs, the BBU pool, 

and the CN. The transport network is emulated by software using Mininet [b-Aliyu], enabling the 

deployment of different network topologies without real network components (such as switches and 

routers).  

The network contains two main controllers: the RYU SDN controller [b-Ryu], which is responsible 

for controlling the transport network emulated by Mininet, and the Open-Air Interface (OAI) 
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FlexRAN controller [b-Flexran], which is responsible for controlling the base stations deployed in 

the testbed. Both controllers are connected to the AI agent, which receives network information 

from controllers and applies commands to change the network operations. No Management and 

Orchestration (MANO) component was implemented since the main objective of the testbed is to 

explore focused scenarios which do not include full end-to-end slice support to maintain simplicity 

and low costs.  

 

Fig. 7 – Design of the proposed testbed network [41] 

To facilitate the deployment of each VNF  into containers in different environments and give more 

flexibility to move these functions to different computers in a cluster, all the testbed components 

were implemented into container [b-docker] images. The RAN functions and controller were 

implemented using the OpenAirInterface software [b-oai], while the core network functions were 

implemented using the Free5GC software [b-free5gc]. These VNFs, implemented into docker 

containers, are orchestrated using Kubernetes software [b-kubernetes], enabling the management of 

the containers as well as the cluster and facilitating the deployment of different mobile network 

architectures. Fig. 8 shows the VNFs distributed along with the cluster and using a Software-

Defined Radio (SDR) to generate Radio Frequency (RF) signals to connect the UE to the mobile 

network generated by the testbed. The VNFs’ location can be defined by scripts as instructed at the 

testbed repository publicly available [b-Nahum]. 

 

Fig. 8 – Testbed working at LASSE – UFPA lab using a C-RAN architecture. 

Both the fronthaul (connecting RRU and BBU) and the backhaul (connecting the BBU and core 

network) are implemented over Ethernet links. Therefore, the transport network complexity usually 

depends on the network infrastructure available, such as switches, routers, and other network 

equipment. We implemented the transport network with the Mininet software to decrease costs and 

increase the flexibility to deploy different transport network scenarios without infrastructure 

changes. It emulates different topologies with routers and switches with SDN support to make the 

emulated network management. Then, the transport network topology can be defined in Mininet 

scripts and different network topologies can be tested without extra network equipment. Our 

scenario deployment scripts are responsible for forwarding the traffic from fronthaul/backhaul 

through the emulated network topology. The Mininet also allows to define some network behaviour 

such as packet loss rate, the bandwidth available in each emulated network link, and latency among 

each node and other characteristics that give a remarkable amount of flexibility to test algorithms 

over different network topologies and conditions. Fig. 9 shows a scenario deployed using the 

testbed where the backhaul link is emulated using a Mininet. A simple network composed of two 
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routers and one switch is emulated, adding a latency of 100 ms between the BBU pool and core 

network. 

 

Fig. 9 – RAN slicing scenario with 3 Ues connected to a C-RAN structure with the backhaul virtualized using Mininet.  

Each component from the Mininet network devices (routers and switches) was connected to an 

RYU SDN controller that receives information about the transport network, such as the throughput 

transmitted in each link, dropped packets, and latency. In addition, the SDN controller can apply 

commands to change transport network operations, such as changing routes and applying 

congestion control algorithms, thus enabling the usage of external apps to provide transport network 

management through communication with the SDN controller to promote changes in the network 

while it is operating. Fig. 10 shows information obtained from the SDN controller about switch 3 in 

a topology emulated with Mininet [b-free5gc48]. It gives real-time information about the switch 

operation, such as the number of received and transmitted packets and the port being used. 

 

Fig. 10 – Information obtained from SDN controller API about the switches running in the Mininet emulated network [41]. 

The FlexRAN controller works as an abstraction of the RAN resources and provides an API that 

enables the service orchestrator entity to dynamically manage the RAN resources to provide 

information about the mobile network [b-Afolabi]. The FlexRAN protocol [b-flexran] defines and 

implements a software-defined RAN architecture integrated with the OAI platform, which 

incorporates an API to separate control and data planes for the mobile RAN. This architecture has a 

master controller represented by the FlexRAN controller in Fig. 9 and a FlexRAN agent 

corresponding to the OAI eNB instances. Fig. 9 also represents the FlexRAN agent in the OAI BBU 

instances in a C-RAN scenario. The agents can act as local controllers with a limited network view 

and handle the functions delegated by the master or coordinated by the master controller.  

The FlexRAN agent API separates the control and data plane, allowing the control data to be 

managed by the FlexRAN controller and the eNB data plane on the opposite side. Fig. 11 shows the 

information received from a base station using the FlexRAN API, providing information such as the 

functional split being used, the number of user equipment (UEs) connected, buffer occupancy, and 

scheduling information. The FlexRAN APIs enable the development of applications related to the 

control and management of the RAN resources [b-foukas], e.g., schedulers, interference, and 

mobility manager. Moreover, applications related to improvements in the use of RAN resources 
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make more sophisticated decisions [b-foukas], such as RAN slicing and adaptative video streaming 

based on channel quality. 

 

Fig. 11 – Information obtained from FlexRAN API about the base station running in the testbed [41]. 

The AI agent is implemented based on the ITU-T Y.3172 architecture that defined a logical 

interoperable architecture for future networks, which incorporates an ML overlay that operates on 

top of any specified underlay network technology [b-afolabi]. This architecture facilitates deploying 

ML applications in different network scenarios and is adopted in the connected AI (CAI) testbed. 

Specifically, ITU-T Y.3172 defined high-level architectural components to integrate ML into the 

network and a process pipeline [ITU-T Y.3172]. Fig. 12 shows these components, the pipeline, and 

their respective mapping into the CAI testbed components. This testbed orchestrates the ML 

workloads of the AI agent using the Kubeflow tool [51]. Kubeflow works integrated with 

Kubernetes to orchestrate the ML functions along with the cluster machines. Kubeflow enables the 

use of pipelines to define the steps of ML processing. Due to the high resource available in the 

cloud in real scenarios, CAI deploys the AI agent at the cloud location (with the core network) for 

simplicity. 

 

Fig. 12 – ITU-T FG-ML5G ML architecture integrated into the testbed structure [41] 

8.3.2 Results and discussions 

Some results exploring UAVs in critical missions using the testbed are presented in [b-lins]. This 

study presents how the AI agents and the network can be adapted to assist mobile network users in 

search, diagnostic and rescue (SDAR) missions. Fig. 13 shows the results for a scenario with an AI 

agent controlling the number of radio resources using the RAN slice to prioritize drones in SDAR 

missions about other UEs connected to the network. In the scenarios without slices, the base station 

tries to provide an equal amount of radio resources among the UEs without differentiating the 

applications. When the RAN slice is used and the AI agent set a slice to the drones in the SDAR 

mission, the AI agent updates the number of radio resources allocated to the  drone’s slice to 
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guarantee at least 10 Mbps of throughput, the other slice with UEs receives only the remaining 

radio resources since it has less priority. It shows that a closed-loop can be implemented to control 

the testbed mobile network using AI methods despite the simplicity of the experiment the AI agent 

used. 

8.4 Simulated underlay for closed-loop-based resource allocation  

To complement the testbed described in section 2.2, this section describes the creation of a 

simulation environment [b-simu5g] to generate data for model training and testing purposes and 

also to serve as a simulation underlay for studying the impact of the 

 

Fig. 13 – Results without RAN slicing and a scenario with RAN slicing using an AI agent. 

closed-loop on resource allocation scenarios in Medium Access Control (MAC) layer. Simu5g [b-

simu5g] is used to generate output data shown in the results Section 3.2 (e.g., Average served 

blocks in Downlink/Uplink) based on input parameters given in Table 1 (e.g., Frequency Correction 

Burst (Fb) Period, target block error probability(BLER), etc.) while simulating the various 

scenarios. This facilitates studying the machine learning algorithms' impact on resource block 

allocation by predicting the resource requirement at the UE. Simu5G is based on the OMNET++ 

simulation framework and incorporates the simulation modules from the INET library [b-simu5g]. 

It simulates both the data plane of 5G RAN and the core network.  

Two types of simulation scenarios were considered using Simu5G- standalone case and NR dual 

connectivity case. In the standalone scenario, gNB is connected to the data network through the 

core network, while in the NR dual connectivity case, gNB is connected to the eNB through an X2 

interface. In addition, the eNB provides access to core and data networks. Sections 3.1 and 3.2 

discuss the simulation and the results. The simulator configurations used in this study are simu5g 

v1.2.0, INET v4.3.2 or above and OMNET++ v6. 

8.4.1 Simulation Scenarios  

This study defines two simulation scenarios: "single cell with secondary gNB” and “multi-cell with 

secondary gNB”. These two scenarios (called “networks” in the simulator) are defined in the NED 

(Network Description) file in OMNET++ which the structure of a simulated network can be 

described. NED enables the user to declare simple modules and connect and assemble them to form 

compound modules. Compound modules e.g., a “single cell with secondary gNB” and a “multi-cell 

with secondary gNB” network, can be used as simulation modules. 

Parameters can achieve their value from either the NED file or the configuration, i.e., .ini file.  

Every configuration file has a “General” section that has general parameters like simulation time 

limit (“sim-time-limit” is the physical time that is set for simulating the network). The “network” 

keyword is used to flag the network that needs to be simulated.  
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Fig. 14 shows the two networks which are defined in the NED file: “single cell with secondary 

gNB” and the “multi-cell with secondary gNB”. The main modules that are used in this network are 

compound modules: carrier aggregation (carrierAggregation), packet gateway (pgw), LTE base 

station (masterEnb), NR base station (secondaryGnb), and UE. The carrier aggregation module is 

responsible for assigning multiple frequency blocks. The eNB, which directly connects to CN is 

called master eNB and the gNB, which is connected to the core via eNB using the X2 interface, is 

called secondary gNB. The number of UEs is defined using the numUe parameter of the UE 

module. In the “multi-cell with secondary gNB” case an extra set of eNB which are connected via 

X2, and an extra set of gNB which is in turn connected to the respective eNBs are shown in Fig. 15.  

 

Fig. 14 – NED file for SingleCell_withSecondaryGnb. 

 

Fig. 15 – NED file for MultiCell_withSecondaryGnb. 

 

Parameter Value 

eNodeB 

Transmission Power 
40dB 

Fb Period 10ms 

Target BLER 0.01 

BLER Shift 5 

#Component 

Carriers 
2 

Carrier Frequency of 

CC1 
2GHz 

Carrier Frequency of 

CC2 
6GHZ 

#UE’s 10 
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Parameter Value 

UE mobility type “RandomWaypointMobility” 

UE speed Between 5mps to 15mps 

Dual Connectivity True 

# resource blocks for 

CC1 
6 

# resource blocks for 

CC2 
6 

#UE apps 2 

Amount of UDP 

application on the 

server 

(server.numApps) 

#UE’s * #UE apps 

=20 

Table 1 – Parameters described in ini file for network simulation. 

The configuration file (also known as an “ini” file) contains network parameters and their 

corresponding values for each carrier component as shown in Table 1. The number of UEs (numUe) 

specified in the UE module is set to 10 for this simulation. UE mobility type and UE speed are 

defined for each UE. Dual connectivity is enabled and each network is configured with uplink and 

downlink. 

Carrier components are part of the carrier aggregation module and have carrier frequency and 

numerological index. The frequency of each carrier component is defined in Table 1 above. The 

number of resource blocks is also defined for each carrier component.  

8.4.2 Results of the simulations  

This section analyses the output of avgservingblock (average serving blocks are the resource blocks 

that are utilized at the time of simulation). The result files storing the simulated network's vector 

values and scalar values are analyzed after simulating the required network configuration. For 

example, avgservingblocks is a vector quantity because it varies with the simulation time. Four 

outputs are analyzed for each network, corresponding to two configurations: uplink and downlink.  

The four output results that are obtained include: average served blocks downlink for single-cell 

with secondary gNB (Fig. 16), average served blocks downlink for multi-cell with secondary gNB 

(Fig. 17), average served blocks uplink for single-cell with secondary gNB (Fig. 18), and average 

served blocks uplink for multi-cell with secondary gNB (Fig. 19). The simulation time is variable, 

and we use a value of 50 s, with resource allocation data being collected every millisecond for each 

of the four output results discussed above. This gives us enough data points to study the average 

served blocks for each output. The total number of resource blocks allocated in the results cannot 

exceed those that are set in the .ini file (specified across different CC, carrier components). The blue 

and orange coloured line chart represents the avg served blocks for master eNB and secondary gNB, 

respectively in singleCell_withSecondaryGnb, data flow is downlink in Fig. 16. In contrast, the 

blue, orange, green, and red coloured line chart represents the avg served blocks for master eNB1, 

secondary gNB1, master eNB2, and secondary gNB2, respectively, in 

MultiCell_withSecondaryGnb, and the data flow is downlink in Fig. 17. The blue and orange 

coloured line chart represents the avg served blocks for master eNB and secondary gNB, 

respectively, in singleCell_withSecondaryGnb, where the data flow is uplink in Fig. 18. The blue, 

orange, green and red coloured line chart represents the avg served blocks for master eNB1, 
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secondary gNB1, master eNB2 and secondary gNB2, respectively, in 

MultiCell_withSecondaryGnb,  where the data flow is uplink in Fig. 19. 

This study shows that prioritized resource allocation can be simulated in different network 

topologies. The simulations enable us to study various configurations and analyze them to optimize 

the allocations. Representation of various configurations using text files defined in [b-liu] enables 

us to easily create simulation topologies. Therefore, the SRC node (generating data corresponding 

to resource usage) and SINK node (applying various configurations in the form of NED files) are 

possible in the simulation environment. Integrated analysis of generated data using AI/ML is for 

future study. 

 

 

Fig. 16 – Avg served blocks, DL, SingleCell_withSecondaryGnb. 

 

Fig. 17 – Avg served blocks, DL, multiCell_withSecondaryGnb. 

 
Fig. 18 – Avg served blocks, UL, singleCell_withSecondaryGnb. 
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Fig. 19 – Avg served blocks. UL, MultiCell_withSecondaryGnb. 

8.5 Algorithms investigation for the resource allocation in the “underlay” 

This section describes the various algorithms that can be plugged into an O-RAN-based software 

architecture to verify the resource allocation schemes. The non-real-time RIC closed-loop intent is 

applied to the near real-time RIC lower loop. The lower-loop monitors RAN resources and makes 

decisions to achieve the intent. Fig. 20 shows the illustration of the overall process of the system.  

 

Fig. 20 – Block of closed-loop implementation for an emergency slice. 

Section 2.1 describes a closed-loop representation and design using a standard template and 

demonstrates it using a three-node closed-loop (i.e. SRC node, ML node and SINK node). Here, we 

further enhance this using a model selection service and a complete ML node implementation using 

two RIC xApps and demonstrate their deployment using docker containers. 

-ML model selection (server):  Different ML models for inference can be available with different 

complexity and performance. We dynamically select different ML models from a server based on 

the declarative specification of the ML model, as described in Section 5. The models are 

implemented as a docker container and selection may be done either periodically or based on an 

external request.  These ML models can be either specific to a particular problem or a general 

purpose one. The idea is that some ML algorithms might be too costly but can have a good 

prediction accuracy. On the other hand,  there might be cheap ML algorithms with low-quality 

inference. Depending on the requirements, the best ML model can be selected. 

-Monitoring and  resource compute (xApp 1): Advanced ML algorithms are applied for monitoring 

RAN resources (i.e., PRB, physical resource block utilization). This paper uses Gaussian Process 

Regression (GPR) as a non-parametric prediction technique. xApp1 reads data from a data lake 

either periodically or when needed. Then, it predicts how much resources will be available in the 
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near future using this data. This information is used for other xApps to make resource allocation 

decisions.   

-Decision (xApp 2): After receiving the forecasted RAN resource in the near future,  xApp 2 makes 

a resource allocation decision for the current and emergence slices depending on their  SLA 

requirements.  

This section designs and studies the closed-loop analysis and decision parts. Communication 

between xApps is provided through RIC message router (RMR)messaging used within the O-RAN 

software community.  The workflow of the implementation shown in Fig. 20 is as follows: 

(1) Get intent from a higher loop. It indicates if there is an emergency case and monitoring xapp is 

triggered. 

(2) Subscribe to SRC to get the simulator/testbed data. 

(3) Write data to the data lake to be used later for ML training. 

(4) Data is sent to the ML node (implemented in xApp1) for model training and inference . 

(5) Different ML models can be selected from the server here and sent to xApp1 for inference. 

(6) xApp1: Resource monitoring such as PRB utilization. Here, the ML model is used, which can be 

fetched from our local repository. It also analyses whether there is an 

overutilization/underutilization.  

(7) Result obtained on (6) is sent to xApp2, which will make the final decision. It decides whether 

there is a need to allocate more resources on RAN for an emergency slice. Then it applies the 

decision to the real network (allocate more PRB for the emergency slice, E2 CONTROL). 

8.5.1 The system implementation  

A low-level closed-loop needs to be instantiated that monitors and computes RAN resources and 

makes a resource allocation decision for emergency cases based on the high-level intent.  

The xApp1 monitors RAN resources and makes forecasts for the future PRB usage of the network. 

It also computes the available resources in the RAN domain. The forecasting and resource 

information is sent to xApp2, which is our decision xApp, through the RMR. RMR is developed by 

the O-RAN Software Community (SC), and we also utilize this messaging protocol in our 

implementation. xApp2 receives the necessary information from xApp1 and solves the problem P2 

(or P1), which are given next, to find out the necessary PRB resources needed for ES and make the 

resource allocation. The output of xApp2 will be sent to the real network to be applied through the 

E2 interface of O-RAN when the real integration starts.  

We implement a  docker container that acts as a web server where we keep different ML models to 

be used for monitoring or any other activities to test the model selection. model_handler.py 

implements an ML selection/pulling task in which we select ML dynamically depending on the 

performance of the current ML, thus enabling us to use another ML that may have a better 

performance than the current model. Fig. 21 shows the implementation details of this activity. 
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Fig. 21 – Workflow of the implementation. 

 

8.5.2 Results and analysis  

8.5.2.1. Time-series forecasting of traffic for monitoring using Gaussian Process Regression 

This section studies NS implementation in the network to have dedicated network resources over 

various domains. For example, the operator can allocate dedicated frequency resources (PRBs) to 

each slice at the RAN domain. Furthermore, different slices may have different SLA requirements 

on latency, bandwidth, reliability, etc. Even though each slice's need for resources can vary over 

time under dynamic networking conditions, the operator needs to ensure that the underlying 

infrastructure SLAs for each slice is guaranteed. For example, an operator can deploy a separate 

slice for video streaming. It needs to allocate additional resources to meet the SLA requirements on 

the slice during peak hours of the day. In case of an emergency, a new slice, Emergency Slice, ES, 

must be deployed by operators to handle the traffic in the emergency area, and the necessary 

amount of resources must also be allocated to the ES. In this study, NS with ES is a dynamic 

resource allocation problem in the RAN domain. When an emergency occurs, the ES is deployed 

and the resources needed for the ES are maintained autonomously. 

To achieve autonomous resource management, traffic prediction of each slice is critical to gather 

information on the minimum amount of resources needed for the SLA requirements.  It is complex 

to capture the dynamics through linear models due to the highly dynamic and non-linear patterns 

exhibited by wireless traffic. Artificial Neural Networks (ANNs), also known as deep neural 

networks or recurrent neural networks are commonly applied for traffic prediction. However, NN 

has well-known training challenges, and it is complicated to interpret the outcome of the NN 

prediction. Comparatively, Gaussian Process Regression (GPR) has continuously gained attention 

due to its interpretability and prediction accuracy. In addition, GPR can also provide information on 

the uncertainty of prediction, which is important when making resource allocation. In this study, 

PRB usage measurement is used to reflect the traffic characteristics and a time-series forecasting 

problem is formulated in which PRB utilization is predicted using GPR. 

We study the use of GPR for the prediction of traffic. The PRB usage characterizes traffic which 

enables us to predict PRB utilization in the RAN domain. Real-world data from [b-raida] in an 

urban area shows PRB utilization measured over a Long-Term Evolution (LTE) network for a user 

and collected and reported at every 500 ms. Fig. 22 shows 1000 samples of PRB utilization data.  
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Fig. 22 –  PRB utilisation over 1000 sample points. 

Understanding the characteristics of the data is important in selecting the best kernel for GPR. 

Periodic and varying data characteristics observed in Fig. 23 and Fig. 24 enables us to determine a 

good kernel for PRB prediction with GPR, representing both types of characteristics.  

 

Fig. 23 – Periodic-type characteristics over a period of 100 time-step. 

 

Fig. 24 – Constant-type characteristics over a period of 100 time- time. 

Forecasting with GPR 

Fig. 25 shows PRB forecasting with GPR. The GPR model is trained with the last 100 samples and 

the chosen kernel as described above. We note that more data may need to be used for training 

depending on the application. Then, the trained GPR is used to make predictions for the future 50 

samples. It can be concluded that the prediction with GPR is good enough to make efficient 

resource allocation proactively, as shown in Fig. 25. Note that GPR also provides information on 

the uncertainty of these predictions as we point to the upper bound when making predictions for the 

next 50 points. These upper bounds on the predictions can be utilized when making resource 

allocation to ensure that the correct amount of PRBs is allocated while satisfying the SLA 

requirements. 

The PRB data is stored in a local repository. It is also possible to use different ML models for 

inference. An example implementation for O-RAN integration is implemented as a separate xApp 

and prediction_xapp.py creates a docker container for the inference implementation as a micro-

service to be used for O-RAN. 
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We evaluate the performance of GPR prediction. We train with 1000 data points and evaluate the 

performance in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The 

MAE and RMSE for future 4000 points are 0.077 and 0.147 for entity reference of 0.046 and 0.081, 

respectively.  

8.5.2.2. Resource allocation at RAN for an emergency slice 

After the predicted traffic is obtained through GPR, the next step is to determine how many 

resources the ES should allocate. Therefore, we need to consider the SLAs of other slices in the 

network. The SLAs of other slices may degrade if we allocate more resources than the ES needs. 

The emergency case cannot be handled if we allocate fewer resources for the ES than it needs. 

 

 

Fig. 25 –  Time-series forecasting of PRB utilization with GPR. 

We assume that RAN resources are given in terms of either frequency resources or PRBs. Different 

slices allocated to different amounts of PRBs can be determined and fixed by the operator. 

However, it is not always efficient because not every slice is active all the time and uses its PRBs 

with 100% utilization although this strategy is good enough to have a dedicated network. This 

means that there can be some leftover PRBs that are not used by the corresponding slices  [b-

foukas], [b-okic].  

We consider two cases:  

• Case-1: The ES does not have any dedicated PRB allocated, but it can only use the unused PRBs 

from other slices. The advantage of this strategy is it guarantees the SLAs of other slices, but ES 

can have significant degradation because it can only use the leftover PRBs, and after some time 

the leftover PRBs may not be large enough to support the emergency case.  

• Case-2: we dynamically borrow PRBs from other slices to support the emergency case to 

minimize the degradation of the SLAs of other slices. In this strategy, priority is given to the ES 

and we guarantee that the emergency case is solved successfully while also minimizing the 

negative impact of borrowing PRBs on the SLAs of other slices.  

We develop two algorithms to implement these two strategies: 
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ALG 1 implements the first strategy in which only the leftover PRBs from other slices are allocated 

to the ES. The details of ALG1 are given in ALGORITHM 1. 

To illustrate the operations of ALG1, let us consider two slices and the allocated PRBS to these 

slices: T1 = 40 PRBs and T2 = 60 PRBs and in total, the system has T = 100 PRBs. Let us also 

assume that the PRB utilization of these slices is 80% and 90%, respectively. That means the first 

slice uses only 40*0.8=32 PRBs and the second slice uses only 60*0.9=54 PRBs. Hence, 40-32= 8 

PRBs from the first slice and 60-54=6 PRBs from the second slice (in total 14 PRBs) can be 

allocated to the ES  with ALG1 for this example. 

Priority GPR-based PRB allocation to ES algorithm  (ALG2)  

ALG2 implements the second strategy in which we borrow PRBs from the other slice while 

minimizing 

the negative impact on both of them. We assume the ES needs an E amount of PRBs. First, we 

allocate the available leftover PRBs to the ES. If it is not enough, we borrow PRBs from other 

slices by minimizing their performance degradation. The details of ALG2 are given in 

ALGORITHM 2. 

PRBs are borrowed from other slices to meet the requirement of ES and also minimize the resource 

shortage of other slices. Thus, the P1 optimization problem is formulated in ALG 2 

Since it involves a non-linear operation with a max b-tosca] operator, the problem is difficult to 

solve. However, we use an auxiliary trick and convert this problem to an easily solvable integer 

program. This problem is transformed into a solvable integer problem using the auxiliary variable 

un as shown P2 in ALG 2. 

The importance of P2 is to decide how many PRBs are to be taken from each of the other slices and 

allocated to the ES. These two algorithms are implemented, and decision_xapp.py creates a docker 

file to run this implementation as a microservice to be ready for use in the O-RAN platform. 

 𝑳𝑮 𝑹 𝑻𝑯  𝟏  Leftover GPR-based PRB allocation to ES algorithm (ALG1) 

Input  : 

 

 

T = total available PRBs of the system   (i.e., For LTE, 100 PRBs).                

W = Prediction window (i.e., next prediction time, 500 ms).                                             

P = Past training window (the last 100 samples). 

o = Compensation. 

N= number of slices in the network. 

Tn= Amount of PRBs allocated to slice n. 

Dn= PRB utilization time-series data for each slice. 

Output : Allocate PRBs to ES:   𝑃𝐸𝑆 

1            For each other slice n 

2 

3 

4 

5 

6 

 Step 1: Train GPR with the latest P training data. 

Step 2: Forecast PRB utilization over the next W samples with GPR : 𝑈𝑛. 

Step 3: Calculate maximum possible PRB utilization using upper bound: 𝐶𝑛 =  𝑈𝑛 + 𝑜𝑛. 

Step 4: Calculate the forecasted PRB usage of all other slices over next W samples : 𝐵𝑛 = 𝑇𝑛𝐶𝑛 
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7 

8 

9    

10 

11 

12         End 

11   Step 5:  

12  

Calculate available PRBs for Emergency Slice:            

            𝑃𝐸𝑆 = 𝑇 − ∑ 𝑇𝑛𝐶𝑛
𝑁
𝑛=1  

13   Step 6: Allocate PRBs to ES:   𝑃𝐸𝑆 

  𝑳𝑮 𝑹 𝑻𝑯  𝟐  Priority GPR-based PRB allocation to ES algorithm (ALG 2) 

   

Input : 

T =Total available PRBs of the system.                 

Tn= Amount of PRBs allocated to slice n. 

W = Prediction window.                                             

P = Past training window.  

o = Compensation. 

N= number of slices in the network. 

Dn= PRB utilization time-series data for each slice 

E = amount of PRBs needed for an emergency slice 

Output : 

 

𝑥𝑛 𝑡  = amount of PRBs needed for slice n at time t 

𝑦𝑛 𝑡  = amount of PRB taken from slice n at time t 

1       P1:  

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

𝑚𝑖𝑛∑ ∑ 𝑚𝑎𝑥 {0, 𝑥𝑛 𝑡 −  𝑇𝑛 − 𝑦𝑛 𝑡  }𝑁
𝑛

𝑊
𝑡=1                   

        s.t.  0 ≤ 𝑦𝑛 𝑡 ≤  𝑇𝑛 ∀𝑛    ∑    𝑦𝑛 𝑡  ≥ 𝐸𝑁
𝑛  

 

   − 𝑥𝑛 𝑡 : PRB usage for slice n at time t 

   −   𝑇𝑛 : Total PRBs given to slice n 

   −   𝑦𝑛 𝑡  : Number of PRBs taken from slice n at time t to be used for emergency slice    

12     P2:   
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min∑∑𝑢𝑛 𝑡 

𝑁

𝑛

𝑊

𝑡−1

 

�̃�𝑛 𝑡 + 𝑜𝑛 𝑡 − (𝑇𝑛 − 𝑦𝑛 𝑡 ) ≤ 𝑢𝑛 𝑡  

0 ≤ 𝑦𝑛 𝑡 ≤ 𝑇𝑛 ∀𝑛 

∑𝑦𝑛 𝑡  ≥ 𝐸

𝑁

𝑛

 

𝑢𝑛 𝑡 ≥ 0 

where 𝑥𝑛 𝑡 = �̃�𝑛 𝑡 + 𝑜𝑛 𝑡                                                                      

𝑥𝑛 𝑡  : Actual PRB usage at time t in future. This cannot be known in advance. 

�̃�𝑛 𝑡  : Estimated PRB usage with GPR 

𝑜𝑛 𝑡  : Estimation error. Upper bound provided by GPR can be used. 

In a simulation scenario, we assumed that we have two slices with different PRB requirements: 

● T1: number of PRBs assigned to Slice 1 by the operator (e.g., T1=40) 

● T2: number of PRBs assigned to Slice 2 by the operator(e.g., T2=60) 

● T: total number of PRBs in the system (e.g., T= 100 PRBs) 

● Time series PRB utilization for each slice, in percentage, with a granularity of 100ms and 200ms 

The performance of ALG2 was studied under the scenario that there are two other slices and T1=40 

and T2 = 60 PRBs allocated to them. By applying ALG2, we borrow PRBs to satisfy the 

requirement of the ES when those slices do not need the resources. We assume the ES needs 20 

PRBs.  Fig. 26 shows the number of PRBs taken from other slices over 45 time instants. Depending 

on the predicted PRB usage of other slices, ALG2 takes 11 or 12 PRBs and  8 or 9 PRBs from the 

first and second slices,  respectively, and 20 PRBs in total are ready to be used by the ES 

simultaneously.  

This section studies NS implementation in the network to have dynamic resource allocation over 

various domains. To analyze the PRB utilization in RAN, two algorithms were studied. Results are 

presented considering the need for resources of each slice which can vary over time under dynamic 
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Fig. 26 – PRB allocation for ES. 

networking conditions. The results show the importance of closed-loop implementations in NS, 

especially for intelligent management of RAN resources during emergency scenarios. 

8.6 O-RAN Control-Loop Instantiation  

This section describes the implementation of the algorithms described in Section 4 in an O-RAN 

near Real-Time RAN Intelligence Controller (RIC) [b-nrt-ric] and its integration with the Acumos 

[b-acumos] model repository. The model description is included in the declarative specification of 

closed-loop as discussed in Section 2.1. In this study, a pretrained model is fetched from Acumos 

based on the given description and deployed as xApp [b-oran-sdk] in the O-RAN platform (See Fig. 

27 for details). 

8.6.1 A solution workflow 

The following workflow is used for the implementation: 

• RAN (E2-SIM [b-oran-sc] is used) is registered and associated with O-RAN near RT RIC. 

• RIC receives policy updates from A1 for triggering closed-loop PRB allocation. 

• An ML model is fetched based on the A1 policy details. 

• PRB utilization is predicted based on the analysis of test data used instead of actual data from E2. 

• The PRB to be allocated is computed and an E2 control message is sent based on the inference. 

PRBs are always reserved for the emergency slice and additional resources can be reallocated 

based on situational considerations. 

• The allocation decision is continuously monitored, evaluated, and improved upon.  

The workflow steps are further explained in Fig. 27 and discussed as follows: 

• Points 1 and 2 show that E2 SIM is up and that association with RIC is set up. 

• Point 3 shows the nRT RIC receives the A1 policy update to trigger closed-loop monitoring. 

• Point 4 shows the A1-mediator sends A1 Policy REQ to the “prbpred” xApp. 

• Points 5a and 5b show the model is fetched from the model store as per policy guidelines and 

“prbpred” instructs DataMon/Alloc xApp to start monitoring the data. 

• Points 6,7, and 8 show the messaging done for subscribing to E2 for data.  

E2 Indication is for future reference; currently, data is not monitored through RIC Indication. In 

future, data needs to be monitored and sent to predict xApp.  
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• Point 9 shows data reception from the E2 node. The received metrics are stored in metrics DB as  

in Point 10. 

• Upon timer expiry as in Point 11, a request for prediction is sent to “prbpred” xApp as in Point 

12. 

• “prbpred” uses the ML model to predict future utilization. Retraining may be done based on the 

new data model. The predicted values may be sent to DataMon/Alloc xApp as in Point 13 and 

Point 14. 

• DataMon/Alloc xApp computes the PRB to be 

allocated and sends the E2 control message towards E2 as in Point 15. 

8.6.2 Resulting implementation 

This section presents the implementation of the algorithms in Section 4. The algorithms can be 

instantiated in the O-RAN-RIC platform and prediction based on the xApp onboarding/deployment 

process and RIC platform components can be achieved. 

The xApps are developed based on the xApp Framework for Python. Separate xApp-descriptor files 

were defined detailing the configuration, RX & TX messages supported: 

 

 

 

Fig. 27 – Modified xApp process model. 
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Fig. 28 – xApp-descriptor file for prbpred xApp. 
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Fig. 29 – xApp-descriptor file for allocator xApp. 

 

• prbpred xApp: Initially, this xApp registers for PRB_PRED_REQ (PRB Prediction Request) and 

A1_POLICY_REQ (A1 Policy Request), and queries A1-mediator to get the policy details. A 

specific policy was created which gives  model information and model version information to be 

used. This xApp is responsible for receiving A1_POLICY_REQ and saving the policy details. 

Fetch the model from the modelStore and save it. Predict the future PRB utilization and respond 

to alloc xApp for further processing based on the timer trigger.  Upon reception of 

PRB_PRED_REQ, the xApp predicts PRB utilization for each slice and sends a response to Alloc 

xApp based on the model fetched. Fig. 28 shows the xApp-descriptor file for the prbpred xApp. 

• Allocator xApp: Initially, this xApp registers with the subscription manager for E2 information 

and starts a timer to trigger PRB_PRED_REQ periodically. PRB is allocated for an emergency 

slice based on predicted future PRB utilization. A simple algorithm for PRB allocation in Section 

4 is used here. In addition, some PRBs are shown as reserved for emergency/high priority events.  

The assumption taken is the total number of PRBs in the system is 100. Slice #1 and Slice#2 were 

configured with 35 PRBs each. 30 PRBs were reserved for emergency/high priority events.  
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The actual Value of PRB utilized is computed based on the predicted PRB utilization received for 

each slice. 

Utilised_PRB_slice1=PRB_ALLOC_SLICE1*(slice1_utilisation/100) 

Utilised_PRB_slice2=PRB_ALLOC_SLICE2*(slice2_utilisation/100) 

total_prb_avail = Total_PRB – (Utilised_PRB_slice1 + Utilised_PRB_slice2) 

The reserved PRBs are also made available because this is an emergency event. Alloc xApp sends 

the E2 control message to allocate the available PRBs from the calculation. Fig. 29 shows the 

xApp-descriptor file for allocator xApp.  

Successful communication between the xApp and other RIC platform components was achieved as 

part of this. A model store was developed to mimic Acumos and have access to the pretrained 

model. E2 SIM setup was registered with the E2 component in the RIC platform. 

In the Dawn release, the creation of the A1 policy instance doesn’t trigger the A1 policy to send a 

message towards  the xApp [b-oran-sc]. The workflow was modified to send a timer-based event 

from alloc XApp to trigger PRB prediction. When the policy instance is created 

(CREATE/UPDATE  messages are sent to xApp by A1 mediator), the prbpred xApp can store the 

model information and perform prediction based on the trigger. 

8.7 Integration of the POC 

This section describes the integration of the above implementation of closed-loops into P-RAN-

based software platform ready to be tested in the 5G Berlin testbed [b-FGAN-I-197]. The operator 

inputs the declarative intent to the Service Management Orchestrator (SMO)/Non-RT RIC, which 

describes the use case to detect emergencies and maintain the required SLA as described in Section 

2.1. Similar to the mechanism described in 2.1, SMO/Non-RT RIC then creates a higher loop that 

monitors various parameters like network activities, input from emergency responders (ER), social 

media trends, etc. to detect and locate the emergency (e.g., fire in a building). This can be realized 

using either a hosted model in Acumos or Open Network Automation Platform data collection 

analytics engine (ONAP DCAE) or O-RAN rApp, as discussed in sections 2.2 and 4. Once the 

emergency is detected, the higher loop sends an intent over the A1 interface to the Near-RT RIC, 

instructing it to handle the increased load for the corresponding RAN node. Real-time ML/AI 

inference might be needed by some of the ERs' devices; for firefighters a helmet-mounted camera 

may use image recognition to detect humans in a burning building. However, the devices might not 

have enough computing and might need to offload the task to the network edge or use split AI/ML 

models for inference. The Near-RT RIC receives the intent and creates a closed-loop which can 

monitor the network and compute resources of the edge and the ER device and maintains the 

SLA/QoS (quality of service) of the inference task as discussed in Section 3 above. This loop can be 

realized using xApp. Fig. 30 shows the simulator-based sequence for the integration of the 

activities. 
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Fig. 30 – Simulator-based sequence for the integration of the activities. 

Fig. 31 shows the extensions to the sections above to integrate the implementation of the algorithms 

described in Section 4 in an O-RAN- RIC  and its integration with the Acumos [b-acumos]  model 

repository. The first addition was the A1 poller which pulls the A1 mediator at regular intervals and 

converts the A1 policy to a TOSCA template described in Section 2.1. It uses HTTP-based 

interfaces to communicate with the A1 mediator and the orchestrator. The dms_cli tool provided by 

the O-RAN-SC was used to enable the orchestrator to orchestrate the xapps as specified in the A1 

policy. Playbooks (workflows) described in Section 2.1 were updated to integrate relevant 

command line (dms_cli) commands. These commands are used to onboard and install 

corresponding xApps.  

The overall flow of the final integrated solution (see Fig. 31) is as follows: 

1. The human user or a higher loop applies an A1 policy to the near-RT RIC. This policy is 

received by the A1 mediator. 

2. The A1 poller gets the policy, translates it into the TOSCA template and sends it to the 

orchestrator. 

3. The orchestrator manages the RIC xapps according to the TOSCA template using dms_cli. 

4. The newly orchestrated xapps pull the necessary models from the model repository server. 

5. Pred xapp makes a time-series prediction for future traffic in the network and how much 

resources (PRB) will be available for an emergency slice in the near future. 

6. Alloc xapp sends an RMR request to pred to get the prediction and allocates PRBs to the 

emergency slice based on that. 

7. Alloc xapp then sends a message over the E2 interface to the RAN. Slice allocation 

messages are verified from the console. 
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Fig. 31 – Overall flow of the final integrated PoC . 

8.8 Observations from the PoC 

Abstraction of nodes allows the service template to select concrete nodes that best match the 

requirements of the abstract nodes during deployment. The concrete nodes can be provided in a 

repository known to the orchestrator. Abstract requirements can be achieved in TOSCA YAML 

using the node_filter feature.  However, this study found that abstraction features like node_filter 

and substitution are not supported by certain implementations of orchestrators. A feature-based 

comparison of orchestrators concerning TOSCA compliance may be made as part of future studies. 

Besides the RAN slicing experiments exploring a closed-loop using the FlexRAN controller, other 

AI applications can interact with the SDN controller and the VNF placement functions to attend to 

different network requirements. An End-to-End (E2E) network slice cannot be completely 

implemented in the testbed because a MANO implementation was not used to avoid computational 

costs and network complexity in this first phase and focus on AI integration. Future studies may 

include integrating the software developed in our testbed into ONAP software, a popular MANO 

implementation, to provide E2E NS with a centralized closed-loop. The verification and validation 

of resource allocation during simulation in line with the traffic pattern (e.g. full buffer) when 

simulating the scenarios, e.g., dual connectivity, is an essential future step as we broaden the 

simulation into more scenarios. 

Creating a closed-loop with several modules brings communication and computation problems. 

Overall integration, including A1/O1/E1 interface integrations, is critical and which parts of this 

integration can be realized autonomously can be explored. The real-time system performance will 

have to be tested to ensure compliance with closed-loop specifications. Integration issues with 

platforms highlight the importance of close coordination with underlays, as mentioned in sections 

2.2 and 5. 

8.9 2021 Conclusions and future research  

This is a collaborative study where we developed and implemented a hierarchical closed-loop that 

autonomously handles an emergency case. The study focused on intent parsing, traffic monitoring, 

resource computing, and allocation autonomously. The closed-loops were implemented with several 

micro-services deployed as docker containers with specific functions such as monitoring, 

computing, ML selection, and resource allocation. Future activities will focus on enhancing the 

attributes of the nodes in the template, e.g., data parameters in the SRC [e.g., 3xVs: velocity, variety 

and volume], Model metadata (as defined in ITU-T Y.3176), and SINK parameters [e.g., underlay 

specific APIs]. After integration, data pulling, model pulling, and adaptation can be demonstrated 

based on such enhanced attributes. The machine learning agent presented in the Connected AI study 

will be implemented for the built environment with ONAP and Acumos integration for future 
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activities. Enhancing the simulator to include inputs from an intent and integration with the SRC, 

ML and SINK nodes to form the closed-loop in the simulation domain is also an important future 

step. Apart from advanced algorithms studied, e.g., multivariant time-series models with monitored 

data and arriving at intelligent inference, resource reservation for emergencies and resource 

reallocation from lower priority services should be explored. Easy onboarding of xApps and the 

triggering of policy towards lower closed-loops and supporting visualizations can increase usability. 

In addition, extending the solution to self-learning closed-loops with continuous collection, 

analytics, decision and actuation and model performance detection needs further study. With the 

self-learning close-loops, the network could trigger a switchover to another better performing 

model, analyze and trigger a different set of data/measurements for data analysis and perform 

synchronization and management across the edge and emergency responder devices. 

 

9 2022 PoC Description 

The main contributions of this study are summarised as follows: 

• Analysis of specific use cases such as: 

AN-usecase-001 [ITU-T Y.Supp 71], “Import and export of knowledge in an autonomous network”, 

produce a design as per the reference design in the Build-a-thon repository. We also provide the 

corresponding code based on the reference code in the Build-a-thon 2022 repository. 

Use case 15 from [ITU-T Y.Supp 71] and analysed the design. Solution will scan all incoming log 

traces continuously, detect system issues and will report issues as Incidents with probable root-cause 

automatically. Achieves it through historical log data learning and prediction is from new live log 

sentences. While producing the report solution will take feedback from user and re-train the Log 

Anomaly detection to do self-correction. We provide extensions to the reference code provided in 

[Build-a-thon 2022] and build our own graph based on the reference code. 

We analyze use case 23, Autonomous agents (with varied competence) in networks. Data by sensors 

such as logs, packet measurements, Deep packeted inspection, etc are managed by autonomous agent. 

The agent specifically create collects the data, analyze and perform action with minimal human 

intervention. 

We analyse Network resource allocation for emergency management based on closed loop. Solution 

will scan all incoming KPIs and slice config continuously, including any changes in slice config for 

new slice deployment and RL agent will optimise the slice config, accordingly, using calculated 

rewards based on SLAs. 

We analyse FG-AN-usecase-41(3GPP TR 28.809 V17.0.0), “KPI anomaly analysis for 5G networks 

and beyond” and produce a design as per the reference design in the Build-a-thon repository. Solution 

will scan list of Network Functions(NF) from EMS, identifies NF for KPI retrieval, forecasts the KPIs 

from these NF for future time period, identifies anomalies from the forecasted KPIs, identifies Rouge 

NF causing KPI degradation, blacklists Rouge NF. Achieves it through historical KPI data from NF. 

We analyse FG-AN-usecase-38, 1.1 “AN enabled end-to-end supply chain”, produce a design as per 

the reference design in the Build-a-thon repository. We also provide the corresponding code based 

on the reference code in the Build-a-thon 2022 repository. Enabled end-to-end of Unified Standards 

& Guidelines Manufacturing & Operators. 

We analyse “Slip Detection (and Force Estimation)” and “Object Detection” in a robotic arm, and 
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produce a design as per the reference design in the Build-a-thon repository. We also provide the 

corresponding code based on the reference code in the Build-a-thon 2022 repository. After analyzing 

the use cases, we trained two ML models, one for “Slip Detection (and Force Estimation)” and another 

one for “Object Detection” we have tested and validated the models for the use cases 

 

• Implementation of a PoC for the distributed autonomous evolution of controllers based on the 

FGAN architecture [FGAN-O-023]. We specifically address important issues, such as the security, 

auditability, explainability and scalability of the process. Additionally, the PoC also includes the 

subsequent automatic deployment of any controller obtained from the evolution.   

• Deriving new use cases for the autonomous networks can help us understand the potential of using 

autonomous networks, in this trial we got a document that contains old use cases between some 

network components, and from these old ones we apply the link prediction algorithm to investigate 

the future opportunities of making use of autonomous network, we have reached 86% of accuracy 

of predicting if the link exists or not, and as a start we predicted more than 6.5k possible relations 

that can be investigated further 

 

 

Fig. 32 – Design vs. implementation.                                             

 

Fig. 33 – Part 1 and part 2 of Build-a-thon. 
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Fig. 34 –High-Level Framework for Evolutionary-Driven Autonomous Network [FGAN-O-023] 

9.1 The PoC Design and Implementation 

The document [FGAN-O-023] describes a High-Level Architecture Framework for AN, including 

evolutionary-driven networks. This architecture is shown in Figure 34. A module is “a building 

block consisting of executable code and a module specification from which controllers are 

assembled”. A module's specification includes its input and output interfaces, and a metadata 

description of its functionality. Examples of possible modules include aggregation functions, DNS 

configuration interfaces, an entire deep neural network (DNN) model, a single layer of a DNN 

model, etc. On the other hand, a controller can be considered as a software closed-loop composed of 

modules. A controller instance is “an executable representation of a controller including modules, 

their configurations, and parameter values”. Exploratory evolution tries to find a suitable controller 

for a required use case specification using evolutionary algorithms. 

This report describes an end-to-end structural PoC based on the FGAN architecture and on the 

secure and traceable evolution of controllers. The evolutionary algorithms that would drive the 

process and the reactive evolution of controllers to operational conditions are beyond the scope of 

this work. 

9.2 Import and export of knowledge in an autonomous network 

Knowledge is essential to fulfil the key concepts of autonomous networks (evolution, 

experimentation and adaptation) while minimizing human intervention. Knowledge in autonomous 

network ranges from autonomous system environmental data representation, actions/consequences, 

key configuration options to potential parameter indices. This section presents the use case PoC of 

knowledge in the AN actors. 

9.2.1 The PoC design 

As shown in the Figure 34, the system consist of orchestrator, KB manager, auto controller, open 

CN, ML pipeline, and human operator. 
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The orchestrator is the component responsible for managing workflows and processes in the AN 

and steps in the lifecycle of controllers. To manage the workflows and processes in AN, AN 

orchestrator coordinates with various other functions in the AN as well as outside the AN. Being 

part of the management plane, AN orchestrator provides interface to human operators in the form of 

reports regarding the functioning of the AN and human interfaces for configuring the AN, where 

applicable. 

 

Fig. 35 – High-level flow chart for creation and parsing of example intent. 

The  KB manager is a subsystem which manages storage, querying, export, import and optimization 

and update knowledge, including that derived from different sources including structured or 

unstructured data from various components or other subsystems.  KB manager is a node which 

optimizes and manages data available on the closed loop but requires a node which can host its 

resources. Since AN orchestrator has the capability of hosting node resources it is designed to be a 

host to the KB manager. Knowledge in AN is a collection of resources that helps in solving a 

specific type of problem. A knowledge base component manages knowledge derived from and used 

in autonomous  

networks. It is updated and accessed by various components in the autonomous network. The 

knowledge includes metadata which is derived from the capabilities, status of AN components. This 

knowledge is stored and exchanged as part of interactions of AN components with knowledge base. 

Knowledge can be derived from different sources including structured or unstructured data 

The auto controller generator represent generic software component that can be managed and run 

by a TOSCA Compute Node Type. It generate controller specifications using the existing repository 

in OpenCN, the knowledge base and an analytics function aided by AI/ML. Meanwhile the Open 

CN stores the controllers for the AN. 

The ML pipeline node is able to learn and adapt without following explicit instructions, by using 

algorithms and statistical models to analyze and draw inference from patterns in data. It hosts 

analytics and recommends controllers in the AN. On the other hand, the Human operator is just like 

a user friendly interface for human base instructions 
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9.2.2 The PoC Implementation 

The TOSCA metamodel uses the concept of service templates that describe cloud workloads as a 

topology template, which is a graph of node templates modelling the components a workload is 

made up of and of relationship templates modelling the relations between those components. 

TOSCA service template are instantiated at runtime using a TOSCA orchestrator (xOpera) and the 

order of component instantiation is based on the relationship between components. TOSCA is one 

of best and most often used automated testing tools. It is widely employed in large-scale 

applications to achieve successful outcomes. 

In the implementation, the YAML file is generated and stored in a graph database is using neo4j. 

After the basic template YAML template f the use case is written, Ruamel (a python YAML editing 

library) was used to populate the nodes of the use case with the actors and relationships from our 

use case in TOSCA by using information obtained from querying the graph database. Finally, the 

generated YAML was then validated by parsing it using xOpera. Figure 36. shows the flow chart of 

the service template generation from the graphDB.  

 

Figure 36: Flow chart of the service template generation from the graphDB. 

  

9.3 Evolution and blockchain: An Autonomous Network Architecture PoC 

This section presents a Proof of Concept (PoC) of the decentralized controller evolution architecture 

for Autonomous Networks (AN) using a distributed Marketplace based on the FGAN architecture 

(FGAN-I-198 [5]). Such a marketplace serves as a decentralized mechanism for the secure and 

traceable evolution of controllers, which is achieved by a private Ethereum blockchain and a 

distributed and decentralized filesystem, the Interplanetary Filesystem (IPFS). 

We specifically address important issues, such as the security, auditability, explainability and 

scalability of the process. Additionally, the PoC also includes the subsequent automatic deployment 

of any controller obtained from the evolution. This last part contains the TOSCA parsing of a 

Representational State Transfer (REST) service for the chosen controller. 

9.3.1 MODULES, CONTROLLERS AND EXPERIMENTATION 

Figure 2 shows the high-level Neo4J graph representation for the PoC closed-loop, which uses all of 

the concepts presented in Figure 34, except for the Selection and Operation Controller. Note that for 

the Real Time Online Experimentation the use of a Digital Twin (DT) is considered. A DT, which 

concept is described in FGAN-I-058 [6], is “a mathematical representation of a physical and/or 
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logical object”. For example, a DT could be a Graph Neural Network (GNN) that reproduces the 

behaviour of a network, producing outputs such as latency or packet loss rate, given inputs that 

describe its state and policy. This PoC uses the concept of a DT in the architecture, but does not 

focus on its implementation, which is a problem out of the scope of this project.  

 The blue nodes represented in Figure 2 are labelled as actors in the graph, while the green ones 

are denoted as elements. Actors are controllers that can evolve, although the evolution of actors is 

out of the scope of this PoC. Element include supporting artefacts, such as software modules, 

evolvable controllers, repositories, etc.. The Evolution Controller (Evol_Ctr) stores the list of 

available modules and uses them to compose an Evolvable Controller (Evola_Ctr) that is sent to the 

Marketplace (Mark_Plc). Although the Marketplace is represented as a single node, it is a 

distributed network of several nodes that are part of the rest of the actors. That means that the 

Marketplace is distributed across all the instantiations of the Evolution Controller, Experimentation 

Manager, Digital Twin and Curation Controller, ensuring the security and traceability of the 

evolution process. In this PoC, both modules and controllers are implemented as Python classes. 

The source code for both definitions is available in [7], in the Mod_Ctr.py file, which is reproduced 

in all the nodes. The fact that all nodes work with the same definition is part of a list of important 

assumptions that are now explained. 

 

Fig. 37 – Neo4J graph representation of the high-level architecture of the PoC  

 

9.3.2 IMPORTANT ASSUMPTIONS 

• The list of available modules, as well as the definition of the classes Module and Controller, 

are contained in the Mod_Ctr.py file, having each node (blue circles in Figure 37) an identical 

copy of it. In the case of introducing new modules, something that is not considered in this 

PoC, a protocol for distributing the information and ensuring consistency is required. 

However, the Marketplace provides the perfect tool for implementing this feature.   
• Since the PoC is focused on laying the groundwork for the evolution architecture, the modules 

and controller considered are rather simple, reproducing the behaviour of simple mathematical 

operations. However, we assume that this approach is sufficient for proving our architecture 

and that it can be improved in the future. 

• As for the evolution, the algorithm uses random combination of modules, avoiding repetition 

of the combinations that have already being tried for which their result is testing is known. 

We assume that our use of random module combinations is structurally equivalent in this 

context to those controllers produced by evolution. Of course, they are not expected to be 

equivalent in their operation. 
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All these assumptions simplified the PoC implementation, but do not limit its effectiveness when 

laying the groundwork for the evolution of controllers in a distributed system. New features can be 

added with a few or no changes in the base work presented here.  

The class Module have four attributes: module id, function, parameter and representation. 

The list of possible functions is limited to the mathematical operations add, subtract, pow, and 

multiple. These functions are also defined as Python functions in the file Mod_Ctr.py.  

Figure 38 shows the Python code for the multiple function, f_mul. Figure 39 shows an 

instantiation of a Module object with f_mul as function with the float 3 as a parameter. The id is a 

string explanation of the function, while the representation is the symbol that denotes the 

mathematical operator. The Module class has the method execute represented in Figure 40 that, 

given an input, returns the output of applying the function with the designed parameter. Once a 

Module object is instantiated is possible to modify its parameter with the method set_method. 

 

Figure 38: Python code for the definition of the function f_mul. 

 

Figure 39: Representation of a Module object. 

 

Figure 40: Representation of the method execute of a Module object. 

9.3.3 CONTROLLER DEFINITION 

The class Controller has three attributes:   

• The controller id, which is unique 
• A list of the modules that compose the controller 

• A list of the parameters for each of its modules 

Figure 41 represents the instantiation of a Controller object. In that case the two modules 

implement the functions substract and multiply tuned with the parameters 2 and 10 respectively. 

After the object is instantiated, it is possible to call the method execute as represented in Figure 42. 

The executed method for each Module objtect will be called in order, being the output of each phase 

the input for the next one. Additionally, the Controller has a method get_dict that returns a Python 

dictionary that describes its attributes. 
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Figure 41: Representation of a Controller object. 

 

Figure 42: Representation of the method execute of the Controller class. 

 

A Python dictionary can be easily converted into a JavaScript Object Notation (JSON) file which 

is the selected format for transmitting the controller information between nodes. The transmitter 

node sends the JSON description of a controller and since the receiver also has the list of all 

available modules, it is able to recreate a copy of the controller by calling the function json_to_ctr 

(dictionary). We have chosen JSON since it is a lightweight data-interchange format that is readable 

by humans. Figure 43 shows the JSON representation of the Controller object introduced in Figure 

41. 

9.3.4 EXPERIMENTATION AND EVOLUTION 

All blue nodes in Figure 37 communicate by exchanging JSON files via the Hypertext Transfer 

Protocol (HTTP). On the Marketplace side, we have used the language JavaScript for handling the 

HTTP communication, while in the rest of the blue nodes we have chosen the combination of the 

Python framework Flask [8] and Gunicorn [9], a Python HTTP server for Web Server Gateway 

Interface (WSGI) applications. 

 

Figure 43: JSON representation of a Controller object extracted from the Marketplace. 

Following the architecture presented in Figure 37, the Evolution Controller (Evol_Ctr) sends the 

JSON representation of a new Evolvable Controller (Evola_Ctr) as the one shown in Figure 10. 

After storing the JSON file, the Marketplace forwards it to the Experimentation Manager 

(Exp_Mg). This node configures the Digital Twin (DT) by sending both the JSON representation of 

the controller and a list of experiments to be run. This PoC presents a simple case where only two 

experiments implemented as Python functions are available in the DT: 

• Average: Return the average of the controller output after 100000 iterations, being the input 

drawn from a uniform distribution between 1 and 10. 
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• Value: Given a fixed input, return the absolute value of the difference between the controller 

output and a desired value. By default, the input is 5 and the desired output is 35. 

The DT insatiate a Controller object using the JSON representation and, after running the 

experiments, sends back to the Experimentation Manager a JSON containing the results or Key 

Performance Indicators (KPIs, Figure 37). The Experimentation Manager composes an Experiment 

Report (Exp_Rep) that is a JSON containing the id of the controller under testing and its results in 

each experiment. The Experiment Report is sent to the Marketplace and then forwarded to the 

Curation Controller (Cur_Ctr). An example of an Experiment Report (running the experiments with 

the default settings) is shown in Figure 44. The Experiment Report is also forward to the Evolution 

Controller, since the results are useful feedback if an evolutionary algorithm is implemented.  

 

Figure 44: JSON representation of the Experiment Report of the controller described in Figure 10, extracted from the 

Marketplace. 

Based on the Experiment Report, the Curation Controller (Cur_Ctr) will decide if the Evolvable 

Controller referenced by its id is promoted to Protected Controller (Ptr_Ctr) for one or more 

experiments. Treating the protected category independently for each experiment is based on the idea 

that a controller suitable for a specific use case may perform poorly if the case changes. For 

example, Figure 45 shows the notification of the Curation Controller to the Marketplace informing 

that the controller with id 34 (Figure 43) is a Protected Controller for the experiment/use case value. 

Note that the same controller has not the category of protected for the experiment average. This 

decision depends on the criteria followed by the Curation Controller, that for this example is: 

• Average: Protected Controller if the result is greater than 500. 
• Value: Protected Controller if the result is smaller than 20.   

Therefore, these values serve as configurable thresholds to decide if an evolvable controller may 

be promoted to a protected controller.  

 

Figure 45: JSON file registration of Protected Controller, extracted from the Marketplace. 
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9.3.5  FUNCTIONAL IMPLEMENTATION  

 

Figure 46: Functional level architecture of the PoC. 

Figure 46 shows the functional level architecture of the PoC, where each node represents a 

specific technology implemented. As can be seen from the picture, each one of the actors shown in 

Figure 37 is composed by a subset of services that represent a specific function within the PoC. 

Different technologies are used depending on the type of functionality implemented by each 

service. A description of each type of service and the technology it uses is provided below: 

• Experimentation and Evolution: responsible for the evolution and experimentation logic of 

each actor. As described in previous sections of this report, different actors have different 

functionalities, so implementation varies from actor to actor (the Cur_Ctr promotes controllers 

based on experimentation reports, the Evol_Ctr creates new controllers and sends them to the 

Exp_Mg etc.). 

o Programming language/Frameworks: Python. 

o Naming convention: actor name abbreviation + _Py (e.g., Cur_Py for Curation Controller) 

• Marketplace: services that make up the functionalities of the Marketplace.  

o Ethereum service: responsible for receiving and executing transactions through smart contracts 

in Ethereum. These transactions include uploading a file to IPFS, retrieving an uploaded file by 

its CID, or by its id. 

▪ Programming languages/Frameworks: Node.js, Hardhat, Solidity. 
▪ Naming convention: actor name abbreviation + _NJS (e.g., Cur_NJS for Curation Controller) 
o IPFS service: node connecting each actor to a private IPFS distributed filesystem network. 

▪ Naming convention: actor name abbreviation + _IPFS (e.g., Cur_IPFS for Curation 

Controller) 
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Figure 47: Network architecture of the PoC. 

All independent services have been implemented through Docker containers, orchestrated and 

configured via a Docker Compose (docker-compose.yml) file. Each container is interconnected 

creating a network that is shown in Figure 47. From it, it can be seen that each container/service of 

the system has an IP address and a specific set of ports exposed for communication with other 

nodes within the network. The distribution of these ports and addresses is detailed in Table 2.  

Node Container name IP address Ports Function 

Evol_Ctr 

evol-ctr-py 172.16.239.11 6004 Builds controllers combining modules 

Sends controllers for experimentation 

evol-ctr-ipfs 172.16.239.12 4001 

8090:8080 

5001 

Libp2p swarm connection 

HTTP gateway and read-only API 

IPFS API 

evol-ctr-mkp 172.16.239.13 8545 

3000 

JSON RPC connection to Ethereum 

Marketplace HTTP API 

Exp_Mg 

exp-mg-py 172.16.239.21 6001 Receives controllers 

Passes controllers and experiment list 

and parameters to the Digital Twin 

exp-mg-ipfs 172.16.239.22 4001 

8091:8080 

Libp2p swarm connection 

HTTP gateway and read-only API 

IPFS API 
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5001 

exp-mg-mkp 172.16.239.23 8545 

3000 

JSON RPC connection to Ethereum  

Marketplace HTTP API 

DT 

dt-py 172.16.239.31 6002 Runs experiments 

dt-ipfs 172.16.239.32 4001 

8092:8080 

5001 

Libp2p swarm connection 

HTTP gateway and read-only API 

IPFS API 

Cur_Ctr 

cur-ctr-py 172.16.239.41 6003 Decides if a controller is protected 

cur-ctr-ipfs 172.16.239.42 4001 

8093:8080 

5001 

Libp2p swarm connection 

HTTP gateway and read-only API 

IPFS API 

cur-ctr-mkp 172.16.239.43 8545 

3000 

JSON RPC connection to Ethereum 

Marketplace HTTP API 

Table 2: Containers and Ports 

 

9.3.6 THE MARKETPLACE 

As described in Section 9.3.2 of this report, rather than a single node of the network that makes 

up the PoC, the designed Marketplace is in itself a distributed network of several interconnected 

nodes. As shown in the previous sub-section, these nodes are composed of Docker containers 

incorporating two different services (Ethereum and IPFS) that make up the Marketplace and are 

included into every actor that is part of the PoC and shown in Figure 37.  

This means that the Marketplace is distributed across all the instantiations of the Evolution 

Controller, Experimentation Manager, Digital Twin and Curation Controller, connecting every actor 

to the traceable ledger of evolution artifacts created throughout the process and stored in IPFS and 

accessible through the private Ethereum blockchain. Figure 48 presents an example of how the 

Marketplace works when uploading an artifact. The process is described below: 
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Figure 48: Example of uploading process in the Marketplace. 

1. The Evolution Controller sends an Evolvable Controller in the form of a JSON file to the 

Marketplace. This JSON file has the structure described in Section 9.3.3, containing 

information that identifies the controller according to its definition, and is sent via a POST 

HTTP request to port 3000 of the evol-ctr-mkp container, which handles the HTTP API of the 

Marketplace (see Table 2). 

2. The Marketplace receive the JSON artifact via port 3000 and registers the file into Ethereum 

via the Marketplace.sol SC (see sub-section 9.3.3 for further details). The operation is run by 

the marketplace.mjs script, that is contained in every _NJS container and handles the operation 

of the Marketplace, interconnecting Ethereum with IPFS, and handling transactions on behalf 

of each node. 
3. Ethereum validates the transaction, confirming in turn the registration of the JSON artifact 

into the chain.  

4. Once the transaction is confirmed, the marketplace.mjs script uploads the JSON file to IPFS 

via the IPFS API (port 5001). 

5. After uploading to IPFS, the JSON artifact is sent to the next corresponding actor/actors (in 

this case, the Experimentation Manager). 

9.3.7 THE MARKETPLACE SMART CONTRACT 

Just as has been stated in earlier sections of this report, the Marketplace SC is responsible of 

registering artifacts generated throughout the evolution and experimentation process into the 

blockchain, ensuring traceability, security, accessibility and scalability. While the private IPFS 

network stores artifacts and provides scalability while ensuring availability, the Ethereum 

blockchain keeps track of all transactions throughout the process and constitutes a historic record of 

file versions, upload times and other metadata. 

In order to achieve this successfully, file registration is managed by Marketplace.sol, a SC that has 

been laid out to capture meaningful information in order to optimally ease identification of files and 

browsing the register. To this end, a structure named File has been created in the Marketplace.sol 

SC, whose elements are listed below: 

• File number (uint256): number of the file uploaded to the Marketplace chronologically.  

• CID (string): the file’s Content ID, computed before being uploaded to IPFS. 

• Name (string): name of the file. 

• Object Type (string): type of the object uploaded: controller, experimentation report etc.  

• Uploader (address payable): Ethereum address of the node that is registering the file.  
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A mapping is then assigned to the File structure and the total number of files uploaded to the 

Marketplace, which is used to keep track of files in the system. This number is in turn saved in the 

chain as the File number attribute. 

It is worth noting that, while the id of a controller as described in section 9.3.3 represents a specific 

instance of a controller, the CID is a unique cryptographic hash that represents a file and does not 

change as long as the contents of the JSON stay the same, i.e., when the evolution is run multiple 

times.  

9.3.8 CONTROLLER DEPLOYMENT USING TOSCA  

This PoC also includes the automatic deployment of a controller as a REST service. The code for 

this part can be found in the folder ctr_deployment [7]. For this purpose, a YAML file is written 

according to the OASIS Topology and Orchestration Specification for Cloud Applications 

(TOSCA) [10], as it is recommended in the Build-a-Thon proposal [11]. The TOSCA file is then 

parsed and executed by using the orchestrator xOpera [12]. Given the CID of a controller as input, 

the following task are performed by the orchestrator (Figure 49): 

• Fetch the JSON representation of the selected controller from the Marketplace. 

• Create an instance of the class Controller based on the JSON representation. 

• Deploy a REST service in a Docker container.  

 

Figure 49: Representation of controler deployment. 

For the development of the REST service, we have used the Python tools Flask and Gunicorn 

(Section 9.3.4). Once the service is deployed it will reply to HTTP GET requests (Figure 50). The 

HTTP response is a JSON that contains the information about the controller and the output based on 

the request’s input (Figure 51). 

 

Figure 50: Controller REST service representation. 



- 49 - 

FGAN-O-029 

 

 

Figure 51: JSON response by the controller REST service. 

The controller implemented is rather simple, and the REST service is not actually a close-loop 

(we already implemented a close-loop for this contribution in the evolution process). However, the 

purpose of this part is to prove that is feasible to deploy a controller with just its CID, getting its 

representation from the Marketplace. The CID of the controller with id 34 is the default input in the 

file inputs.yaml inside the ctr_deployment folder [7], although it can be replaced by any other 

controller’s CID. As Section 9.3.3 explains, this CID will remain the same as long as the JSON 

representation of the controller is the same, no matter how many times the evolution is run. This 

feature ensures a “check-point” to which the service can always return. 

9.3.9 PoC RESULTS 

This section presents the results of the PoC which code is included in [7]. Along with this report, 

the BT submission includes a demo video of the PoC execution. The configuration parameters for 

the presented PoC are:  

• Each controller is composed of 2 modules. 
• The parameter of each module can only adopt two possible values: 2 and 10 

• Evolution is done by randomly combining pairs of modules, avoiding repetition of the same 

modules in the same order with the same parameters (that would yield an identical controller). 

• The PoC stops after trying out all possible combinations 
• As for the Curation Controller criteria, the default parameters are used. As explained in 

Section 9.3.4 that means: 

o Average: Protected Controller if the result is greater than 500. 
o Value: Protected Controller if the result is smaller than 20. 

• All docker containers run on a local machine and in a private network as explained in Section 

9.3.2. 

The purpose of this configuration is to illustrate the mechanics of the proposed architecture by a 

clear and quick demo that can be reproduced easily in a local machine by anyone who clones the 

repository [7]. The close-loop chronological order was explained in Section 2.1 and it is shown in 
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Figure 37. Figure 46 shows the representation of the actual docker container nodes. As shown in the 

demo video, one must look at log messages of the docker containers to analyse the process. 

Figure 52 shows the log messages of the Evolution Controller (its Python part), denoted as 

Ev_Py in Figure 46. The output shows the JSON representation of each controller that the Ev_Py 

node sends to Ev_NJS. The JSON is forwarded to Ev_IPFS and its response, the CID assigned to 

each controller, is sent back to Ev_Py by the Ev_NJS. With the printed CID it is possible to access 

the controller JSON representation in the marketplace, as shown in Figure 53 for the controller with 

id 34. It is interesting to change the port in the address, to access a different node (Figure 54). The 

port 8091 corresponds to the Exp_IPFS node and the 8092 to the DT_IPFS (see Figure 47 and 

Table 2) This proves that the information about each controller is reproduced in all the IPFS nodes. 

Figure 52: Log messages of the Ev_Py docker container. 

 

Figure 53: Access to the JSON representation of a controller in the Marketplace via its CID. The 

Marketplace node that is being consulted is Exp_IPFS. 

 

Figure 54: Access to a controller JSON representation in the Marketplace via its CID. The 

Marketplace node that is being consulted is DT_IPFS. 
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9.4 Autonomous agents (with varied competence) in networks. 

This section presents the PoC on autonomous agent in network case study. The case study is 

focused on the level of autonomy for autonomous system with estimation and judgement of 

competence as key criteria.  

The autonomous system requirements are presented [4]. Among the requirement, the autonomous 

agent should determine and adjust the level of autonomy depending on environment and type of 

task in contrast to capabilities of the system in combination with policies to support. The capability 

will enable system to dynamically adjust to situation corresponding human intervention requirement 

at run-time or design. The main highlight of an autonomous workflow include task specification, 

understanding, feasibility, planning and execution. Request for human support and subsequent 

learning by the autonomous system are other important considerations.  

A simple workflow scheme for autonomy with varying autonomy levels was discussed. This 

includincludeded task specification by human and task understanding, feasibility check, task 

planning, task execution by system. Request for support to human and control by human can be to 

any of these workflow steps. Monitoring of performance levels by humans and learning by the 

system are added steps. 

9.4.1  The Poc design and implementation 

For the PoC, we consider sensors being an integral part of literally all equipment, gadgets, mobility 

solutions, communication devices, medical devices, defence applications, athletics, electronics, 

computers, etc. Sensors are among the fastest growing markets along with mobile phones and 

computers. So, the requirements for use case [4] involves the type of data that is collected and  

detected from the environment. 

The data detected from the network in particular includes include text data (logs), packet 

measurements, deep packet inspection, latency time measurements, packet loss measurements, etc. 

The sensors are thus autonomous agents because they are created (instance) and managed (data 

collection, data analysis and actions) with minimal human intervention. 

Also, as part of the requirements for use case 23, it is essential that autonomous networks (AN) 

enable fault isolation through collaborative analysis of multiple sensors to identify the cause of the 

fault. Another aspect is enabling bug fixes without human interaction, such as discovering the 

correct version of software or hardware to update. 

The creation of new agents with new capabilities,  requirement collection and analysis of existing 

problems (and in some cases, recurring) in the network (RAN or base station failed) warrants the 

autonomous management of close loops. In this this PoC , we consider the validation of the actors 

and the relationship between them in the design of a graph in Neo4j. other important tools use 

including Graph DB, Colab, Python programming, Regular meetings and Interactions 

 

Autonomous controllers and data are considered as the main actors. The controllers consist of data 

stream sensors or data delivering technology while cloud-based (Environment) methods are 

employed to distribute communication loads through relay nodes. Table 3 presents the actors and 

their relationship.  
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Actor-1 Actor-2 Description  

Controllers Autonomous Sensors for data stream 

collection (or delivery) 

technologies. 

Data Environment Data Cloud-based (Environment) 

methods to distribute 

communication loads by 

relay nodes. 

Table 3: Different actors and their relationships 

 

9.5 Deriving new use cases based on link prediction algorithm. 

This section presents PoC on deriving new use cases based on link prediction algorithm. It's 

important to investigate the hidden use cases for the autonomous networks to be able to extract how 

to use the AN concepts in future networks effectively, and an effective way to do so is to make use 

of the recent use cases, to predict the possible ones. 

Instead of analysing the existent use cases manually we can benefit from the huge advancements in 

the computational intelligence A.K.A. AI or ML, but for that purpose we need a dataset that 

contains information about the recent use cases. 

Firstly we analyse and automate the process of getting information (text and graphs) as describe in 

[ITU-T Y.Supp 71]. Through the data presentation, the network structure and entities are captured 

and a model is proposed to predict the links. The rest of the section discusses the Text and 

document parsing, figure parsing process, graph database representation, and the link prediction 

algorithms. 

9.5.1 Text And Document Parsing: 

In [1], We can find the use cases for the build-a-thon challenge, and in order to make predictions for 

the new use cases we need first to get the existing details of the use cases to be able to represent 

them. 

In that document, we can find tables, texts and images that are used to represent the use cases, in 

this section we will describe how we parsed the paragraphs and tables, and in the next section we 

will describe the parsing of images. 

By using the docx library[8], which is a programming library based on Python programming 

language to process word documents, we can extract all the information we need from that 

document. 

First we need to extract information that is found in the tables, because it represents the meta data 

and also the description of the use case itself, but the first problem we faced was we have a lot of 
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tables other than use cases’ one like the following tables, so we need to select those tables only by 

some sort of conditioning.  

after Parsing those tables, we found that the fields on the tables is not consistent in naming, for 

example we have some problems like: 

- [Category, Use case category, Notes on use case category] they all refer to the category of 

the use cases. 

- [Base contribution, Base Contribution, Base contributions] All refers to the same 

information. 

- [Use case description, Description, Use case description\n] All refers to the same 

information. 

- [Open issues, Open issues (as seen by the proponent)] All refer to the same information. 

So we need to make sure we have a consistent naming, we edited the confusion manually, and 

finally we got the following table that summarises all 40 cases: 

 

Table 4: Final parsed data from the tables 

Next step is to parse the requirements of each use case, the requirements in the document is 

represented as paragraphs after the table of each use case, and as an example, the first requirement 

in the 10th use case is : 

  

For this example we can find that we can extract everything about the requirement like the use case 

number and the number of the requirement itself, also the priority level of the requirement can be 

extracted, and we have 3 levels of priority will be as follows: 

- Critical: Important and required for the use cases implementation.[1] 

- Expected: Possible requirement which would be important but not absolutely necessary to 

be fulfilled.[1] 

 

Table 4: Final parsed data from the tables. 
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- Added Value: possible requirement which would be optional to be fulfilled (e.g., by an 

implementation), without implying any sense of importance regarding its fulfilment.[1] 

Finally We managed to get the final table that represents all the requirements as follows: 

 

 

Table 5: Final requirements table 

 

Now we have now two tables, one for requirements and the other one for the information about the 

use cases, now we need to combine those tables together to have all details in one place, and the 

final details will be as follows: 

 

Table 6: Final combined tables of the requirements 

 

Now we have all the details about each use case in a row, next step we need to parse the figures that 

represent the relations between actors. 

 

Table 5: Final requirements table. 

 

 

Table 6: Final combined tables of the requirements. 
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9.5.2 Figures representation: 

In the document, we saw two types of figures, one for possible components (Figure 52) and the 

other in a form of sequence diagram (Figure 53), both representing the interactions between the 

actors. 

 

Fig. 55: Example Actor Interaction diagram 

 

 

Fig. 56: Possible components diagram 

 

The problem with images is that they are not parsable, we cannot extract the desired information 

from these images in an automated fashion, so to be able to extract the information, we will convert 

it to a machine readable format and then extract the desired information. 

 

 

Figure 1: Example Actor Interaction diagram Figure 2: Possible components diagram 

 

 

 

Figure 1: Example Actor Interaction diagram Figure 2: Possible components diagram 
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To do that job we tried several tools to make a convenient representation, first tool is PlanUML[6], 

and it’s a tool to make several types of diagrams using the UML format, by using this tool we are 

able to create sequence diagrams, and the result our first try was as in the next figure: 

 

Fig. 57: First try of using PlantUML 

By comparing this figure 54and figure 52 we can see that this representation is most like the desired 

one, but has one but crucial disadvantage, which is the optimization function of the management 

domain here is represented as a self message, but in the real time it’s a function inside the 

management domain component. 

Then we tried another representation, in this time we tried another type available in PlantUML, and 

the result was as follows: 

 

Fig. 58: Second try result of figure representation using PlantUML 

This representation is sufficient if we don’t want to see a visual representation, here we overcame 

the problem of representing the function, but we have a bad visual that is not like the one we want 

to be consistent. 

The final try we used another tool to make the representation, this time we used Draw.io[9], which 

is a GUI based tool, from which we can extract the XML or any other machine readable format, and 

the result was as follows: 

 

Figure 3: First try of using PlantUML 

 

 

Figure 4: Second try result of figure representation using PlantUML 
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Fig. 59: Final try in figure representation 

 

As we can see here an identical copy of the diagram in figure 52, also there are other types of 

shapes that can represent any other type of diagrams, also it gives us the flexibility to enter any 

other metadata that can help us when we parse the figures, and we used these metadata as follows: 

 

Fig. 60: Added Metadata 

 

We added the following meta data: 

- Class: To represent the class of the item, whether it was component, function or the type of 

the relation, this field is added to all items in the figure. 

- Value: The name of the item or the relation to all items. 

- Parent: To contain the parent component ID that contains this function, only included in the 

function items. 

 

Figure 5: Final try in figure representation. 

 

 

  

(a) Component metadata (b) Functions Metadata (c)  Relations Metadata 

Figure 7: Added Metadata 
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After successfully representing the figure in the XML, which is a machine readable format, we can 

use Python[10] and its library XML[8] to parse the figure, and we ended up with the following 

table: 

 

Table 7: Relations Table 

 

And also we have a dictionary that contains the functions and its corresponding parent actors. 

Now we have completed parsing the document and the following figure represents what we did till 

now: 

 

Fig. 61: Resources we have  

 

After that, we need a way to convert this into a type of dataset to be able to run machine learning 

algorithms on it. 

9.5.3 Graph database representation: 

There are several graph databases, we chose Neo4j[5] which is one of the most popular graph 

databases. Also it has some advantages like native representation of graphs, a lot of other packages 

especially in data science, has its Querying language Cypher which help us in query graphs and 

Finally Has an API with Python so it can help us automating our stuff. 

 

Table 7: Relations Table 

 

 

Figure 8: Resources we have 
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It’s more convenient to represent the network with a graph database, in the graph database we 

represent the data in the form of nodes and relations, which is the most relevant format for network 

structure. 

We made some iterations to represent, the first try based only in the relations table, which contains 

only the components in the relations table with 130 relations only, but this representation has some 

drawbacks which is special to those use cases that have figures to represent it on the document, 

which are not all use cases, so using only these relations will ignore important parts of the use cases. 

Next try is to read each use case carefully and extract the true relations and functions inside the 

graphs and also the hidden relations in the requirements and descriptions of each use case, and the 

final product is the reference code, which is sufficient to represent the use cases, now we have +500 

relations and +300 Component. 

A part of our representation is in the following figure: 

 

Fig. 62: Part of the graph representation 

 

Now we have represented the data, next step is to run the link prediction algorithm on it to be able 

to investigate new use cases. 

9.5.4 Link Prediction Algorithm: 

We can consider the link prediction pipeline as a classification problem to classify if a certain 

relation exists between two nodes or not, and this classification can be more accurate if we calculate 

something that measures the how likely these two nodes to have a relation in between, and actually 

the current representation needs some numeric properties. 

And the pipeline of the link predictions contains several steps as follows: 

9.5.4.1. Make the projection: 

First step is to project the graph database in the memory, this is done by using the native projections 

in neo4j. 

 

Figure 9: Part of the graph representation. 
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9.5.4.2. Add node properties: 

We need to add some properties to the nodes, these nodes are:  

 

9.5.4.2.1. Node Embeddings: 

For each node we need specific embedding like what is happening when we decode a categorical 

feature in the ordinary data preprocessing. 

Node embedding algorithms compute low-dimensional vector representations of nodes in a graph. 

These vectors, also called embeddings, can be used for machine learning.  

We have used the FastRP algorithm because it’s the only one in production quality, and works in 

directed and undirected relationships. 

 

Fig. 63: Node embedding 

 

9.5.4.2.2. Centrality: 

Centrality algorithms are used to determine the importance of distinct nodes in a network. 

We have used the Degree Centrality algorithm, as it works well in directed and undirected 

relationships. 

degree centrality measures the number of incoming or outgoing (or both) relationships from a node, 

depending on the orientation of a relationship projection. 

 

Figure 10: Node embedding 
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Fig. 64: Example of Centrality 

 

9.5.4.2.3. Community detection: 

Community detection algorithms are used to evaluate how groups of nodes are clustered or 

partitioned, as well as their tendency to strengthen or break apart. 

We have used the Label propagation algorithm, as it works well for directed and undirected 

relationships. 

The Label Propagation algorithm (LPA) is a fast algorithm for finding communities in a graph. It 

detects these communities using network structure alone as its guide, and doesn’t require a pre-

defined objective function or prior information about the communities. 

Now we have added all the properties that may help the algorithm more and more, next step is to 

calculate combined features using these properties. 

9.5.4.3. Combined Features: 

We are using the properties that are created on nodes, and combine them in each potential link 

According to one of the following functions we choose for every property: 

 

Fig. 65: Similarity algorithms 

 

 

Figure 11: Example of Centrality 

 

 

Figure 12: Similarity algorithms. 
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9.5.4.4. Training and prediction: 

Now all of the pipeline is ready, we trained algorithms in the dataset and after making hyper tuning 

we found that the RF model behaves best in all use cases, now we need to test the models in all 

scenarios: 

- First scenario: we use only the 130 relation data set, which is the result of using only use 

cases that have figures on it. 

- Second scenarios: we use the full representation of the reference code, that have +500 

relations and +300 Nodes. 

- Third scenario: we use the second scenario but we add the functions of the actors as 

properties in these nodes. 

And the following was the results in each try: 

 

Representation Best Model Test Accuracy (AUCPR) 

Scenario 1 RF 88 % 

Scenario 2 RF 73.6% 

Scenario 3 RF 86 % 

Table 8: Results 

Now it’s obvious that the third scenario is the best scenario, and when we made the prediction, we 

found that 6954 new links with more than 99% of probability to be a true relation. 

9.5.5 Discussion  

We can conclude from all of our findings that we found a way to parse the document and text, also 

the draw.io is the best tool that has a lot of customizations that can help us in making more 

representative figures. 

Best algorithm for link prediction is the Random Forest model with 86% AUCPR accuracy in the 

full reference code, and also we need to find a more enhanced way to represent the use cases in the 

reference code, i.e. to convert all functions to be properties. 

 

9.6 A Low Latency Closed Loop for ROBOTIC grasping 

In this PoC use case, “Slip Detection (and Force Estimation) and Object Detection” in a robotic 

grasping. Primarily, universal grasp action requires object picking with compensatory grip force 

control to avoid gross object slippage and then the secondary task for in hand manipulation is to 
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identify the object type across different properties primarily detecting the class. A Low Latency 

Closed Loop System between the haptic hands / algorithms and real robotic hand (Allegro Hand) 

using MEC Test Bed is developed. Figure 66 presents the low latency closed loop for the robotic 

graping problem.  The slip detection, force estimation and object detection are discuss in the 

following subsections. 

 

Figure 66:  The low latency closed loop for the robotic graping problem 

9.6.1 SLIP DETECTION, FORCE ESTIMATION AND OBJECT DETECTION IN A 

ROBOTIC GRASPING  

Slip detection is a crucial component of robotic grasping. It is the ability of a robotic arm to sense 

when its grasp is slipping or losing its grip on an object. This is important for robotic arms so that 

they can adjust their grip and maintain a secure hold on the object. Slip detection is achieved by the 

use of tactile sensors or through gripper’s joints force feedback, which detect changes in pressure 

and friction as the robotic hand interacts with the object. This data is then used to identify when the 

object is slipping from the grasp and the robot can adjust its grip accordingly. When the object 

begins to slip, the robot applies more grip force, and when it is secure, less force is applied. This 

helps the robot maintain its grasp of the object more effectively, allowing it to manipulate it more 

precisely. Slip detection in robotic grasping is a process of ensuring that the robotic arm can 

accurately grasp objects and keep them in place. To enable this, a low latency machine learning 

model control approach can be used. The machine learning model can be trained on a dataset 

containing objects, their physical properties, and the desired robotic grip parameters. The model can 

then be used to detect when the object is slipping out of the robotic grip, allowing the robot to 

adjust its grip parameters accordingly. This approach ensures that the robot can quickly and 

accurately detect the slipping objects and make the necessary changes to maintain its grip. 

Additionally, the low latency of the machine learning model control approach allows the robot to 

respond to slipping objects in a timely manner, ensuring that objects are not dropped or damaged 

during the robotic grasping process. 

Object recognition in robotic grasping is a complex field of study that has been the focus of many 

research projects in the domain of robotics and computer vision. At its core, object recognition is 

the process of identifying a specific object within an image or video frame. This task is typically 

accomplished by applying specialized algorithms such as convolutional neural networks or other 

machine learning techniques. In recent years, object recognition has become increasingly important 

for applications in robotics and automation. Haptic force based object recognition is a method of 

robotic grasping that relies on the tactile feedback from physical contact with an object. By 

measuring the forces applied to the object, the robot can identify the shape and size of objects, and 
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determine the best way to grasp and manipulate it. This technique can be used in a variety of 

circumstances, such as when the object is occluded from view, or when it is too small or too large to 

be detected by vision-based object detection. Compared to vision based object detection, haptic 

force based object detection offers greater accuracy and reliability, as it is not affected by lighting 

conditions or the presence of occluders in the environment. Additionally, haptic force based object 

detection is not limited to detecting flat or rigid surfaces, and can even detect the texture and 

properties of an object, such as its weight or material composition. 

9.7 Model inference using  the MEC Test Bed 

This section presents the PoC use case solution design and raw data processing into logical features 

for learning model to predict valid outputs. For each use case a process of feature engineering and 

the methodology used is discussed. Figure 67 present the MEC testbed for the model inference 

investigation. The two cases considered are presented as follows. 

 

Figure 67: Model inference using MEC Test Bed . 

9.7.1 Case 1 : Slip Detection 

Any combination of the following individual features forms the basis of the feature set for the 

model to train upon. All individual features and possible combinations were fed to the learning 

model during experimentation. 

Feature Engineering: Model Features Space- 

1. Joint Force 𝐹𝑡 

2. Joint Position,𝛩𝑡 

3. Force Derivative, 𝛥𝐹𝑡 

4. Position Derivative 𝛥𝛩𝑡 

The target label for slip event and crumple event are transformed into 4 possible combined classes 

for the model to predict the slip and crumple state at any given time step as a combined output 

depicted in Table 9. 

 

Events 
Resulting Events 

Slip  Crumple 

No No 0 

Yes No 1 

No Yes 2 

Yes Yes 3 

Table 9: Transformed events label for multi-class prediction. 
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Methodology: For the defined problem statement of detecting the slip event as well as crumple 

event during the grasp-lift phase of object picking , the time-series readouts data from the 16 Joints 

of gripper is transformed into the required input format of the LSTM based model presented in 

Figure 68. The data is transformed by applying a sliding window to the time series data set with 

window size equal to the number of previous observations before the model predicts the output for 

next time_step. The transformed dataset is shuffled to avoid biased learning. 

 

Figure 68: LSTM model for Slip detection 

• Input shape : (n_samples,n_previous_time_steps, n_features) The build model 

was tried on different features combinations (n_features : [16 - 𝐹𝑡 ,16 - 𝛩𝑡 ,16 - 𝛥𝐹𝑡 ,16 - 

𝛥𝛩𝑡]) 

• Output_shape: (n_samples,n_output) The model predicts a class out of n_outputs (one-

hot encoded) classes ( n_outputs : [0,1,2,3]) corresponding to each transformed target class. 

9.7.2 Case 2 : Object Recognition  

For this case, the following individual features forms are used for training the model. 

Feature Engineering: Model Features Space- 

1. Joint Force, 𝐹𝑡 

2. Joint Position, 𝛩𝑡 

3. Mass, 𝑀𝑘𝑔 

4. Joint Force x Joint Position , 𝐹𝑡 x 𝛩𝑡 

The target labels can be segregated into unique 13 object type (class : unique shapes and sizes, 

properties) as well as 6 unique object categories(same shape objects). 

• Classes: 13 Objects 

• Class categories : 6 Objects categories. 

The data-set is pre-processed further based on the unique categories to get the extracted data-set 

which is then fed to the classifier. Any combination of above individual features forms the basis of 

the feature set for the model to train upon. All individual features and possible combinations were 

fed to the learning model during experimentation. 

Methodology: For the defined problem statement of class recognition the raw dataset was highly 

imbalanced. Class Imbalance : The raw dataset with unique object classes was processed to get the 

balanced dataset as to avoid the biased learning of the model due imbalanced samples of data of 

individual classes. The train dataset is generated by extracting each class dataset equivalent to the 

category which has the least sample in the raw dataset. 

• Input data : (n_samples,n_features) The build model was tried on different features 

combinations (n_features : [16 - 𝐹𝑡 ,16 - 𝛩𝑡 ,1 - 𝑀𝑘𝑔, 16 - 𝐹𝑡 x 𝛩𝑡 ]) 
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• Output_shape: (n_samples,n_output) The model predicts a class out of n_outputs (one-

hot encoded) classes ( n_outputs : 13 classes) corresponding to each transformed target 

class. 

9.7.3 Result and Discussion 

For case 1, we considered 10 previous time-steps as the length of the observed window for the 

model to predict the event class. The model is trained with Adam optimizer with default learning 

rate of 0.01 and categorical_crossentropy as loss function. 

Furthermore, Random forest is used for the case 2. As the name implies, Random forest consists of 

a large number of individual decision trees that operate as an ensemble. Each individual tree in the 

random forest spits out a class prediction and the class with the most votes becomes our model’s 

prediction. 

Illustrative results for both use cases across combination of raw and constructed features trials for 

slip detection and object recognition are presented in Figure 69 and Figure 70, respectively, and 

summarise in Table 10. It can be observed that there were minor differences in the classifier 

behavior across the features trials for the object recognition case, but the overall performance was 

highly accurate due to well constructed features and cleaning of noise from the raw data performed 

during feature engineering stage. The model trained for slip detection case also performed 

reasonably well but a significant increase in the accuracy can be observed for the feature set 

involving derivative features of raw data. Thus the derivative features like 𝛥𝛩, 𝛥𝐹 reasonably 

impacts the model performance for inference of resultant slip and crumple events during the grasp-

pick phase of lifting the objects.  

 

 

Figure 69: Confusion matrix for LSTM model for Case 1: slip detection  
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 Figure 70: Confusion matrix for RF model for Case 2: object detection 

 

Method Fetures 
Slip Detection 

Train Validation Test 

LSTM 
𝛩, 𝐹 79.6 80.4 80.6 

𝛥𝐹, 𝛥𝛩, 𝛥𝐹 86.4 84.2 85.6 

 

RF 

 
Object Detection 

Train Validation Test 

𝛩, 𝐹 96.1 97.5 96.9 

𝛥𝐹, 𝛥𝛩, 𝛥𝐹 98.1 99.5 98.9 

Table 10 - Result table for both use cases (update table with Roger) 
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9.8 KPI anomaly analysis for 5G networks and beyond 

This section presents PoC on examine KPI anomaly analysis for 5g networks and beyond [4] and 

produce a reference design. The proposed solution scans list of Network Functions(NF) from EMS, 

identifies NF for KPI retrieval and forecasts the KPIs from these NF for future time period. It also 

identifies anomalies and it source from the forecasted KPIs.  

9.8.1 Design 

Using historical KPI data, an ML Models is developed to be re-train at scheduled interval to learn 

new insights from the data and improve performance.  

 

Figure 71: KPI anomaly analysis for 5G networks and beyond 
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Figure 72: Relationship graph representation of KPI anomaly analysis for 5G networks and beyond 

 

9.9 Autonomous Log Troubleshooting (with varied competence) in networks 

This section presents the PoC on autonomous log troubleshooting (with varied competence) in 

networks. The case study focuses on fault prediction and isolation based on log analysis. The logs 

are general unstructured with no standard format, making it tedious to correlating logs across 

various vendors. 

Through historical logs, machine learning can learn and predict failure. The proposed solution 

entails scanning all incoming log traces continuously, detect and report system issues such as 

incidents with probable root-cause automatically.  

9.9.1 Design 

The system takes feedback from user and re-train the Log anomaly detection to improve 

performance through self-correction. The main steps for the system include: 

1. Logs collection from various open interfaces and NFs 

2. Correlation and Analysis of the collected logs 

3. performance optimization of log analysis mechanism 

9.9.2 Summary 

In this document, we discussed use case 15 from [ITU-T Y.Supp 71] and analyzed the design. We 

provide extensions to the reference code provided in [Build-a-thon 2022] and build our own graph 

based on the reference code. 

. 

 

Figure 73: ML-based automated Log Troubleshooting 
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Fig. 74 –  (7. AVANGERS) AUTONOMOUS LOGTROUBLESHOOTING (WITH VARIED COMPETENCE) IN NETWORKS. 

 

10 Conclusion and future research  

The PoC described here lays out the skeleton for an evolution framework based on the concepts 

described in [4], while leaving details regarding each of its components for further development. To 

this end, simplified implementations of modules and controllers are used for the PoC, as well as 

random combinations instead of a more complex evolutionary algorithm. Nevertheless, specific 

improvements on each of these examples can be made relying on the presented work, with little or 

no change in the architecture. That key feature makes this PoC valuable for the future development 

of the use cases for AN.  

Another key point of focus of our approach is the assurance of security and traceability of the 

evolution process through the implementation of a decentralized Marketplace. The design and 

operation of the Marketplace has been described throughout this report, and we believe it represents 

a strong feature of our approach as well, as, thanks to the implementation of Ethereum and IPFS, it 

successfully provides with security, auditability, privacy and scalability through decentralization 

and a distributed means of storage. Furthermore, the choice to use the popular and widely adopted 

open-source technologies Ethereum and IPFS facilitates its future development and accessibility.  

On top of security and auditability, using JSON as the data format for exchanging the controller and 

experiment information in the Marketplace enhance the explainability of the process, since it is a 

human readable format. Moreover, the deployment based on docker make the PoC portable and by 

using open-source tools and providing the source code we have ensured its future use and 

reproduction. 

Regarding future lines of work, some of the ideas are:  

• Implement more complex definitions of Modules and Controllers for solving a specific 

problem in an AN. 
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• Add a list of experiments that is suitable for that use case. 

• Implement more complex evolutionary algorithms than random combination that can make 

use of the feedback that the Evol_Ctr receives about the experiment results. 

• Add the possibility of updating new Modules after the evolution process has started. In order 

to make this possible all nodes must be notified of the new upload. Fortunately, IPFS provides 

the tools for making this possible without changing the architecture. 

• Implement more complex Smart Contracts that would allow for more complex access control, 

updating and deleting artifacts, as well as an easier and more intuitive access to files.  

• Add a more efficient detection and communication of updates within the system. 

We can conclude from all of our findings that we found a way to parse the document and text, also 

the draw.io is the best tool that has a lot of customizations that can help us in making more 

representative figures. 

Best algorithm for link prediction is the Random Forest model with 86% AUCPR accuracy in the 

full reference code, and also we need to find a more enhanced way to represent the use cases in the 

reference code, i.e. to convert all functions to be properties. 

We need a way to include parsable shapes inside the document of use cases instead of images, to 

help automate the process further. 

Also we need more representative figures or an algorithm for example and NLP to convert the 

descriptions of use cases into the reference code. 

Another use case study was undertaken to create and develop a PoC for in-grasp manipulation with 

a low-latency inference system to solve grasping use cases of slip avoidance and in-hand object 

recognition [15]. The allegro gripper’s in-hand joint force sensors detected the grasping state, and a 

outlined model in previous section were used to effectively process the information. As a result, the 

proposed method has the potential to generate successful inference outputs for low-latency in-grasp 

manipulation with abundant kinesthetic information (especially adding the derivative features for 

slip detection) by employing a LSTM which captures the temporal change of the joint information. 

The logical next step in our research is extending this to other rich tactile based multi-fingered in-

grasp manipulation tasks because the tactile sensor can detect shear forces, which is highly 

subjected to change during multi-fingered in-grasp manipulation (e.g. slip and grasping from 

different orientations). Moreover, achieving several tasks (e.g. slip avoidance and object 

recognition) with one network for avoiding re-training on each task can be a next challenge. 

Thus, Build-a-thon challenge in 2022 focussed on creation of a crowdsourced, baseline 

representation for AN closed loops (controllers), reviewing and analysing them, and publishing 

them in an open repository. The aim of the exercise was to produce reference implementations of 

parser, “AN orchestrator”, “openCN” [ITU-T Y.Supp 71], Evolution controller [FGAN-O-023] and 

to trigger technical discussions on the standard format for representing closed loops (controllers) 

with FG AN members and other stakeholders. This would pave the way for further downstream 

extensions on top of the baseline. The main activities included (1) the implementation of a reference 

TOSCA orchestrator to demonstrate the parsing and validation of the format in a  closed loop (2) 

development of an evolution/exploration mechanisms to create new closed loops based on existing 

closed loops or controllers. Clause 9 below describes this PoC.  
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Build-a-thon challenge in 2021 demonstrated and validated important use cases for autonomous 

networks, creating PoC implementations and tools in the process relating to emergency 

management. Interactions between a higher closed-loop in the OSS and a lower closed-loop in the 

RAN to intelligently share RAN resources between the public and emergency responder slice were 

used as the background scenario for this PoC. The outcomes of the challenge were submitted by the 

various teams that participated in creating the PoC as contributions and was the main learnings were 

submitted as ITU J-FET paper [TBD]. The main outputs of the Build-a-thon challenge in 2021 

include: (1) the implementation of a higher closed-loop “controllers” in a declarative fashion 

(intent), (2) the design and implementation of a lower closed-loop with Cloud Radio Access 

Network (C-RAN) to trigger “imperative actions” in the “underlay” based on the intent, (3) 

implementation of a simulation environment for data pipeline between various components; 

formulation of methods/algorithms for “influencing” lower layer loops using specific logic/models, 

and (4) the integration of the closed-loops and systems into an Open Radio Access Network (O-

RAN)-based software platform, ready to be tested in the 5G Berlin testbed. The 2021 PoC study 

focused on intent parsing, traffic monitoring, resource computing, and allocation autonomously. 

The closed-loops were implemented with several micro-services deployed as docker containers with 

specific functions such as monitoring, computing, ML selection, and resource allocation. 2021 was 

a collaborative study where we developed and implemented a hierarchical closed-loop that 

autonomously handles an emergency use case. Clause 8 below describes this PoC.  

 

As a future direction, build-a-thon Challenge 2023 is planned too, to further build upon the use 

cases designed as part of the 2021 and 2022 Build-a-thons, study the autonomy engine defined in 

[FGAN-O-023], especially regarding the possibility to plugin different evolution 

mechanisms as a service with clear but limited interfaces and interoperability with different 

knowledge bases with clear but limited interfaces.  
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