
- 1 -

FGAN-O-029

ITU-T FG AN draft Deliverable Dx.x

Technical Report on Proof of Concept

Summary

This document provides a report on the Proof of Concept activities under ITU FG AN WG3. This

report provides the technical summary of the activities done under PoC and it covers the following:

- Requirements for the Proof of Concept

- Description of the Proof of Concept and results

Keywords

Architecture framework, autonomous networks, Proof of Concept, use cases

Table of contents

1 Scope .. 3

2 References .. 3

3 Definitions ... 3

3.1 Terms defined elsewhere ... 3

3.2 Terms defined in this document .. 3

4 Abbreviations and acronyms ... 4

5 Conventions ... 4

6 Introduction .. 4

7 Requirements for the PoC .. 6

8 2021 PoC Description .. 7

8.1 The PoC Design and Implementation .. 8

8.2 Design of closed-loops using a declarative specification .. 9

8.3 “Imperative actions” in the “underlay” based on the intent 12

8.4 Simulated underlay for closed-loop-based resource allocation 16

8.5 Algorithms investigation for the resource allocation in the “underlay” 20

8.6 O-RAN Control-Loop Instantiation .. 28

8.7 Integration of the POC ... 32

8.8 Observations from the PoC ... 34

- 2 -

FGAN-O-029

8.9 2021 Conclusions and future research ... 34

9 2022 PoC Description .. 35

9.1 The PoC Design and Implementation .. 37

9.2 Import and export of knowledge in an autonomous network 37

9.3 Evolution and blockchain: An Autonomous Network Architecture PoC 39

9.4 Autonomous agents (with varied competence) in networks. 51

9.5 Deriving new use cases based on link prediction algorithm. 52

9.6 A Low Latency Closed Loop for ROBOTIC grasping ... 62

9.7 Model inference using the MEC Test Bed ... 64

9.8 KPI anomaly analysis for 5G networks and beyond ... 68

9.9 Autonomous Log Troubleshooting (with varied competence) in networks 69

10 Conclusion and future research ... 70

Bibliography.. 73

- 3 -

FGAN-O-029

ITU-T FG AN draft Deliverable Dx.x

Technical Report on Proof of Concept activities

1 Scope

This document provides a report on the Proof of Concept activities under ITU FG AN WG3. This

report provides the technical summary of the activities done under PoC and it covers the following:

- Requirements for the Proof of Concept

- Description of the Proof of Concept and results

2 References

[FGAN-O-023] ITU-T Focus Group on Autonomous Networks Technical Specification

“Architecture framework for Autonomous Networks”

[ITU-T Y.Supp 71] ITU-T Supplement 71 to ITU-T Y-3000 series Recommendations, “Use

cases for Autonomous Networks” https://www.itu.int/rec/T-REC-Y.Sup71-202207-P/en

[ITU-T Y.3172] ITU-T Recommendation Y.3172, “Architectural framework for machine

learning in future networks including IMT-2020”

[ITU-T Y.3176] ITU-T RecommendationY.3176, “Machine learning marketplace integration

in future networks including IMT-2020"

[ITU-T Y.3177] ITU-T Recommendation Y.3177, “Architectural framework for artificial

intelligence-based network automation and fault management in future networks including IMT-

2020”

[ITU-T Y.3320] ITU-T Recommendation Y.3320, “Global information infrastructure, internet

protocol aspects and next-generation networks”

[ITU-T Y.3525] ITU-T Recommendation Y.3525, “Cloud computing – Requirements for

cloud service development and operation management”

3 Definitions

None

3.1 Terms defined elsewhere

None

3.2 Terms defined in this document

None

https://www.itu.int/rec/T-REC-Y.Sup71-202207-P/en

- 4 -

FGAN-O-029

4 Abbreviations and acronyms

This document uses the following abbreviations and acronyms:

EC – Evolution Controller

OC – Operational Controller

CC – Curation Controller

CL – Closed Loop

SC – Selection Controller

RL – Reinforcement Learning

5 Conventions

In this Technical Report, in alignment with the conventions of [Supplement 55 to ITU-T Y-

series Recommendations] possible requirements which are derived from a given use case,

are classified as follows:

The keywords "it is critical" indicate a possible requirement which would be necessary to

be fulfilled (e.g., by an implementation) and enabled to provide the benefits of the use

case.

The keywords "it is expected" indicate a possible requirement which would be important

but not absolutely necessary to be fulfilled (e.g., by an implementation). Thus, this possible

requirement would not need to be enabled to provide complete benefits of the use case.

The keywords "it is of added value" indicate a possible requirement which would be

optional to be fulfilled (e.g., by an implementation), without implying any sense of

importance regarding its fulfilment. Thus, this possible requirement would not need to be

enabled to provide complete benefits of the use case.

6 Introduction

As explained in [ITU-T Y.Supp 71], the main concepts behind autonomous networks which

are elaborated here are exploratory evolution, real-time responsive experimentation and

dynamic adaptation. Use cases along these concepts in networks were studied in [ITU-T

Y.Supp 71], especially using, a basic building block called “controller”. Controllers are used

in the use cases to further elaborate autonomous networks and the key concepts required

to enable them. Controller is defined in [FGAN-O-023] as a workflow, open loop or closed

loop [ITU-T Y.3115] composed of modules, integrated in a specific sequence, using interfaces

exposed by the modules, which can be developed independently of the system under control before

- 5 -

FGAN-O-029

integration into the system under control, to solve a specific problem or satisfy a given requirement.

An architecture framework was also defined in [FGAN-O-023], with the key purpose and goal of

the architecture as to support the continuous evolutionary-driven creation, validation, and

application of a set of controllers to a network and its services such that the network and its services

may become autonomous. An autonomous network is a network which can generate, adapt,

and integrate controllers at run-time using network-specific information and can realize

exploratory evolution, real-time responsive online experimentation and dynamic adaptation.

ITU FG-AN organized a Build-a-thon challenge in 2021 to demonstrate and validate important use

cases for autonomous networks, creating PoC implementations and tools in the process relating to

emergency management. Interactions between a higher closed-loop in the OSS and a lower closed-

loop in the RAN to intelligently share RAN resources between the public and emergency responder

slice were used as the background scenario for this PoC. The outcomes of the challenge were

submitted by the various teams that participated in creating the PoC as contributions and was the

main learnings were submitted as ITU J-FET paper [TBD]. The main outputs of the Build-a-thon

challenge in 2021 include: (1) the implementation of a higher closed-loop “controllers” in a

declarative fashion (intent), (2) the design and implementation of a lower closed-loop with Cloud

Radio Access Network (C-RAN) to trigger “imperative actions” in the “underlay” based on the

intent, (3) implementation of a simulation environment for data pipeline between various

components; formulation of methods/algorithms for “influencing” lower layer loops using specific

logic/models, and (4) the integration of the closed-loops and systems into an Open Radio Access

Network (O-RAN)-based software platform, ready to be tested in the 5G Berlin testbed. The 2021

PoC study focused on intent parsing, traffic monitoring, resource computing, and allocation

autonomously. The closed-loops were implemented with several micro-services deployed as docker

containers with specific functions such as monitoring, computing, ML selection, and resource

allocation. 2021 was a collaborative study where we developed and implemented a hierarchical

closed-loop that autonomously handles an emergency use case. Clause 8 below describes this PoC.

As a follow up, Build-a-thon challenge in 2022 focussed on creation of a crowdsourced, baseline

representation for AN closed loops (controllers), reviewing and analysing them, and publishing

them in an open repository. The aim of the exercise was to produce reference implementations of

parser, “AN orchestrator”, “openCN” [ITU-T Y.Supp 71], Evolution controller [FGAN-O-023] and

to trigger technical discussions on the standard format for representing closed loops (controllers)

with FG AN members and other stakeholders. This would pave the way for further downstream

extensions on top of the baseline. The main activities included (1) the implementation of a reference

TOSCA orchestrator to demonstrate the parsing and validation of the format in a closed loop (2)

development of an evolution/exploration mechanisms to create new closed loops based on existing

closed loops or controllers. Clause 9 below describes this PoC.

As a future direction, build-a-thon Challenge 2023 is planned too, to further build upon the use

cases designed as part of the 2021 and 2022 Build-a-thons, study the autonomy engine defined in

[FGAN-O-023], especially regarding the possibility to plugin different evolution

mechanisms as a service with clear but limited interfaces and interoperability with different

knowledge bases with clear but limited interfaces.

- 6 -

FGAN-O-029

7 Requirements for the PoC

This clause describes the requirements for the PoC.

Requirement
Description

Gen-Build-a-thon-PoC-001
It is critical that PoC development activity, builds upon a key

concept in FG AN, especially aims to prove the concept

practically with code, test setup and demo setup.

Gen-Build-a-thon-PoC-002
It is critical that PoC development activity create well-

documented artefacts and opensource code.

Gen-Build-a-thon-PoC-003
It is critical that the maturity of the PoC is evaluated using

test scenarios in the accompanying documentation.

Gen-Build-a-thon-PoC-004
It is critical that the mapping with discussions in FG AN use

cases, and relationship with a focussed closed loop

example(s), is documented in the PoC.

Gen-Build-a-thon-PoC-005
It is critical that PoC (proof of concept) demonstrates the

feasibility (or lack of it) of specific architecture approaches.

2021-Build-a-thon-PoC-006
It is critical that Demonstration is focussed on a unique

scenario.

2021-Build-a-thon-PoC-007
It is expected that AI/ML based closed loops be used to

intelligently deploy and manage slice for emergency

responders in an emergency scenario.

2021-Build-a-thon-PoC-008
It is expected that A higher closed loop in the OSS be used

for detecting which area is affected by the emergency and

deploy a slice for emergency responders to that area.

2021-Build-a-thon-PoC-009
It is expected that The lower loop can use the policy derived

by the higher loop to intelligently share RAN resources

between the public and emergency responder slice.

2021-Build-a-thon-PoC-010
It is expected that the lower loop intelligently manage ML

pipelines across the edge and emergency responder devices

by using split AI/ML models or offloading of inference tasks

from the devices to the edge.

2022- Build-a-thon-PoC-011
It is critical that The reference closed loops are provided as

examples, parts of controllers (may not be complete, real life

use cases) but representative enough for participants in the

PoC to understand how to build a closed loop.

2022- Build-a-thon-PoC-012
It is expected that participants submit other use case

implementations in the same format as the reference

examples.

2022- Build-a-thon-PoC-013
It is critical that FG AN will collect the submitted closed

loop files, and parse them using a pre-published reference

code.

2022- Build-a-thon-PoC-014
It is expected that participants submit the Evolution

controllers, and given the entries in openCN, evaluate the

Evolution controllers by changing utilities, testing for levels

of autonomy/adaptability.

- 7 -

FGAN-O-029

2023-Build-a-thon-PoC-015
It is expected that participants are able to submit use cases

with minimal syntactical limitations e.g. using natural

language.

2023-Build-a-thon-PoC-016
It is expected that Knowledge Base [FGAN-O-023] is

collated and updated using the use cases collected using

minimal syntactical limitations.

2023-Build-a-thon-PoC-017
It is expected that evolution mechanisms are plugged in

(along with the Knowledge Base) with well-specified

interfaces.

8 2021 PoC Description

The main scope of 2021 PoC study was to study the interactions between a higher closed-loop in

the OSS and a lower closed-loop in the RAN to intelligently share RAN resources between the

public and emergency responder slice were used as the background scenario for this PoC. In this

context, the following main activities were achieved:

• We designed and implemented closed-loops using a declarative specification. In the design, the

Mobile Network Operators (MNOs) instruct the OSS to detect certain emergencies and provide

connectivity to emergency responders according to predefined SLA. The operator input is provided

as an intent using Topology and Orchestration Specification for Cloud Applications (TOSCA).

The resulting YAML file is parsed, and the resulting components are instantiated in a virtualized

environment.

• A network testbed with a C-RAN architecture composed of Remote Radio Units (RRUs),

Baseband Unit (BBU) pool, and the core network was designed and implemented. In the

architecture, a Software-Defined Network (SDN) and RAN controllers work as information

sources and agents that dynamically change the mobile and the computer network. An AI agent

performs different actions (e.g. resource allocation) in the testbed according to the application,

using the information provided by SDN and RAN controllers to train and execute the test stage

neural networks. This study shows that validating and applying closed-loop decisions for

prioritizing resource allocation for network slices can significantly increase emergency response

efficiency.

• We implemented a simulation environment to generate data for model training and testing

purposes and to serve as a simulation underlay for testing. Two simulation cases were considered:

a standalone case and a New Radio (NR) dual connectivity case. The results show that prioritized

resource allocation can be simulated in different network topologies. The simulations enable us to

study various configurations and analyze them to optimize the allocations. Representation of

various configurations using text files helps us to create simulation topologies easily. Thus, the

SRC (source) node (generating data corresponding to resource usage) and SINK node (applying

various configurations in the form of NED files) are possible in the simulation environment.

• The formulation and implementation of various algorithms for an O-RAN-based controller

architecture to verify the resource allocation schemes over various domains is actualized. Two

algorithms were investigated to analyze the Physical Resource Block (PRB) utilization in RAN.

Results were presented considering the need for resources of each slice can vary over time under

dynamic networking conditions. The results show the importance of closed-loop implementations

in NS, especially for intelligent management of RAN resources during emergency scenarios.

• Lastly, the PoC describes the integration of the algorithms and closed-loops above into an O-RAN-

based software platform, ready to be tested in the 5G Berlin testbed [b-FGAN-I-093]. We present

the integration of the algorithms in an O-RAN near Real-Time RAN Intelligence Controller (RIC)

- 8 -

FGAN-O-029

with the Acumos model repository.

Section 8.1 describes all the contents related to PoC implementation, Section 8.2 describes the

design of closed-loops using a declarative specification, Section 8.3 describes a network testbed

with a C-RAN architecture composed of RRUs, baseband unit BBU pool, and core network,

Section 8.4 presents the creation of a simulation environment to generate data for model training

and testing purposes and serve as a simulation underlay for testing, Section 8.5 describes the

various algorithms which can be integrated with an O-RAN-based controller architecture to verify

the resource allocation schemes, Section 8.6 describes the implementation of the above algorithms

in an O-RAN near Real-Time RAN Intelligence Controller (RIC) and its integration with the

Acumos model repository, Section 8.7 describes the integration of these algorithms and closed-

loops into O-RAN-based software platform, ready to be tested in the 5G Berlin testbed, Section 8.8

presents the observations from the implementation of the 2021 PoC.

8.1 The PoC Design and Implementation

This study proposes the use of analytics in Service Management and Orchestrator (SMO) [b-oran-

arch] in combination with predictive resource allocations to specific edge locations based on

detected emergencies to implement the PoC. A high-level strategy/policy to reallocate resources

among the slices in the non-real-time RAN Intelligence Controller (non-RT RIC), forms the first

level of the closed-loop. The decision in the higher level closed-loop in the non-RT RIC to

reallocate resources may depend, among other things, on the type of emergency, e.g., a natural

disaster such as an earthquake, law and order situation, traffic accidents, etc. A RAN-level may

complement this higher-level closed-loop that uses other inputs from emergency responders to

arbitrate resources among RAN nodes. Such lower-level closed-loops may be hosted nearer to the

edge, e.g., near-RT RIC. The policy input from the higher loop may indicate, among other

parameters, the different sources of data for the lower loop, such as system and service data. A

RAN level closed-loop might also decide to offload inference tasks from ER devices to either the

edge or use a split AI/ML model to run inference tasks on edge and ER devices. This decision

might be taken based on the available network and computing resources. Some layers of the AI/ML

model may be hosted in the wearable devices of the emergency responders, which will help in

locating persons under distress using various inputs such as Global Positioning System (GPS)

coordinates

Workflows for the closed-loops at the different levels are independent of each other. The only

interaction between closed-loops is via high-level intents over the inter-loop interface. The closed-

loops can create new closed-loops in other network domains without human intervention. Each loop

can evolve independently, although loops are deployed hierarchically. It can use different models

and ML pipelines as required. Each loop may move up or down the autonomy levels as defined in

ITU standard, Recommendation ITU-T Y.3173. The closed-loops can split and provision AI/ML

models to other closed-loops in an automated fashion. In addition, we provide a low orchestration

delay, better privacy, and flexibility for verticals (e.g., industrial campus networks) by making

closed-loops in the edge domain autonomous. Higher loops can use historical knowledge to

optimize and generalize lower loops using high-level intent, resulting in increased efficiency of

lower loops while preserving their autonomy (e.g., the higher loop might know certain ML models

that are good for cyclone emergency management based on previous cyclones). Fig. 1 presents the

workflow sequence for the simulation/testbed.

- 9 -

FGAN-O-029

8.2 Design of closed-loops using a declarative specification

The high complexity of management of future networks, which includes the ability to provide new

innovative services using complex network configurations, has led to requirements for autonomous

behaviour. To enable low latency response by emergency responders, the use of autonomous

networking concepts, including the following factors, were found important: (1) application of

intent-based mechanisms to coordinate closed-loops and (2) translation of intents into decisions and

actions. These mechanisms allow seamless design, deployment, and management of emergency

resources in the networks using operator-friendly intents.

Several studies have been conducted regarding close-loops. For example, Gomes, et al. [b-Gomes]

presented a method for formulating and managing closed-loops using requirements communicated

through intents. They propose new management functions for intent delegation, escalation, and

reporting while focusing on how intent management can be integrated into the ZSM framework.

Luzar, et al. [b-Luzar] compared four TOSCA-compliant orchestrators; Opera, Yorc, Indigo, and

Cloudify. This comparison was made regarding ease of usage, open-source availability, licenses,

and operating systems supported by the orchestrator. Ram O.V, et al. [b-Ram] carried out a gap

analysis of existing frameworks in autonomous networks. Fig. 2 shows a high-level flow chart of

the intent for closed-loops activity, starting with the design of the controllers. An intent is written

according to the design of the controllers. This high-level intent is parsed, and appropriate closed-

loops are set up to meet the objective of the intent.

Fig. 1 – Overview of the intent-based design and implementation of hierarchical closed-loops, including simulation and
testbed domain.

- 10 -

FGAN-O-029

Fig. 2 – The high-level flow chart of the study toward intent for closed-loops.

Fig. 3 – Example - Declarative intent in YAML format.

Fig. 3 shows an excerpt from the service model showing the definition of the model node. The

intent specifies the model node with attributes, including the URL for pulling the ML model from a

repository. Additional attributes like catalog ID, revision ID, and solution ID may be used to

identify the model. For the implementation, Opensource orchestrator xopera [b-oasis] was

considered, and simple controller requirements were derived.

Fig. 4 shows the setup considered in this activity demo. The intent is written in TOSCA YAML

v1.3. The intent is to create a three-node closed-loop comprising of a source, model, and sink nodes

(corresponding to data collection, analysis, and application). This intent is parsed by the xopera

orchestrator [b-oasis] for the deployment of the closed-loop. The model metadata and repository are

defined based on the standard, Recommendation ITU-T Y.3176.

Compose/
Accept the
intent in
YAML

Design of
controller

Create and
deploy the
higher loop

Inter-
controller

event

Create and
deploy the
lower loop

Create
lower
loop?

Available
models?

Pull
models

Yes

Stop

Start

Yes

No

No

- 11 -

FGAN-O-029

Fig. 4 – Setup design for creation and parsing of example intent.

Fig. 5 shows the outputs specified for the three nodes (source, model, and sink). The outputs

specified are the attributes of the nodes, which consist of the Application Programming Interface

(APIs). Fig. 6 shows the parsing of the service model for the deployment of the three nodes. The

APIs in the intents are parsed into three JSON (JavaScript Object Notation) files. Three docker

containers are created for implementation, which uses the APIs for data collection, analysis, and

adaptation. Dummy data based on the 3Vs (Velocity, Variety, and Volume) and dummy h5 model

are downloaded from corresponding repositories according to the specified links. This study shows

that a closed-loop can be represented and designed using a standard template demonstrated here

using a three-node closed-loop (i.e. SRC node, ML node, and SINK node).

Fig. 5 – Creation and parsing of intent in YAML.

 M

Collection
of data

Application
of inference

Download model

REST
API

REST
API

[Y.3176]

Closed
Loop

Controller

- 12 -

FGAN-O-029

Fig. 6 – Deployment of the nodes.

8.3 “Imperative actions” in the “underlay” based on the intent

Validating and applying closed-loop decisions in the network is one of the major challenges in the

intelligent allocation of resources for an emergency. The capability to build flexible and realistic

AI-based scenarios with different network topologies for 5G and quickly deploy and assess them is

important in emergency scenarios. This section describes a network testbed with a C-RAN

architecture composed of RRUs, a BBU pool, and a core network. A network testbed called

"Connected AI" is described in [b-Nahum]. The SDN and RAN controllers work as information

sources about the network. Furthermore, they work as agents to dynamically change the mobile and

the computer network. An AI agent performs different actions in the testbed according to the

application using the information provided by SDN and RAN controllers to train and execute in the

test stage. The ML workloads are orchestrated along the cluster to provide the AI agent processes.

Results from this study show that the validation and application of closed-loop decisions for

prioritizing resource allocation for network slices can significantly increase the efficiency of

emergency response. This was demonstrated using priority assigned to an Unmanned Aerial

Vehicle (UAV) drone based on a three-node closed-loop, i.e., source (SRC) node, ML node (AI

Agent) and sink (SINK) node defined into ITU ML proposed architecture [ITU-T Y.3172].

8.3.1 Connected AI (CAI) network testbed

The CAI testbed deploys a 5G mobile network with a virtualized and orchestrated structure using

containers while focusing on integrating AI applications [b-Nahum]. It uses open-source

technologies to deploy and orchestrate the Virtual Network Functions (VNFs) to flexibly create

various mobile network scenarios with distinct fronthaul and backhaul topologies. Distinctive

features of the testbed are its low cost and the support for using AI to optimize the network

performance.

Fig. 7 shows the testbed structure with a C-RAN architecture composed of RRUs, the BBU pool,

and the CN. The transport network is emulated by software using Mininet [b-Aliyu], enabling the

deployment of different network topologies without real network components (such as switches and

routers).

The network contains two main controllers: the RYU SDN controller [b-Ryu], which is responsible

for controlling the transport network emulated by Mininet, and the Open-Air Interface (OAI)

- 13 -

FGAN-O-029

FlexRAN controller [b-Flexran], which is responsible for controlling the base stations deployed in

the testbed. Both controllers are connected to the AI agent, which receives network information

from controllers and applies commands to change the network operations. No Management and

Orchestration (MANO) component was implemented since the main objective of the testbed is to

explore focused scenarios which do not include full end-to-end slice support to maintain simplicity

and low costs.

Fig. 7 – Design of the proposed testbed network [41]

To facilitate the deployment of each VNF into containers in different environments and give more

flexibility to move these functions to different computers in a cluster, all the testbed components

were implemented into container [b-docker] images. The RAN functions and controller were

implemented using the OpenAirInterface software [b-oai], while the core network functions were

implemented using the Free5GC software [b-free5gc]. These VNFs, implemented into docker

containers, are orchestrated using Kubernetes software [b-kubernetes], enabling the management of

the containers as well as the cluster and facilitating the deployment of different mobile network

architectures. Fig. 8 shows the VNFs distributed along with the cluster and using a Software-

Defined Radio (SDR) to generate Radio Frequency (RF) signals to connect the UE to the mobile

network generated by the testbed. The VNFs’ location can be defined by scripts as instructed at the

testbed repository publicly available [b-Nahum].

Fig. 8 – Testbed working at LASSE – UFPA lab using a C-RAN architecture.

Both the fronthaul (connecting RRU and BBU) and the backhaul (connecting the BBU and core

network) are implemented over Ethernet links. Therefore, the transport network complexity usually

depends on the network infrastructure available, such as switches, routers, and other network

equipment. We implemented the transport network with the Mininet software to decrease costs and

increase the flexibility to deploy different transport network scenarios without infrastructure

changes. It emulates different topologies with routers and switches with SDN support to make the

emulated network management. Then, the transport network topology can be defined in Mininet

scripts and different network topologies can be tested without extra network equipment. Our

scenario deployment scripts are responsible for forwarding the traffic from fronthaul/backhaul

through the emulated network topology. The Mininet also allows to define some network behaviour

such as packet loss rate, the bandwidth available in each emulated network link, and latency among

each node and other characteristics that give a remarkable amount of flexibility to test algorithms

over different network topologies and conditions. Fig. 9 shows a scenario deployed using the

testbed where the backhaul link is emulated using a Mininet. A simple network composed of two

- 14 -

FGAN-O-029

routers and one switch is emulated, adding a latency of 100 ms between the BBU pool and core

network.

Fig. 9 – RAN slicing scenario with 3 Ues connected to a C-RAN structure with the backhaul virtualized using Mininet.

Each component from the Mininet network devices (routers and switches) was connected to an

RYU SDN controller that receives information about the transport network, such as the throughput

transmitted in each link, dropped packets, and latency. In addition, the SDN controller can apply

commands to change transport network operations, such as changing routes and applying

congestion control algorithms, thus enabling the usage of external apps to provide transport network

management through communication with the SDN controller to promote changes in the network

while it is operating. Fig. 10 shows information obtained from the SDN controller about switch 3 in

a topology emulated with Mininet [b-free5gc48]. It gives real-time information about the switch

operation, such as the number of received and transmitted packets and the port being used.

Fig. 10 – Information obtained from SDN controller API about the switches running in the Mininet emulated network [41].

The FlexRAN controller works as an abstraction of the RAN resources and provides an API that

enables the service orchestrator entity to dynamically manage the RAN resources to provide

information about the mobile network [b-Afolabi]. The FlexRAN protocol [b-flexran] defines and

implements a software-defined RAN architecture integrated with the OAI platform, which

incorporates an API to separate control and data planes for the mobile RAN. This architecture has a

master controller represented by the FlexRAN controller in Fig. 9 and a FlexRAN agent

corresponding to the OAI eNB instances. Fig. 9 also represents the FlexRAN agent in the OAI BBU

instances in a C-RAN scenario. The agents can act as local controllers with a limited network view

and handle the functions delegated by the master or coordinated by the master controller.

The FlexRAN agent API separates the control and data plane, allowing the control data to be

managed by the FlexRAN controller and the eNB data plane on the opposite side. Fig. 11 shows the

information received from a base station using the FlexRAN API, providing information such as the

functional split being used, the number of user equipment (UEs) connected, buffer occupancy, and

scheduling information. The FlexRAN APIs enable the development of applications related to the

control and management of the RAN resources [b-foukas], e.g., schedulers, interference, and

mobility manager. Moreover, applications related to improvements in the use of RAN resources

- 15 -

FGAN-O-029

make more sophisticated decisions [b-foukas], such as RAN slicing and adaptative video streaming

based on channel quality.

Fig. 11 – Information obtained from FlexRAN API about the base station running in the testbed [41].

The AI agent is implemented based on the ITU-T Y.3172 architecture that defined a logical

interoperable architecture for future networks, which incorporates an ML overlay that operates on

top of any specified underlay network technology [b-afolabi]. This architecture facilitates deploying

ML applications in different network scenarios and is adopted in the connected AI (CAI) testbed.

Specifically, ITU-T Y.3172 defined high-level architectural components to integrate ML into the

network and a process pipeline [ITU-T Y.3172]. Fig. 12 shows these components, the pipeline, and

their respective mapping into the CAI testbed components. This testbed orchestrates the ML

workloads of the AI agent using the Kubeflow tool [51]. Kubeflow works integrated with

Kubernetes to orchestrate the ML functions along with the cluster machines. Kubeflow enables the

use of pipelines to define the steps of ML processing. Due to the high resource available in the

cloud in real scenarios, CAI deploys the AI agent at the cloud location (with the core network) for

simplicity.

Fig. 12 – ITU-T FG-ML5G ML architecture integrated into the testbed structure [41]

8.3.2 Results and discussions

Some results exploring UAVs in critical missions using the testbed are presented in [b-lins]. This

study presents how the AI agents and the network can be adapted to assist mobile network users in

search, diagnostic and rescue (SDAR) missions. Fig. 13 shows the results for a scenario with an AI

agent controlling the number of radio resources using the RAN slice to prioritize drones in SDAR

missions about other UEs connected to the network. In the scenarios without slices, the base station

tries to provide an equal amount of radio resources among the UEs without differentiating the

applications. When the RAN slice is used and the AI agent set a slice to the drones in the SDAR

mission, the AI agent updates the number of radio resources allocated to the drone’s slice to

- 16 -

FGAN-O-029

guarantee at least 10 Mbps of throughput, the other slice with UEs receives only the remaining

radio resources since it has less priority. It shows that a closed-loop can be implemented to control

the testbed mobile network using AI methods despite the simplicity of the experiment the AI agent

used.

8.4 Simulated underlay for closed-loop-based resource allocation

To complement the testbed described in section 2.2, this section describes the creation of a

simulation environment [b-simu5g] to generate data for model training and testing purposes and

also to serve as a simulation underlay for studying the impact of the

Fig. 13 – Results without RAN slicing and a scenario with RAN slicing using an AI agent.

closed-loop on resource allocation scenarios in Medium Access Control (MAC) layer. Simu5g [b-

simu5g] is used to generate output data shown in the results Section 3.2 (e.g., Average served

blocks in Downlink/Uplink) based on input parameters given in Table 1 (e.g., Frequency Correction

Burst (Fb) Period, target block error probability(BLER), etc.) while simulating the various

scenarios. This facilitates studying the machine learning algorithms' impact on resource block

allocation by predicting the resource requirement at the UE. Simu5G is based on the OMNET++

simulation framework and incorporates the simulation modules from the INET library [b-simu5g].

It simulates both the data plane of 5G RAN and the core network.

Two types of simulation scenarios were considered using Simu5G- standalone case and NR dual

connectivity case. In the standalone scenario, gNB is connected to the data network through the

core network, while in the NR dual connectivity case, gNB is connected to the eNB through an X2

interface. In addition, the eNB provides access to core and data networks. Sections 3.1 and 3.2

discuss the simulation and the results. The simulator configurations used in this study are simu5g

v1.2.0, INET v4.3.2 or above and OMNET++ v6.

8.4.1 Simulation Scenarios

This study defines two simulation scenarios: "single cell with secondary gNB” and “multi-cell with

secondary gNB”. These two scenarios (called “networks” in the simulator) are defined in the NED

(Network Description) file in OMNET++ which the structure of a simulated network can be

described. NED enables the user to declare simple modules and connect and assemble them to form

compound modules. Compound modules e.g., a “single cell with secondary gNB” and a “multi-cell

with secondary gNB” network, can be used as simulation modules.

Parameters can achieve their value from either the NED file or the configuration, i.e., .ini file.

Every configuration file has a “General” section that has general parameters like simulation time

limit (“sim-time-limit” is the physical time that is set for simulating the network). The “network”

keyword is used to flag the network that needs to be simulated.

- 17 -

FGAN-O-029

Fig. 14 shows the two networks which are defined in the NED file: “single cell with secondary

gNB” and the “multi-cell with secondary gNB”. The main modules that are used in this network are

compound modules: carrier aggregation (carrierAggregation), packet gateway (pgw), LTE base

station (masterEnb), NR base station (secondaryGnb), and UE. The carrier aggregation module is

responsible for assigning multiple frequency blocks. The eNB, which directly connects to CN is

called master eNB and the gNB, which is connected to the core via eNB using the X2 interface, is

called secondary gNB. The number of UEs is defined using the numUe parameter of the UE

module. In the “multi-cell with secondary gNB” case an extra set of eNB which are connected via

X2, and an extra set of gNB which is in turn connected to the respective eNBs are shown in Fig. 15.

Fig. 14 – NED file for SingleCell_withSecondaryGnb.

Fig. 15 – NED file for MultiCell_withSecondaryGnb.

Parameter Value

eNodeB

Transmission Power
40dB

Fb Period 10ms

Target BLER 0.01

BLER Shift 5

#Component

Carriers
2

Carrier Frequency of

CC1
2GHz

Carrier Frequency of

CC2
6GHZ

#UE’s 10

- 18 -

FGAN-O-029

Parameter Value

UE mobility type “RandomWaypointMobility”

UE speed Between 5mps to 15mps

Dual Connectivity True

resource blocks for

CC1
6

resource blocks for

CC2
6

#UE apps 2

Amount of UDP

application on the

server

(server.numApps)

#UE’s * #UE apps

=20

Table 1 – Parameters described in ini file for network simulation.

The configuration file (also known as an “ini” file) contains network parameters and their

corresponding values for each carrier component as shown in Table 1. The number of UEs (numUe)

specified in the UE module is set to 10 for this simulation. UE mobility type and UE speed are

defined for each UE. Dual connectivity is enabled and each network is configured with uplink and

downlink.

Carrier components are part of the carrier aggregation module and have carrier frequency and

numerological index. The frequency of each carrier component is defined in Table 1 above. The

number of resource blocks is also defined for each carrier component.

8.4.2 Results of the simulations

This section analyses the output of avgservingblock (average serving blocks are the resource blocks

that are utilized at the time of simulation). The result files storing the simulated network's vector

values and scalar values are analyzed after simulating the required network configuration. For

example, avgservingblocks is a vector quantity because it varies with the simulation time. Four

outputs are analyzed for each network, corresponding to two configurations: uplink and downlink.

The four output results that are obtained include: average served blocks downlink for single-cell

with secondary gNB (Fig. 16), average served blocks downlink for multi-cell with secondary gNB

(Fig. 17), average served blocks uplink for single-cell with secondary gNB (Fig. 18), and average

served blocks uplink for multi-cell with secondary gNB (Fig. 19). The simulation time is variable,

and we use a value of 50 s, with resource allocation data being collected every millisecond for each

of the four output results discussed above. This gives us enough data points to study the average

served blocks for each output. The total number of resource blocks allocated in the results cannot

exceed those that are set in the .ini file (specified across different CC, carrier components). The blue

and orange coloured line chart represents the avg served blocks for master eNB and secondary gNB,

respectively in singleCell_withSecondaryGnb, data flow is downlink in Fig. 16. In contrast, the

blue, orange, green, and red coloured line chart represents the avg served blocks for master eNB1,

secondary gNB1, master eNB2, and secondary gNB2, respectively, in

MultiCell_withSecondaryGnb, and the data flow is downlink in Fig. 17. The blue and orange

coloured line chart represents the avg served blocks for master eNB and secondary gNB,

respectively, in singleCell_withSecondaryGnb, where the data flow is uplink in Fig. 18. The blue,

orange, green and red coloured line chart represents the avg served blocks for master eNB1,

- 19 -

FGAN-O-029

secondary gNB1, master eNB2 and secondary gNB2, respectively, in

MultiCell_withSecondaryGnb, where the data flow is uplink in Fig. 19.

This study shows that prioritized resource allocation can be simulated in different network

topologies. The simulations enable us to study various configurations and analyze them to optimize

the allocations. Representation of various configurations using text files defined in [b-liu] enables

us to easily create simulation topologies. Therefore, the SRC node (generating data corresponding

to resource usage) and SINK node (applying various configurations in the form of NED files) are

possible in the simulation environment. Integrated analysis of generated data using AI/ML is for

future study.

Fig. 16 – Avg served blocks, DL, SingleCell_withSecondaryGnb.

Fig. 17 – Avg served blocks, DL, multiCell_withSecondaryGnb.

Fig. 18 – Avg served blocks, UL, singleCell_withSecondaryGnb.

- 20 -

FGAN-O-029

Fig. 19 – Avg served blocks. UL, MultiCell_withSecondaryGnb.

8.5 Algorithms investigation for the resource allocation in the “underlay”

This section describes the various algorithms that can be plugged into an O-RAN-based software

architecture to verify the resource allocation schemes. The non-real-time RIC closed-loop intent is

applied to the near real-time RIC lower loop. The lower-loop monitors RAN resources and makes

decisions to achieve the intent. Fig. 20 shows the illustration of the overall process of the system.

Fig. 20 – Block of closed-loop implementation for an emergency slice.

Section 2.1 describes a closed-loop representation and design using a standard template and

demonstrates it using a three-node closed-loop (i.e. SRC node, ML node and SINK node). Here, we

further enhance this using a model selection service and a complete ML node implementation using

two RIC xApps and demonstrate their deployment using docker containers.

-ML model selection (server): Different ML models for inference can be available with different

complexity and performance. We dynamically select different ML models from a server based on

the declarative specification of the ML model, as described in Section 5. The models are

implemented as a docker container and selection may be done either periodically or based on an

external request. These ML models can be either specific to a particular problem or a general

purpose one. The idea is that some ML algorithms might be too costly but can have a good

prediction accuracy. On the other hand, there might be cheap ML algorithms with low-quality

inference. Depending on the requirements, the best ML model can be selected.

-Monitoring and resource compute (xApp 1): Advanced ML algorithms are applied for monitoring

RAN resources (i.e., PRB, physical resource block utilization). This paper uses Gaussian Process

Regression (GPR) as a non-parametric prediction technique. xApp1 reads data from a data lake

either periodically or when needed. Then, it predicts how much resources will be available in the

ML
model

selection
server

Monitoring
and

resource
compute

xApp1

Decision
xApp2

Apply to
network

simu5g

xApp
for sim

Data
lake get

data

ML model
from server

(3)

(5)

E2
integration
subscription

(8)

(7)

(6)

(1)

Closed-loop
consisting of
several xApps

(4)

(2)

Write/read
data

Intent A1

- 21 -

FGAN-O-029

near future using this data. This information is used for other xApps to make resource allocation

decisions.

-Decision (xApp 2): After receiving the forecasted RAN resource in the near future, xApp 2 makes

a resource allocation decision for the current and emergence slices depending on their SLA

requirements.

This section designs and studies the closed-loop analysis and decision parts. Communication

between xApps is provided through RIC message router (RMR)messaging used within the O-RAN

software community. The workflow of the implementation shown in Fig. 20 is as follows:

(1) Get intent from a higher loop. It indicates if there is an emergency case and monitoring xapp is

triggered.

(2) Subscribe to SRC to get the simulator/testbed data.

(3) Write data to the data lake to be used later for ML training.

(4) Data is sent to the ML node (implemented in xApp1) for model training and inference .

(5) Different ML models can be selected from the server here and sent to xApp1 for inference.

(6) xApp1: Resource monitoring such as PRB utilization. Here, the ML model is used, which can be

fetched from our local repository. It also analyses whether there is an

overutilization/underutilization.

(7) Result obtained on (6) is sent to xApp2, which will make the final decision. It decides whether

there is a need to allocate more resources on RAN for an emergency slice. Then it applies the

decision to the real network (allocate more PRB for the emergency slice, E2 CONTROL).

8.5.1 The system implementation

A low-level closed-loop needs to be instantiated that monitors and computes RAN resources and

makes a resource allocation decision for emergency cases based on the high-level intent.

The xApp1 monitors RAN resources and makes forecasts for the future PRB usage of the network.

It also computes the available resources in the RAN domain. The forecasting and resource

information is sent to xApp2, which is our decision xApp, through the RMR. RMR is developed by

the O-RAN Software Community (SC), and we also utilize this messaging protocol in our

implementation. xApp2 receives the necessary information from xApp1 and solves the problem P2

(or P1), which are given next, to find out the necessary PRB resources needed for ES and make the

resource allocation. The output of xApp2 will be sent to the real network to be applied through the

E2 interface of O-RAN when the real integration starts.

We implement a docker container that acts as a web server where we keep different ML models to

be used for monitoring or any other activities to test the model selection. model_handler.py

implements an ML selection/pulling task in which we select ML dynamically depending on the

performance of the current ML, thus enabling us to use another ML that may have a better

performance than the current model. Fig. 21 shows the implementation details of this activity.

- 22 -

FGAN-O-029

Fig. 21 – Workflow of the implementation.

8.5.2 Results and analysis

8.5.2.1. Time-series forecasting of traffic for monitoring using Gaussian Process Regression

This section studies NS implementation in the network to have dedicated network resources over

various domains. For example, the operator can allocate dedicated frequency resources (PRBs) to

each slice at the RAN domain. Furthermore, different slices may have different SLA requirements

on latency, bandwidth, reliability, etc. Even though each slice's need for resources can vary over

time under dynamic networking conditions, the operator needs to ensure that the underlying

infrastructure SLAs for each slice is guaranteed. For example, an operator can deploy a separate

slice for video streaming. It needs to allocate additional resources to meet the SLA requirements on

the slice during peak hours of the day. In case of an emergency, a new slice, Emergency Slice, ES,

must be deployed by operators to handle the traffic in the emergency area, and the necessary

amount of resources must also be allocated to the ES. In this study, NS with ES is a dynamic

resource allocation problem in the RAN domain. When an emergency occurs, the ES is deployed

and the resources needed for the ES are maintained autonomously.

To achieve autonomous resource management, traffic prediction of each slice is critical to gather

information on the minimum amount of resources needed for the SLA requirements. It is complex

to capture the dynamics through linear models due to the highly dynamic and non-linear patterns

exhibited by wireless traffic. Artificial Neural Networks (ANNs), also known as deep neural

networks or recurrent neural networks are commonly applied for traffic prediction. However, NN

has well-known training challenges, and it is complicated to interpret the outcome of the NN

prediction. Comparatively, Gaussian Process Regression (GPR) has continuously gained attention

due to its interpretability and prediction accuracy. In addition, GPR can also provide information on

the uncertainty of prediction, which is important when making resource allocation. In this study,

PRB usage measurement is used to reflect the traffic characteristics and a time-series forecasting

problem is formulated in which PRB utilization is predicted using GPR.

We study the use of GPR for the prediction of traffic. The PRB usage characterizes traffic which

enables us to predict PRB utilization in the RAN domain. Real-world data from [b-raida] in an

urban area shows PRB utilization measured over a Long-Term Evolution (LTE) network for a user

and collected and reported at every 500 ms. Fig. 22 shows 1000 samples of PRB utilization data.

M1

sink Decision to be
applied E2

SRC

PRB data

Local
repository

RIC xApp2
decision
Allocate
resource for ES

ML
pipeline

C

Server ML
model server
selection

RIC xApp1
monitoring
and analyze

- 23 -

FGAN-O-029

Fig. 22 – PRB utilisation over 1000 sample points.

Understanding the characteristics of the data is important in selecting the best kernel for GPR.

Periodic and varying data characteristics observed in Fig. 23 and Fig. 24 enables us to determine a

good kernel for PRB prediction with GPR, representing both types of characteristics.

Fig. 23 – Periodic-type characteristics over a period of 100 time-step.

Fig. 24 – Constant-type characteristics over a period of 100 time- time.

Forecasting with GPR

Fig. 25 shows PRB forecasting with GPR. The GPR model is trained with the last 100 samples and

the chosen kernel as described above. We note that more data may need to be used for training

depending on the application. Then, the trained GPR is used to make predictions for the future 50

samples. It can be concluded that the prediction with GPR is good enough to make efficient

resource allocation proactively, as shown in Fig. 25. Note that GPR also provides information on

the uncertainty of these predictions as we point to the upper bound when making predictions for the

next 50 points. These upper bounds on the predictions can be utilized when making resource

allocation to ensure that the correct amount of PRBs is allocated while satisfying the SLA

requirements.

The PRB data is stored in a local repository. It is also possible to use different ML models for

inference. An example implementation for O-RAN integration is implemented as a separate xApp

and prediction_xapp.py creates a docker container for the inference implementation as a micro-

service to be used for O-RAN.

0 20 40 60 80
Sample

P
R

B
 u

ti
li
z
a

ti
o

n
 S

a
m

p
le

30

40

50

60

70

80

90

100

100

0 20 40 60 80 100

Sample

P
R

B
 u

ti
li
z
a

ti
o

n
 S

a
m

p
le

40

50

60

70

80

90

0 20 40 60 80

Sample

P
R

B
 u

ti
li
z
a

ti
o

n
 S

a
m

p
le

40

50

60

70

80

90

100

- 24 -

FGAN-O-029

We evaluate the performance of GPR prediction. We train with 1000 data points and evaluate the

performance in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The

MAE and RMSE for future 4000 points are 0.077 and 0.147 for entity reference of 0.046 and 0.081,

respectively.

8.5.2.2. Resource allocation at RAN for an emergency slice

After the predicted traffic is obtained through GPR, the next step is to determine how many

resources the ES should allocate. Therefore, we need to consider the SLAs of other slices in the

network. The SLAs of other slices may degrade if we allocate more resources than the ES needs.

The emergency case cannot be handled if we allocate fewer resources for the ES than it needs.

Fig. 25 – Time-series forecasting of PRB utilization with GPR.

We assume that RAN resources are given in terms of either frequency resources or PRBs. Different

slices allocated to different amounts of PRBs can be determined and fixed by the operator.

However, it is not always efficient because not every slice is active all the time and uses its PRBs

with 100% utilization although this strategy is good enough to have a dedicated network. This

means that there can be some leftover PRBs that are not used by the corresponding slices [b-

foukas], [b-okic].

We consider two cases:

• Case-1: The ES does not have any dedicated PRB allocated, but it can only use the unused PRBs

from other slices. The advantage of this strategy is it guarantees the SLAs of other slices, but ES

can have significant degradation because it can only use the leftover PRBs, and after some time

the leftover PRBs may not be large enough to support the emergency case.

• Case-2: we dynamically borrow PRBs from other slices to support the emergency case to

minimize the degradation of the SLAs of other slices. In this strategy, priority is given to the ES

and we guarantee that the emergency case is solved successfully while also minimizing the

negative impact of borrowing PRBs on the SLAs of other slices.

We develop two algorithms to implement these two strategies:

Leftover GPR-based PRB allocation to ES algorithm (ALG1)

Used for training (last P samples)

Actual

Predicted

Credible_interval

Forecast starts

Upper bound for the

prediction over W sample

(Actual – Predict) < 10%

Sample

P
R

B
 u

ti
li
z
a

ti
o

n
 o

f
a

 g
iv

e
n

 s
li
c

e

55

60

65

70

75

80

0 40 60 80 100 14012020

- 25 -

FGAN-O-029

ALG 1 implements the first strategy in which only the leftover PRBs from other slices are allocated

to the ES. The details of ALG1 are given in ALGORITHM 1.

To illustrate the operations of ALG1, let us consider two slices and the allocated PRBS to these

slices: T1 = 40 PRBs and T2 = 60 PRBs and in total, the system has T = 100 PRBs. Let us also

assume that the PRB utilization of these slices is 80% and 90%, respectively. That means the first

slice uses only 40*0.8=32 PRBs and the second slice uses only 60*0.9=54 PRBs. Hence, 40-32= 8

PRBs from the first slice and 60-54=6 PRBs from the second slice (in total 14 PRBs) can be

allocated to the ES with ALG1 for this example.

Priority GPR-based PRB allocation to ES algorithm (ALG2)

ALG2 implements the second strategy in which we borrow PRBs from the other slice while

minimizing

the negative impact on both of them. We assume the ES needs an E amount of PRBs. First, we

allocate the available leftover PRBs to the ES. If it is not enough, we borrow PRBs from other

slices by minimizing their performance degradation. The details of ALG2 are given in

ALGORITHM 2.

PRBs are borrowed from other slices to meet the requirement of ES and also minimize the resource

shortage of other slices. Thus, the P1 optimization problem is formulated in ALG 2

Since it involves a non-linear operation with a max b-tosca] operator, the problem is difficult to

solve. However, we use an auxiliary trick and convert this problem to an easily solvable integer

program. This problem is transformed into a solvable integer problem using the auxiliary variable

un as shown P2 in ALG 2.

The importance of P2 is to decide how many PRBs are to be taken from each of the other slices and

allocated to the ES. These two algorithms are implemented, and decision_xapp.py creates a docker

file to run this implementation as a microservice to be ready for use in the O-RAN platform.

 𝑳𝑮 𝑹 𝑻𝑯 𝟏 Leftover GPR-based PRB allocation to ES algorithm (ALG1)

Input :

T = total available PRBs of the system (i.e., For LTE, 100 PRBs).

W = Prediction window (i.e., next prediction time, 500 ms).

P = Past training window (the last 100 samples).

o = Compensation.

N= number of slices in the network.

Tn= Amount of PRBs allocated to slice n.

Dn= PRB utilization time-series data for each slice.

Output : Allocate PRBs to ES: 𝑃𝐸𝑆

1 For each other slice n

2

3

4

5

6

 Step 1: Train GPR with the latest P training data.

Step 2: Forecast PRB utilization over the next W samples with GPR : 𝑈𝑛.

Step 3: Calculate maximum possible PRB utilization using upper bound: 𝐶𝑛 = 𝑈𝑛 + 𝑜𝑛.

Step 4: Calculate the forecasted PRB usage of all other slices over next W samples : 𝐵𝑛 = 𝑇𝑛𝐶𝑛

- 26 -

FGAN-O-029

7

8

9

10

11

12 End

11 Step 5:

12

Calculate available PRBs for Emergency Slice:

 𝑃𝐸𝑆 = 𝑇 − ∑ 𝑇𝑛𝐶𝑛
𝑁
𝑛=1

13 Step 6: Allocate PRBs to ES: 𝑃𝐸𝑆

 𝑳𝑮 𝑹 𝑻𝑯 𝟐 Priority GPR-based PRB allocation to ES algorithm (ALG 2)

Input :

T =Total available PRBs of the system.

Tn= Amount of PRBs allocated to slice n.

W = Prediction window.

P = Past training window.

o = Compensation.

N= number of slices in the network.

Dn= PRB utilization time-series data for each slice

E = amount of PRBs needed for an emergency slice

Output :

𝑥𝑛 𝑡 = amount of PRBs needed for slice n at time t

𝑦𝑛 𝑡 = amount of PRB taken from slice n at time t

1 P1:

2

3

4

5

6

7

8

9

10

11

𝑚𝑖𝑛∑ ∑ 𝑚𝑎𝑥 {0, 𝑥𝑛 𝑡 − 𝑇𝑛 − 𝑦𝑛 𝑡 }𝑁
𝑛

𝑊
𝑡=1

 s.t. 0 ≤ 𝑦𝑛 𝑡 ≤ 𝑇𝑛 ∀𝑛 ∑ 𝑦𝑛 𝑡 ≥ 𝐸𝑁
𝑛

 − 𝑥𝑛 𝑡 : PRB usage for slice n at time t

 − 𝑇𝑛 : Total PRBs given to slice n

 − 𝑦𝑛 𝑡 : Number of PRBs taken from slice n at time t to be used for emergency slice

12 P2:

- 27 -

FGAN-O-029

13

14

15

16

17

18

19

20

21

min∑∑𝑢𝑛 𝑡

𝑁

𝑛

𝑊

𝑡−1

�̃�𝑛 𝑡 + 𝑜𝑛 𝑡 − (𝑇𝑛 − 𝑦𝑛 𝑡) ≤ 𝑢𝑛 𝑡

0 ≤ 𝑦𝑛 𝑡 ≤ 𝑇𝑛 ∀𝑛

∑𝑦𝑛 𝑡 ≥ 𝐸

𝑁

𝑛

𝑢𝑛 𝑡 ≥ 0

where 𝑥𝑛 𝑡 = �̃�𝑛 𝑡 + 𝑜𝑛 𝑡

𝑥𝑛 𝑡 : Actual PRB usage at time t in future. This cannot be known in advance.

�̃�𝑛 𝑡 : Estimated PRB usage with GPR

𝑜𝑛 𝑡 : Estimation error. Upper bound provided by GPR can be used.

In a simulation scenario, we assumed that we have two slices with different PRB requirements:

● T1: number of PRBs assigned to Slice 1 by the operator (e.g., T1=40)

● T2: number of PRBs assigned to Slice 2 by the operator(e.g., T2=60)

● T: total number of PRBs in the system (e.g., T= 100 PRBs)

● Time series PRB utilization for each slice, in percentage, with a granularity of 100ms and 200ms

The performance of ALG2 was studied under the scenario that there are two other slices and T1=40

and T2 = 60 PRBs allocated to them. By applying ALG2, we borrow PRBs to satisfy the

requirement of the ES when those slices do not need the resources. We assume the ES needs 20

PRBs. Fig. 26 shows the number of PRBs taken from other slices over 45 time instants. Depending

on the predicted PRB usage of other slices, ALG2 takes 11 or 12 PRBs and 8 or 9 PRBs from the

first and second slices, respectively, and 20 PRBs in total are ready to be used by the ES

simultaneously.

This section studies NS implementation in the network to have dynamic resource allocation over

various domains. To analyze the PRB utilization in RAN, two algorithms were studied. Results are

presented considering the need for resources of each slice which can vary over time under dynamic

- 28 -

FGAN-O-029

Fig. 26 – PRB allocation for ES.

networking conditions. The results show the importance of closed-loop implementations in NS,

especially for intelligent management of RAN resources during emergency scenarios.

8.6 O-RAN Control-Loop Instantiation

This section describes the implementation of the algorithms described in Section 4 in an O-RAN

near Real-Time RAN Intelligence Controller (RIC) [b-nrt-ric] and its integration with the Acumos

[b-acumos] model repository. The model description is included in the declarative specification of

closed-loop as discussed in Section 2.1. In this study, a pretrained model is fetched from Acumos

based on the given description and deployed as xApp [b-oran-sdk] in the O-RAN platform (See Fig.

27 for details).

8.6.1 A solution workflow

The following workflow is used for the implementation:

• RAN (E2-SIM [b-oran-sc] is used) is registered and associated with O-RAN near RT RIC.

• RIC receives policy updates from A1 for triggering closed-loop PRB allocation.

• An ML model is fetched based on the A1 policy details.

• PRB utilization is predicted based on the analysis of test data used instead of actual data from E2.

• The PRB to be allocated is computed and an E2 control message is sent based on the inference.

PRBs are always reserved for the emergency slice and additional resources can be reallocated

based on situational considerations.

• The allocation decision is continuously monitored, evaluated, and improved upon.

The workflow steps are further explained in Fig. 27 and discussed as follows:

• Points 1 and 2 show that E2 SIM is up and that association with RIC is set up.

• Point 3 shows the nRT RIC receives the A1 policy update to trigger closed-loop monitoring.

• Point 4 shows the A1-mediator sends A1 Policy REQ to the “prbpred” xApp.

• Points 5a and 5b show the model is fetched from the model store as per policy guidelines and

“prbpred” instructs DataMon/Alloc xApp to start monitoring the data.

• Points 6,7, and 8 show the messaging done for subscribing to E2 for data.

E2 Indication is for future reference; currently, data is not monitored through RIC Indication. In

future, data needs to be monitored and sent to predict xApp.

Decision time index

P
R

B
s

 t
a

k
e

n
 f

ro
m

 o
th

e
r

s
li
c

e

7

8

9

10

11

12

13

14

0 5 10 15 20 25 30 35 40 45

PRBs taken from Slice 1

PRBs taken from Slice 2

- 29 -

FGAN-O-029

• Point 9 shows data reception from the E2 node. The received metrics are stored in metrics DB as

in Point 10.

• Upon timer expiry as in Point 11, a request for prediction is sent to “prbpred” xApp as in Point

12.

• “prbpred” uses the ML model to predict future utilization. Retraining may be done based on the

new data model. The predicted values may be sent to DataMon/Alloc xApp as in Point 13 and

Point 14.

• DataMon/Alloc xApp computes the PRB to be

allocated and sends the E2 control message towards E2 as in Point 15.

8.6.2 Resulting implementation

This section presents the implementation of the algorithms in Section 4. The algorithms can be

instantiated in the O-RAN-RIC platform and prediction based on the xApp onboarding/deployment

process and RIC platform components can be achieved.

The xApps are developed based on the xApp Framework for Python. Separate xApp-descriptor files

were defined detailing the configuration, RX & TX messages supported:

Fig. 27 – Modified xApp process model.

Service Management & Orchestration Framework

Non-Real Time RAN Intelligent Controller

(RIC non-RT)

E2-SIM

E2

A1

Model Store
ML Design Studio

(Design Model)

ML Training Host
(Train & Retrain Models)

Deploy Untrained Model

Upload Trained
Model

REST

A1-mediator

Subscription MGR

E2-TERM

Predict- xApp

Data Mon/Alloc
xApp

A1 POLICY Query/REQ

A1 POLICY Create : PRB Alloc Model3

E2 SETUP REQ/RSP

R
IC

 SU
B

SC
R

IP
TIO

N
 R

EQ
/R

SP

RIC INDICATION

PRB_PRED_REQ

TIMER EXPIRY

Near-RT RIC

E2 MGR

E2 SETUP REQ/RSP

E2 INDICATION 1

2

4

E2 CONTROL
(PRB allocation)

8

Fetch Model-REST

xAPP’s

RIC PLT components

Supported

To be supported
Supported partially

Data
Metrics

DB

START_DATA_MONITORING

E2 REST SUBSCRIPTION REQ/RSP

REST SUBSCRIPTION NOTIF

STORE_METRICS

FETCH_METRICS/
RETRAIN_MODEL

PRB_PRED_RSP

5a

5b

6

7

9

10

11

12

13

14

15

Closed Loop

Model
Artifacts

https://wiki.o-ran-sc.org/pages/viewpage.action?pageId=20873778

- 30 -

FGAN-O-029

Fig. 28 – xApp-descriptor file for prbpred xApp.

- 31 -

FGAN-O-029

Fig. 29 – xApp-descriptor file for allocator xApp.

• prbpred xApp: Initially, this xApp registers for PRB_PRED_REQ (PRB Prediction Request) and

A1_POLICY_REQ (A1 Policy Request), and queries A1-mediator to get the policy details. A

specific policy was created which gives model information and model version information to be

used. This xApp is responsible for receiving A1_POLICY_REQ and saving the policy details.

Fetch the model from the modelStore and save it. Predict the future PRB utilization and respond

to alloc xApp for further processing based on the timer trigger. Upon reception of

PRB_PRED_REQ, the xApp predicts PRB utilization for each slice and sends a response to Alloc

xApp based on the model fetched. Fig. 28 shows the xApp-descriptor file for the prbpred xApp.

• Allocator xApp: Initially, this xApp registers with the subscription manager for E2 information

and starts a timer to trigger PRB_PRED_REQ periodically. PRB is allocated for an emergency

slice based on predicted future PRB utilization. A simple algorithm for PRB allocation in Section

4 is used here. In addition, some PRBs are shown as reserved for emergency/high priority events.

The assumption taken is the total number of PRBs in the system is 100. Slice #1 and Slice#2 were

configured with 35 PRBs each. 30 PRBs were reserved for emergency/high priority events.

- 32 -

FGAN-O-029

The actual Value of PRB utilized is computed based on the predicted PRB utilization received for

each slice.

Utilised_PRB_slice1=PRB_ALLOC_SLICE1*(slice1_utilisation/100)

Utilised_PRB_slice2=PRB_ALLOC_SLICE2*(slice2_utilisation/100)

total_prb_avail = Total_PRB – (Utilised_PRB_slice1 + Utilised_PRB_slice2)

The reserved PRBs are also made available because this is an emergency event. Alloc xApp sends

the E2 control message to allocate the available PRBs from the calculation. Fig. 29 shows the

xApp-descriptor file for allocator xApp.

Successful communication between the xApp and other RIC platform components was achieved as

part of this. A model store was developed to mimic Acumos and have access to the pretrained

model. E2 SIM setup was registered with the E2 component in the RIC platform.

In the Dawn release, the creation of the A1 policy instance doesn’t trigger the A1 policy to send a

message towards the xApp [b-oran-sc]. The workflow was modified to send a timer-based event

from alloc XApp to trigger PRB prediction. When the policy instance is created

(CREATE/UPDATE messages are sent to xApp by A1 mediator), the prbpred xApp can store the

model information and perform prediction based on the trigger.

8.7 Integration of the POC

This section describes the integration of the above implementation of closed-loops into P-RAN-

based software platform ready to be tested in the 5G Berlin testbed [b-FGAN-I-197]. The operator

inputs the declarative intent to the Service Management Orchestrator (SMO)/Non-RT RIC, which

describes the use case to detect emergencies and maintain the required SLA as described in Section

2.1. Similar to the mechanism described in 2.1, SMO/Non-RT RIC then creates a higher loop that

monitors various parameters like network activities, input from emergency responders (ER), social

media trends, etc. to detect and locate the emergency (e.g., fire in a building). This can be realized

using either a hosted model in Acumos or Open Network Automation Platform data collection

analytics engine (ONAP DCAE) or O-RAN rApp, as discussed in sections 2.2 and 4. Once the

emergency is detected, the higher loop sends an intent over the A1 interface to the Near-RT RIC,

instructing it to handle the increased load for the corresponding RAN node. Real-time ML/AI

inference might be needed by some of the ERs' devices; for firefighters a helmet-mounted camera

may use image recognition to detect humans in a burning building. However, the devices might not

have enough computing and might need to offload the task to the network edge or use split AI/ML

models for inference. The Near-RT RIC receives the intent and creates a closed-loop which can

monitor the network and compute resources of the edge and the ER device and maintains the

SLA/QoS (quality of service) of the inference task as discussed in Section 3 above. This loop can be

realized using xApp. Fig. 30 shows the simulator-based sequence for the integration of the

activities.

- 33 -

FGAN-O-029

Fig. 30 – Simulator-based sequence for the integration of the activities.

Fig. 31 shows the extensions to the sections above to integrate the implementation of the algorithms

described in Section 4 in an O-RAN- RIC and its integration with the Acumos [b-acumos] model

repository. The first addition was the A1 poller which pulls the A1 mediator at regular intervals and

converts the A1 policy to a TOSCA template described in Section 2.1. It uses HTTP-based

interfaces to communicate with the A1 mediator and the orchestrator. The dms_cli tool provided by

the O-RAN-SC was used to enable the orchestrator to orchestrate the xapps as specified in the A1

policy. Playbooks (workflows) described in Section 2.1 were updated to integrate relevant

command line (dms_cli) commands. These commands are used to onboard and install

corresponding xApps.

The overall flow of the final integrated solution (see Fig. 31) is as follows:

1. The human user or a higher loop applies an A1 policy to the near-RT RIC. This policy is

received by the A1 mediator.

2. The A1 poller gets the policy, translates it into the TOSCA template and sends it to the

orchestrator.

3. The orchestrator manages the RIC xapps according to the TOSCA template using dms_cli.

4. The newly orchestrated xapps pull the necessary models from the model repository server.

5. Pred xapp makes a time-series prediction for future traffic in the network and how much

resources (PRB) will be available for an emergency slice in the near future.

6. Alloc xapp sends an RMR request to pred to get the prediction and allocates PRBs to the

emergency slice based on that.

7. Alloc xapp then sends a message over the E2 interface to the RAN. Slice allocation

messages are verified from the console.

- 34 -

FGAN-O-029

Fig. 31 – Overall flow of the final integrated PoC .

8.8 Observations from the PoC

Abstraction of nodes allows the service template to select concrete nodes that best match the

requirements of the abstract nodes during deployment. The concrete nodes can be provided in a

repository known to the orchestrator. Abstract requirements can be achieved in TOSCA YAML

using the node_filter feature. However, this study found that abstraction features like node_filter

and substitution are not supported by certain implementations of orchestrators. A feature-based

comparison of orchestrators concerning TOSCA compliance may be made as part of future studies.

Besides the RAN slicing experiments exploring a closed-loop using the FlexRAN controller, other

AI applications can interact with the SDN controller and the VNF placement functions to attend to

different network requirements. An End-to-End (E2E) network slice cannot be completely

implemented in the testbed because a MANO implementation was not used to avoid computational

costs and network complexity in this first phase and focus on AI integration. Future studies may

include integrating the software developed in our testbed into ONAP software, a popular MANO

implementation, to provide E2E NS with a centralized closed-loop. The verification and validation

of resource allocation during simulation in line with the traffic pattern (e.g. full buffer) when

simulating the scenarios, e.g., dual connectivity, is an essential future step as we broaden the

simulation into more scenarios.

Creating a closed-loop with several modules brings communication and computation problems.

Overall integration, including A1/O1/E1 interface integrations, is critical and which parts of this

integration can be realized autonomously can be explored. The real-time system performance will

have to be tested to ensure compliance with closed-loop specifications. Integration issues with

platforms highlight the importance of close coordination with underlays, as mentioned in sections

2.2 and 5.

8.9 2021 Conclusions and future research

This is a collaborative study where we developed and implemented a hierarchical closed-loop that

autonomously handles an emergency case. The study focused on intent parsing, traffic monitoring,

resource computing, and allocation autonomously. The closed-loops were implemented with several

micro-services deployed as docker containers with specific functions such as monitoring,

computing, ML selection, and resource allocation. Future activities will focus on enhancing the

attributes of the nodes in the template, e.g., data parameters in the SRC [e.g., 3xVs: velocity, variety

and volume], Model metadata (as defined in ITU-T Y.3176), and SINK parameters [e.g., underlay

specific APIs]. After integration, data pulling, model pulling, and adaptation can be demonstrated

based on such enhanced attributes. The machine learning agent presented in the Connected AI study

will be implemented for the built environment with ONAP and Acumos integration for future

- 35 -

FGAN-O-029

activities. Enhancing the simulator to include inputs from an intent and integration with the SRC,

ML and SINK nodes to form the closed-loop in the simulation domain is also an important future

step. Apart from advanced algorithms studied, e.g., multivariant time-series models with monitored

data and arriving at intelligent inference, resource reservation for emergencies and resource

reallocation from lower priority services should be explored. Easy onboarding of xApps and the

triggering of policy towards lower closed-loops and supporting visualizations can increase usability.

In addition, extending the solution to self-learning closed-loops with continuous collection,

analytics, decision and actuation and model performance detection needs further study. With the

self-learning close-loops, the network could trigger a switchover to another better performing

model, analyze and trigger a different set of data/measurements for data analysis and perform

synchronization and management across the edge and emergency responder devices.

9 2022 PoC Description

The main contributions of this study are summarised as follows:

• Analysis of specific use cases such as:

AN-usecase-001 [ITU-T Y.Supp 71], “Import and export of knowledge in an autonomous network”,

produce a design as per the reference design in the Build-a-thon repository. We also provide the

corresponding code based on the reference code in the Build-a-thon 2022 repository.

Use case 15 from [ITU-T Y.Supp 71] and analysed the design. Solution will scan all incoming log

traces continuously, detect system issues and will report issues as Incidents with probable root-cause

automatically. Achieves it through historical log data learning and prediction is from new live log

sentences. While producing the report solution will take feedback from user and re-train the Log

Anomaly detection to do self-correction. We provide extensions to the reference code provided in

[Build-a-thon 2022] and build our own graph based on the reference code.

We analyze use case 23, Autonomous agents (with varied competence) in networks. Data by sensors

such as logs, packet measurements, Deep packeted inspection, etc are managed by autonomous agent.

The agent specifically create collects the data, analyze and perform action with minimal human

intervention.

We analyse Network resource allocation for emergency management based on closed loop. Solution

will scan all incoming KPIs and slice config continuously, including any changes in slice config for

new slice deployment and RL agent will optimise the slice config, accordingly, using calculated

rewards based on SLAs.

We analyse FG-AN-usecase-41(3GPP TR 28.809 V17.0.0), “KPI anomaly analysis for 5G networks

and beyond” and produce a design as per the reference design in the Build-a-thon repository. Solution

will scan list of Network Functions(NF) from EMS, identifies NF for KPI retrieval, forecasts the KPIs

from these NF for future time period, identifies anomalies from the forecasted KPIs, identifies Rouge

NF causing KPI degradation, blacklists Rouge NF. Achieves it through historical KPI data from NF.

We analyse FG-AN-usecase-38, 1.1 “AN enabled end-to-end supply chain”, produce a design as per

the reference design in the Build-a-thon repository. We also provide the corresponding code based

on the reference code in the Build-a-thon 2022 repository. Enabled end-to-end of Unified Standards

& Guidelines Manufacturing & Operators.

We analyse “Slip Detection (and Force Estimation)” and “Object Detection” in a robotic arm, and

- 36 -

FGAN-O-029

produce a design as per the reference design in the Build-a-thon repository. We also provide the

corresponding code based on the reference code in the Build-a-thon 2022 repository. After analyzing

the use cases, we trained two ML models, one for “Slip Detection (and Force Estimation)” and another

one for “Object Detection” we have tested and validated the models for the use cases

• Implementation of a PoC for the distributed autonomous evolution of controllers based on the

FGAN architecture [FGAN-O-023]. We specifically address important issues, such as the security,

auditability, explainability and scalability of the process. Additionally, the PoC also includes the

subsequent automatic deployment of any controller obtained from the evolution.

• Deriving new use cases for the autonomous networks can help us understand the potential of using

autonomous networks, in this trial we got a document that contains old use cases between some

network components, and from these old ones we apply the link prediction algorithm to investigate

the future opportunities of making use of autonomous network, we have reached 86% of accuracy

of predicting if the link exists or not, and as a start we predicted more than 6.5k possible relations

that can be investigated further

Fig. 32 – Design vs. implementation.

Fig. 33 – Part 1 and part 2 of Build-a-thon.

- 37 -

FGAN-O-029

Fig. 34 –High-Level Framework for Evolutionary-Driven Autonomous Network [FGAN-O-023]

9.1 The PoC Design and Implementation

The document [FGAN-O-023] describes a High-Level Architecture Framework for AN, including

evolutionary-driven networks. This architecture is shown in Figure 34. A module is “a building

block consisting of executable code and a module specification from which controllers are

assembled”. A module's specification includes its input and output interfaces, and a metadata

description of its functionality. Examples of possible modules include aggregation functions, DNS

configuration interfaces, an entire deep neural network (DNN) model, a single layer of a DNN

model, etc. On the other hand, a controller can be considered as a software closed-loop composed of

modules. A controller instance is “an executable representation of a controller including modules,

their configurations, and parameter values”. Exploratory evolution tries to find a suitable controller

for a required use case specification using evolutionary algorithms.

This report describes an end-to-end structural PoC based on the FGAN architecture and on the

secure and traceable evolution of controllers. The evolutionary algorithms that would drive the

process and the reactive evolution of controllers to operational conditions are beyond the scope of

this work.

9.2 Import and export of knowledge in an autonomous network

Knowledge is essential to fulfil the key concepts of autonomous networks (evolution,

experimentation and adaptation) while minimizing human intervention. Knowledge in autonomous

network ranges from autonomous system environmental data representation, actions/consequences,

key configuration options to potential parameter indices. This section presents the use case PoC of

knowledge in the AN actors.

9.2.1 The PoC design

As shown in the Figure 34, the system consist of orchestrator, KB manager, auto controller, open

CN, ML pipeline, and human operator.

- 38 -

FGAN-O-029

The orchestrator is the component responsible for managing workflows and processes in the AN

and steps in the lifecycle of controllers. To manage the workflows and processes in AN, AN

orchestrator coordinates with various other functions in the AN as well as outside the AN. Being

part of the management plane, AN orchestrator provides interface to human operators in the form of

reports regarding the functioning of the AN and human interfaces for configuring the AN, where

applicable.

Fig. 35 – High-level flow chart for creation and parsing of example intent.

The KB manager is a subsystem which manages storage, querying, export, import and optimization

and update knowledge, including that derived from different sources including structured or

unstructured data from various components or other subsystems. KB manager is a node which

optimizes and manages data available on the closed loop but requires a node which can host its

resources. Since AN orchestrator has the capability of hosting node resources it is designed to be a

host to the KB manager. Knowledge in AN is a collection of resources that helps in solving a

specific type of problem. A knowledge base component manages knowledge derived from and used

in autonomous

networks. It is updated and accessed by various components in the autonomous network. The

knowledge includes metadata which is derived from the capabilities, status of AN components. This

knowledge is stored and exchanged as part of interactions of AN components with knowledge base.

Knowledge can be derived from different sources including structured or unstructured data

The auto controller generator represent generic software component that can be managed and run

by a TOSCA Compute Node Type. It generate controller specifications using the existing repository

in OpenCN, the knowledge base and an analytics function aided by AI/ML. Meanwhile the Open

CN stores the controllers for the AN.

The ML pipeline node is able to learn and adapt without following explicit instructions, by using

algorithms and statistical models to analyze and draw inference from patterns in data. It hosts

analytics and recommends controllers in the AN. On the other hand, the Human operator is just like

a user friendly interface for human base instructions

- 39 -

FGAN-O-029

9.2.2 The PoC Implementation

The TOSCA metamodel uses the concept of service templates that describe cloud workloads as a

topology template, which is a graph of node templates modelling the components a workload is

made up of and of relationship templates modelling the relations between those components.

TOSCA service template are instantiated at runtime using a TOSCA orchestrator (xOpera) and the

order of component instantiation is based on the relationship between components. TOSCA is one

of best and most often used automated testing tools. It is widely employed in large-scale

applications to achieve successful outcomes.

In the implementation, the YAML file is generated and stored in a graph database is using neo4j.

After the basic template YAML template f the use case is written, Ruamel (a python YAML editing

library) was used to populate the nodes of the use case with the actors and relationships from our

use case in TOSCA by using information obtained from querying the graph database. Finally, the

generated YAML was then validated by parsing it using xOpera. Figure 36. shows the flow chart of

the service template generation from the graphDB.

Figure 36: Flow chart of the service template generation from the graphDB.

9.3 Evolution and blockchain: An Autonomous Network Architecture PoC

This section presents a Proof of Concept (PoC) of the decentralized controller evolution architecture

for Autonomous Networks (AN) using a distributed Marketplace based on the FGAN architecture

(FGAN-I-198 [5]). Such a marketplace serves as a decentralized mechanism for the secure and

traceable evolution of controllers, which is achieved by a private Ethereum blockchain and a

distributed and decentralized filesystem, the Interplanetary Filesystem (IPFS).

We specifically address important issues, such as the security, auditability, explainability and

scalability of the process. Additionally, the PoC also includes the subsequent automatic deployment

of any controller obtained from the evolution. This last part contains the TOSCA parsing of a

Representational State Transfer (REST) service for the chosen controller.

9.3.1 MODULES, CONTROLLERS AND EXPERIMENTATION

Figure 2 shows the high-level Neo4J graph representation for the PoC closed-loop, which uses all of

the concepts presented in Figure 34, except for the Selection and Operation Controller. Note that for

the Real Time Online Experimentation the use of a Digital Twin (DT) is considered. A DT, which

concept is described in FGAN-I-058 [6], is “a mathematical representation of a physical and/or

- 40 -

FGAN-O-029

logical object”. For example, a DT could be a Graph Neural Network (GNN) that reproduces the

behaviour of a network, producing outputs such as latency or packet loss rate, given inputs that

describe its state and policy. This PoC uses the concept of a DT in the architecture, but does not

focus on its implementation, which is a problem out of the scope of this project.

 The blue nodes represented in Figure 2 are labelled as actors in the graph, while the green ones

are denoted as elements. Actors are controllers that can evolve, although the evolution of actors is

out of the scope of this PoC. Element include supporting artefacts, such as software modules,

evolvable controllers, repositories, etc.. The Evolution Controller (Evol_Ctr) stores the list of

available modules and uses them to compose an Evolvable Controller (Evola_Ctr) that is sent to the

Marketplace (Mark_Plc). Although the Marketplace is represented as a single node, it is a

distributed network of several nodes that are part of the rest of the actors. That means that the

Marketplace is distributed across all the instantiations of the Evolution Controller, Experimentation

Manager, Digital Twin and Curation Controller, ensuring the security and traceability of the

evolution process. In this PoC, both modules and controllers are implemented as Python classes.

The source code for both definitions is available in [7], in the Mod_Ctr.py file, which is reproduced

in all the nodes. The fact that all nodes work with the same definition is part of a list of important

assumptions that are now explained.

Fig. 37 – Neo4J graph representation of the high-level architecture of the PoC

9.3.2 IMPORTANT ASSUMPTIONS

• The list of available modules, as well as the definition of the classes Module and Controller,

are contained in the Mod_Ctr.py file, having each node (blue circles in Figure 37) an identical

copy of it. In the case of introducing new modules, something that is not considered in this

PoC, a protocol for distributing the information and ensuring consistency is required.

However, the Marketplace provides the perfect tool for implementing this feature.
• Since the PoC is focused on laying the groundwork for the evolution architecture, the modules

and controller considered are rather simple, reproducing the behaviour of simple mathematical

operations. However, we assume that this approach is sufficient for proving our architecture

and that it can be improved in the future.

• As for the evolution, the algorithm uses random combination of modules, avoiding repetition

of the combinations that have already being tried for which their result is testing is known.

We assume that our use of random module combinations is structurally equivalent in this

context to those controllers produced by evolution. Of course, they are not expected to be

equivalent in their operation.

- 41 -

FGAN-O-029

All these assumptions simplified the PoC implementation, but do not limit its effectiveness when

laying the groundwork for the evolution of controllers in a distributed system. New features can be

added with a few or no changes in the base work presented here.

The class Module have four attributes: module id, function, parameter and representation.

The list of possible functions is limited to the mathematical operations add, subtract, pow, and

multiple. These functions are also defined as Python functions in the file Mod_Ctr.py.

Figure 38 shows the Python code for the multiple function, f_mul. Figure 39 shows an

instantiation of a Module object with f_mul as function with the float 3 as a parameter. The id is a

string explanation of the function, while the representation is the symbol that denotes the

mathematical operator. The Module class has the method execute represented in Figure 40 that,

given an input, returns the output of applying the function with the designed parameter. Once a

Module object is instantiated is possible to modify its parameter with the method set_method.

Figure 38: Python code for the definition of the function f_mul.

Figure 39: Representation of a Module object.

Figure 40: Representation of the method execute of a Module object.

9.3.3 CONTROLLER DEFINITION

The class Controller has three attributes:

• The controller id, which is unique
• A list of the modules that compose the controller

• A list of the parameters for each of its modules

Figure 41 represents the instantiation of a Controller object. In that case the two modules

implement the functions substract and multiply tuned with the parameters 2 and 10 respectively.

After the object is instantiated, it is possible to call the method execute as represented in Figure 42.

The executed method for each Module objtect will be called in order, being the output of each phase

the input for the next one. Additionally, the Controller has a method get_dict that returns a Python

dictionary that describes its attributes.

- 42 -

FGAN-O-029

Figure 41: Representation of a Controller object.

Figure 42: Representation of the method execute of the Controller class.

A Python dictionary can be easily converted into a JavaScript Object Notation (JSON) file which

is the selected format for transmitting the controller information between nodes. The transmitter

node sends the JSON description of a controller and since the receiver also has the list of all

available modules, it is able to recreate a copy of the controller by calling the function json_to_ctr

(dictionary). We have chosen JSON since it is a lightweight data-interchange format that is readable

by humans. Figure 43 shows the JSON representation of the Controller object introduced in Figure

41.

9.3.4 EXPERIMENTATION AND EVOLUTION

All blue nodes in Figure 37 communicate by exchanging JSON files via the Hypertext Transfer

Protocol (HTTP). On the Marketplace side, we have used the language JavaScript for handling the

HTTP communication, while in the rest of the blue nodes we have chosen the combination of the

Python framework Flask [8] and Gunicorn [9], a Python HTTP server for Web Server Gateway

Interface (WSGI) applications.

Figure 43: JSON representation of a Controller object extracted from the Marketplace.

Following the architecture presented in Figure 37, the Evolution Controller (Evol_Ctr) sends the

JSON representation of a new Evolvable Controller (Evola_Ctr) as the one shown in Figure 10.

After storing the JSON file, the Marketplace forwards it to the Experimentation Manager

(Exp_Mg). This node configures the Digital Twin (DT) by sending both the JSON representation of

the controller and a list of experiments to be run. This PoC presents a simple case where only two

experiments implemented as Python functions are available in the DT:

• Average: Return the average of the controller output after 100000 iterations, being the input

drawn from a uniform distribution between 1 and 10.

- 43 -

FGAN-O-029

• Value: Given a fixed input, return the absolute value of the difference between the controller

output and a desired value. By default, the input is 5 and the desired output is 35.

The DT insatiate a Controller object using the JSON representation and, after running the

experiments, sends back to the Experimentation Manager a JSON containing the results or Key

Performance Indicators (KPIs, Figure 37). The Experimentation Manager composes an Experiment

Report (Exp_Rep) that is a JSON containing the id of the controller under testing and its results in

each experiment. The Experiment Report is sent to the Marketplace and then forwarded to the

Curation Controller (Cur_Ctr). An example of an Experiment Report (running the experiments with

the default settings) is shown in Figure 44. The Experiment Report is also forward to the Evolution

Controller, since the results are useful feedback if an evolutionary algorithm is implemented.

Figure 44: JSON representation of the Experiment Report of the controller described in Figure 10, extracted from the

Marketplace.

Based on the Experiment Report, the Curation Controller (Cur_Ctr) will decide if the Evolvable

Controller referenced by its id is promoted to Protected Controller (Ptr_Ctr) for one or more

experiments. Treating the protected category independently for each experiment is based on the idea

that a controller suitable for a specific use case may perform poorly if the case changes. For

example, Figure 45 shows the notification of the Curation Controller to the Marketplace informing

that the controller with id 34 (Figure 43) is a Protected Controller for the experiment/use case value.

Note that the same controller has not the category of protected for the experiment average. This

decision depends on the criteria followed by the Curation Controller, that for this example is:

• Average: Protected Controller if the result is greater than 500.
• Value: Protected Controller if the result is smaller than 20.

Therefore, these values serve as configurable thresholds to decide if an evolvable controller may

be promoted to a protected controller.

Figure 45: JSON file registration of Protected Controller, extracted from the Marketplace.

- 44 -

FGAN-O-029

9.3.5 FUNCTIONAL IMPLEMENTATION

Figure 46: Functional level architecture of the PoC.

Figure 46 shows the functional level architecture of the PoC, where each node represents a

specific technology implemented. As can be seen from the picture, each one of the actors shown in

Figure 37 is composed by a subset of services that represent a specific function within the PoC.

Different technologies are used depending on the type of functionality implemented by each

service. A description of each type of service and the technology it uses is provided below:

• Experimentation and Evolution: responsible for the evolution and experimentation logic of

each actor. As described in previous sections of this report, different actors have different

functionalities, so implementation varies from actor to actor (the Cur_Ctr promotes controllers

based on experimentation reports, the Evol_Ctr creates new controllers and sends them to the

Exp_Mg etc.).

o Programming language/Frameworks: Python.

o Naming convention: actor name abbreviation + _Py (e.g., Cur_Py for Curation Controller)

• Marketplace: services that make up the functionalities of the Marketplace.

o Ethereum service: responsible for receiving and executing transactions through smart contracts

in Ethereum. These transactions include uploading a file to IPFS, retrieving an uploaded file by

its CID, or by its id.

▪ Programming languages/Frameworks: Node.js, Hardhat, Solidity.
▪ Naming convention: actor name abbreviation + _NJS (e.g., Cur_NJS for Curation Controller)
o IPFS service: node connecting each actor to a private IPFS distributed filesystem network.

▪ Naming convention: actor name abbreviation + _IPFS (e.g., Cur_IPFS for Curation

Controller)

- 45 -

FGAN-O-029

Figure 47: Network architecture of the PoC.

All independent services have been implemented through Docker containers, orchestrated and

configured via a Docker Compose (docker-compose.yml) file. Each container is interconnected

creating a network that is shown in Figure 47. From it, it can be seen that each container/service of

the system has an IP address and a specific set of ports exposed for communication with other

nodes within the network. The distribution of these ports and addresses is detailed in Table 2.

Node Container name IP address Ports Function

Evol_Ctr

evol-ctr-py 172.16.239.11 6004 Builds controllers combining modules

Sends controllers for experimentation

evol-ctr-ipfs 172.16.239.12 4001

8090:8080

5001

Libp2p swarm connection

HTTP gateway and read-only API

IPFS API

evol-ctr-mkp 172.16.239.13 8545

3000

JSON RPC connection to Ethereum

Marketplace HTTP API

Exp_Mg

exp-mg-py 172.16.239.21 6001 Receives controllers

Passes controllers and experiment list

and parameters to the Digital Twin

exp-mg-ipfs 172.16.239.22 4001

8091:8080

Libp2p swarm connection

HTTP gateway and read-only API

IPFS API

- 46 -

FGAN-O-029

5001

exp-mg-mkp 172.16.239.23 8545

3000

JSON RPC connection to Ethereum

Marketplace HTTP API

DT

dt-py 172.16.239.31 6002 Runs experiments

dt-ipfs 172.16.239.32 4001

8092:8080

5001

Libp2p swarm connection

HTTP gateway and read-only API

IPFS API

Cur_Ctr

cur-ctr-py 172.16.239.41 6003 Decides if a controller is protected

cur-ctr-ipfs 172.16.239.42 4001

8093:8080

5001

Libp2p swarm connection

HTTP gateway and read-only API

IPFS API

cur-ctr-mkp 172.16.239.43 8545

3000

JSON RPC connection to Ethereum

Marketplace HTTP API

Table 2: Containers and Ports

9.3.6 THE MARKETPLACE

As described in Section 9.3.2 of this report, rather than a single node of the network that makes

up the PoC, the designed Marketplace is in itself a distributed network of several interconnected

nodes. As shown in the previous sub-section, these nodes are composed of Docker containers

incorporating two different services (Ethereum and IPFS) that make up the Marketplace and are

included into every actor that is part of the PoC and shown in Figure 37.

This means that the Marketplace is distributed across all the instantiations of the Evolution

Controller, Experimentation Manager, Digital Twin and Curation Controller, connecting every actor

to the traceable ledger of evolution artifacts created throughout the process and stored in IPFS and

accessible through the private Ethereum blockchain. Figure 48 presents an example of how the

Marketplace works when uploading an artifact. The process is described below:

- 47 -

FGAN-O-029

Figure 48: Example of uploading process in the Marketplace.

1. The Evolution Controller sends an Evolvable Controller in the form of a JSON file to the

Marketplace. This JSON file has the structure described in Section 9.3.3, containing

information that identifies the controller according to its definition, and is sent via a POST

HTTP request to port 3000 of the evol-ctr-mkp container, which handles the HTTP API of the

Marketplace (see Table 2).

2. The Marketplace receive the JSON artifact via port 3000 and registers the file into Ethereum

via the Marketplace.sol SC (see sub-section 9.3.3 for further details). The operation is run by

the marketplace.mjs script, that is contained in every _NJS container and handles the operation

of the Marketplace, interconnecting Ethereum with IPFS, and handling transactions on behalf

of each node.
3. Ethereum validates the transaction, confirming in turn the registration of the JSON artifact

into the chain.

4. Once the transaction is confirmed, the marketplace.mjs script uploads the JSON file to IPFS

via the IPFS API (port 5001).

5. After uploading to IPFS, the JSON artifact is sent to the next corresponding actor/actors (in

this case, the Experimentation Manager).

9.3.7 THE MARKETPLACE SMART CONTRACT

Just as has been stated in earlier sections of this report, the Marketplace SC is responsible of

registering artifacts generated throughout the evolution and experimentation process into the

blockchain, ensuring traceability, security, accessibility and scalability. While the private IPFS

network stores artifacts and provides scalability while ensuring availability, the Ethereum

blockchain keeps track of all transactions throughout the process and constitutes a historic record of

file versions, upload times and other metadata.

In order to achieve this successfully, file registration is managed by Marketplace.sol, a SC that has

been laid out to capture meaningful information in order to optimally ease identification of files and

browsing the register. To this end, a structure named File has been created in the Marketplace.sol

SC, whose elements are listed below:

• File number (uint256): number of the file uploaded to the Marketplace chronologically.

• CID (string): the file’s Content ID, computed before being uploaded to IPFS.

• Name (string): name of the file.

• Object Type (string): type of the object uploaded: controller, experimentation report etc.

• Uploader (address payable): Ethereum address of the node that is registering the file.

- 48 -

FGAN-O-029

A mapping is then assigned to the File structure and the total number of files uploaded to the

Marketplace, which is used to keep track of files in the system. This number is in turn saved in the

chain as the File number attribute.

It is worth noting that, while the id of a controller as described in section 9.3.3 represents a specific

instance of a controller, the CID is a unique cryptographic hash that represents a file and does not

change as long as the contents of the JSON stay the same, i.e., when the evolution is run multiple

times.

9.3.8 CONTROLLER DEPLOYMENT USING TOSCA

This PoC also includes the automatic deployment of a controller as a REST service. The code for

this part can be found in the folder ctr_deployment [7]. For this purpose, a YAML file is written

according to the OASIS Topology and Orchestration Specification for Cloud Applications

(TOSCA) [10], as it is recommended in the Build-a-Thon proposal [11]. The TOSCA file is then

parsed and executed by using the orchestrator xOpera [12]. Given the CID of a controller as input,

the following task are performed by the orchestrator (Figure 49):

• Fetch the JSON representation of the selected controller from the Marketplace.

• Create an instance of the class Controller based on the JSON representation.

• Deploy a REST service in a Docker container.

Figure 49: Representation of controler deployment.

For the development of the REST service, we have used the Python tools Flask and Gunicorn

(Section 9.3.4). Once the service is deployed it will reply to HTTP GET requests (Figure 50). The

HTTP response is a JSON that contains the information about the controller and the output based on

the request’s input (Figure 51).

Figure 50: Controller REST service representation.

- 49 -

FGAN-O-029

Figure 51: JSON response by the controller REST service.

The controller implemented is rather simple, and the REST service is not actually a close-loop

(we already implemented a close-loop for this contribution in the evolution process). However, the

purpose of this part is to prove that is feasible to deploy a controller with just its CID, getting its

representation from the Marketplace. The CID of the controller with id 34 is the default input in the

file inputs.yaml inside the ctr_deployment folder [7], although it can be replaced by any other

controller’s CID. As Section 9.3.3 explains, this CID will remain the same as long as the JSON

representation of the controller is the same, no matter how many times the evolution is run. This

feature ensures a “check-point” to which the service can always return.

9.3.9 PoC RESULTS

This section presents the results of the PoC which code is included in [7]. Along with this report,

the BT submission includes a demo video of the PoC execution. The configuration parameters for

the presented PoC are:

• Each controller is composed of 2 modules.
• The parameter of each module can only adopt two possible values: 2 and 10

• Evolution is done by randomly combining pairs of modules, avoiding repetition of the same

modules in the same order with the same parameters (that would yield an identical controller).

• The PoC stops after trying out all possible combinations
• As for the Curation Controller criteria, the default parameters are used. As explained in

Section 9.3.4 that means:

o Average: Protected Controller if the result is greater than 500.
o Value: Protected Controller if the result is smaller than 20.

• All docker containers run on a local machine and in a private network as explained in Section

9.3.2.

The purpose of this configuration is to illustrate the mechanics of the proposed architecture by a

clear and quick demo that can be reproduced easily in a local machine by anyone who clones the

repository [7]. The close-loop chronological order was explained in Section 2.1 and it is shown in

- 50 -

FGAN-O-029

Figure 37. Figure 46 shows the representation of the actual docker container nodes. As shown in the

demo video, one must look at log messages of the docker containers to analyse the process.

Figure 52 shows the log messages of the Evolution Controller (its Python part), denoted as

Ev_Py in Figure 46. The output shows the JSON representation of each controller that the Ev_Py

node sends to Ev_NJS. The JSON is forwarded to Ev_IPFS and its response, the CID assigned to

each controller, is sent back to Ev_Py by the Ev_NJS. With the printed CID it is possible to access

the controller JSON representation in the marketplace, as shown in Figure 53 for the controller with

id 34. It is interesting to change the port in the address, to access a different node (Figure 54). The

port 8091 corresponds to the Exp_IPFS node and the 8092 to the DT_IPFS (see Figure 47 and

Table 2) This proves that the information about each controller is reproduced in all the IPFS nodes.

Figure 52: Log messages of the Ev_Py docker container.

Figure 53: Access to the JSON representation of a controller in the Marketplace via its CID. The

Marketplace node that is being consulted is Exp_IPFS.

Figure 54: Access to a controller JSON representation in the Marketplace via its CID. The

Marketplace node that is being consulted is DT_IPFS.

- 51 -

FGAN-O-029

9.4 Autonomous agents (with varied competence) in networks.

This section presents the PoC on autonomous agent in network case study. The case study is

focused on the level of autonomy for autonomous system with estimation and judgement of

competence as key criteria.

The autonomous system requirements are presented [4]. Among the requirement, the autonomous

agent should determine and adjust the level of autonomy depending on environment and type of

task in contrast to capabilities of the system in combination with policies to support. The capability

will enable system to dynamically adjust to situation corresponding human intervention requirement

at run-time or design. The main highlight of an autonomous workflow include task specification,

understanding, feasibility, planning and execution. Request for human support and subsequent

learning by the autonomous system are other important considerations.

A simple workflow scheme for autonomy with varying autonomy levels was discussed. This

includincludeded task specification by human and task understanding, feasibility check, task

planning, task execution by system. Request for support to human and control by human can be to

any of these workflow steps. Monitoring of performance levels by humans and learning by the

system are added steps.

9.4.1 The Poc design and implementation

For the PoC, we consider sensors being an integral part of literally all equipment, gadgets, mobility

solutions, communication devices, medical devices, defence applications, athletics, electronics,

computers, etc. Sensors are among the fastest growing markets along with mobile phones and

computers. So, the requirements for use case [4] involves the type of data that is collected and

detected from the environment.

The data detected from the network in particular includes include text data (logs), packet

measurements, deep packet inspection, latency time measurements, packet loss measurements, etc.

The sensors are thus autonomous agents because they are created (instance) and managed (data

collection, data analysis and actions) with minimal human intervention.

Also, as part of the requirements for use case 23, it is essential that autonomous networks (AN)

enable fault isolation through collaborative analysis of multiple sensors to identify the cause of the

fault. Another aspect is enabling bug fixes without human interaction, such as discovering the

correct version of software or hardware to update.

The creation of new agents with new capabilities, requirement collection and analysis of existing

problems (and in some cases, recurring) in the network (RAN or base station failed) warrants the

autonomous management of close loops. In this this PoC , we consider the validation of the actors

and the relationship between them in the design of a graph in Neo4j. other important tools use

including Graph DB, Colab, Python programming, Regular meetings and Interactions

Autonomous controllers and data are considered as the main actors. The controllers consist of data

stream sensors or data delivering technology while cloud-based (Environment) methods are

employed to distribute communication loads through relay nodes. Table 3 presents the actors and

their relationship.

- 52 -

FGAN-O-029

Actor-1 Actor-2 Description

Controllers Autonomous Sensors for data stream

collection (or delivery)

technologies.

Data Environment Data Cloud-based (Environment)

methods to distribute

communication loads by

relay nodes.

Table 3: Different actors and their relationships

9.5 Deriving new use cases based on link prediction algorithm.

This section presents PoC on deriving new use cases based on link prediction algorithm. It's

important to investigate the hidden use cases for the autonomous networks to be able to extract how

to use the AN concepts in future networks effectively, and an effective way to do so is to make use

of the recent use cases, to predict the possible ones.

Instead of analysing the existent use cases manually we can benefit from the huge advancements in

the computational intelligence A.K.A. AI or ML, but for that purpose we need a dataset that

contains information about the recent use cases.

Firstly we analyse and automate the process of getting information (text and graphs) as describe in

[ITU-T Y.Supp 71]. Through the data presentation, the network structure and entities are captured

and a model is proposed to predict the links. The rest of the section discusses the Text and

document parsing, figure parsing process, graph database representation, and the link prediction

algorithms.

9.5.1 Text And Document Parsing:

In [1], We can find the use cases for the build-a-thon challenge, and in order to make predictions for

the new use cases we need first to get the existing details of the use cases to be able to represent

them.

In that document, we can find tables, texts and images that are used to represent the use cases, in

this section we will describe how we parsed the paragraphs and tables, and in the next section we

will describe the parsing of images.

By using the docx library[8], which is a programming library based on Python programming

language to process word documents, we can extract all the information we need from that

document.

First we need to extract information that is found in the tables, because it represents the meta data

and also the description of the use case itself, but the first problem we faced was we have a lot of

- 53 -

FGAN-O-029

tables other than use cases’ one like the following tables, so we need to select those tables only by

some sort of conditioning.

after Parsing those tables, we found that the fields on the tables is not consistent in naming, for

example we have some problems like:

- [Category, Use case category, Notes on use case category] they all refer to the category of

the use cases.

- [Base contribution, Base Contribution, Base contributions] All refers to the same

information.

- [Use case description, Description, Use case description\n] All refers to the same

information.

- [Open issues, Open issues (as seen by the proponent)] All refer to the same information.

So we need to make sure we have a consistent naming, we edited the confusion manually, and

finally we got the following table that summarises all 40 cases:

Table 4: Final parsed data from the tables

Next step is to parse the requirements of each use case, the requirements in the document is

represented as paragraphs after the table of each use case, and as an example, the first requirement

in the 10th use case is :

For this example we can find that we can extract everything about the requirement like the use case

number and the number of the requirement itself, also the priority level of the requirement can be

extracted, and we have 3 levels of priority will be as follows:

- Critical: Important and required for the use cases implementation.[1]

- Expected: Possible requirement which would be important but not absolutely necessary to

be fulfilled.[1]

Table 4: Final parsed data from the tables.

- 54 -

FGAN-O-029

- Added Value: possible requirement which would be optional to be fulfilled (e.g., by an

implementation), without implying any sense of importance regarding its fulfilment.[1]

Finally We managed to get the final table that represents all the requirements as follows:

Table 5: Final requirements table

Now we have now two tables, one for requirements and the other one for the information about the

use cases, now we need to combine those tables together to have all details in one place, and the

final details will be as follows:

Table 6: Final combined tables of the requirements

Now we have all the details about each use case in a row, next step we need to parse the figures that

represent the relations between actors.

Table 5: Final requirements table.

Table 6: Final combined tables of the requirements.

- 55 -

FGAN-O-029

9.5.2 Figures representation:

In the document, we saw two types of figures, one for possible components (Figure 52) and the

other in a form of sequence diagram (Figure 53), both representing the interactions between the

actors.

Fig. 55: Example Actor Interaction diagram

Fig. 56: Possible components diagram

The problem with images is that they are not parsable, we cannot extract the desired information

from these images in an automated fashion, so to be able to extract the information, we will convert

it to a machine readable format and then extract the desired information.

Figure 1: Example Actor Interaction diagram Figure 2: Possible components diagram

Figure 1: Example Actor Interaction diagram Figure 2: Possible components diagram

- 56 -

FGAN-O-029

To do that job we tried several tools to make a convenient representation, first tool is PlanUML[6],

and it’s a tool to make several types of diagrams using the UML format, by using this tool we are

able to create sequence diagrams, and the result our first try was as in the next figure:

Fig. 57: First try of using PlantUML

By comparing this figure 54and figure 52 we can see that this representation is most like the desired

one, but has one but crucial disadvantage, which is the optimization function of the management

domain here is represented as a self message, but in the real time it’s a function inside the

management domain component.

Then we tried another representation, in this time we tried another type available in PlantUML, and

the result was as follows:

Fig. 58: Second try result of figure representation using PlantUML

This representation is sufficient if we don’t want to see a visual representation, here we overcame

the problem of representing the function, but we have a bad visual that is not like the one we want

to be consistent.

The final try we used another tool to make the representation, this time we used Draw.io[9], which

is a GUI based tool, from which we can extract the XML or any other machine readable format, and

the result was as follows:

Figure 3: First try of using PlantUML

Figure 4: Second try result of figure representation using PlantUML

- 57 -

FGAN-O-029

Fig. 59: Final try in figure representation

As we can see here an identical copy of the diagram in figure 52, also there are other types of

shapes that can represent any other type of diagrams, also it gives us the flexibility to enter any

other metadata that can help us when we parse the figures, and we used these metadata as follows:

Fig. 60: Added Metadata

We added the following meta data:

- Class: To represent the class of the item, whether it was component, function or the type of

the relation, this field is added to all items in the figure.

- Value: The name of the item or the relation to all items.

- Parent: To contain the parent component ID that contains this function, only included in the

function items.

Figure 5: Final try in figure representation.

(a) Component metadata (b) Functions Metadata (c) Relations Metadata

Figure 7: Added Metadata

- 58 -

FGAN-O-029

After successfully representing the figure in the XML, which is a machine readable format, we can

use Python[10] and its library XML[8] to parse the figure, and we ended up with the following

table:

Table 7: Relations Table

And also we have a dictionary that contains the functions and its corresponding parent actors.

Now we have completed parsing the document and the following figure represents what we did till

now:

Fig. 61: Resources we have

After that, we need a way to convert this into a type of dataset to be able to run machine learning

algorithms on it.

9.5.3 Graph database representation:

There are several graph databases, we chose Neo4j[5] which is one of the most popular graph

databases. Also it has some advantages like native representation of graphs, a lot of other packages

especially in data science, has its Querying language Cypher which help us in query graphs and

Finally Has an API with Python so it can help us automating our stuff.

Table 7: Relations Table

Figure 8: Resources we have

- 59 -

FGAN-O-029

It’s more convenient to represent the network with a graph database, in the graph database we

represent the data in the form of nodes and relations, which is the most relevant format for network

structure.

We made some iterations to represent, the first try based only in the relations table, which contains

only the components in the relations table with 130 relations only, but this representation has some

drawbacks which is special to those use cases that have figures to represent it on the document,

which are not all use cases, so using only these relations will ignore important parts of the use cases.

Next try is to read each use case carefully and extract the true relations and functions inside the

graphs and also the hidden relations in the requirements and descriptions of each use case, and the

final product is the reference code, which is sufficient to represent the use cases, now we have +500

relations and +300 Component.

A part of our representation is in the following figure:

Fig. 62: Part of the graph representation

Now we have represented the data, next step is to run the link prediction algorithm on it to be able

to investigate new use cases.

9.5.4 Link Prediction Algorithm:

We can consider the link prediction pipeline as a classification problem to classify if a certain

relation exists between two nodes or not, and this classification can be more accurate if we calculate

something that measures the how likely these two nodes to have a relation in between, and actually

the current representation needs some numeric properties.

And the pipeline of the link predictions contains several steps as follows:

9.5.4.1. Make the projection:

First step is to project the graph database in the memory, this is done by using the native projections

in neo4j.

Figure 9: Part of the graph representation.

- 60 -

FGAN-O-029

9.5.4.2. Add node properties:

We need to add some properties to the nodes, these nodes are:

9.5.4.2.1. Node Embeddings:

For each node we need specific embedding like what is happening when we decode a categorical

feature in the ordinary data preprocessing.

Node embedding algorithms compute low-dimensional vector representations of nodes in a graph.

These vectors, also called embeddings, can be used for machine learning.

We have used the FastRP algorithm because it’s the only one in production quality, and works in

directed and undirected relationships.

Fig. 63: Node embedding

9.5.4.2.2. Centrality:

Centrality algorithms are used to determine the importance of distinct nodes in a network.

We have used the Degree Centrality algorithm, as it works well in directed and undirected

relationships.

degree centrality measures the number of incoming or outgoing (or both) relationships from a node,

depending on the orientation of a relationship projection.

Figure 10: Node embedding

- 61 -

FGAN-O-029

Fig. 64: Example of Centrality

9.5.4.2.3. Community detection:

Community detection algorithms are used to evaluate how groups of nodes are clustered or

partitioned, as well as their tendency to strengthen or break apart.

We have used the Label propagation algorithm, as it works well for directed and undirected

relationships.

The Label Propagation algorithm (LPA) is a fast algorithm for finding communities in a graph. It

detects these communities using network structure alone as its guide, and doesn’t require a pre-

defined objective function or prior information about the communities.

Now we have added all the properties that may help the algorithm more and more, next step is to

calculate combined features using these properties.

9.5.4.3. Combined Features:

We are using the properties that are created on nodes, and combine them in each potential link

According to one of the following functions we choose for every property:

Fig. 65: Similarity algorithms

Figure 11: Example of Centrality

Figure 12: Similarity algorithms.

- 62 -

FGAN-O-029

9.5.4.4. Training and prediction:

Now all of the pipeline is ready, we trained algorithms in the dataset and after making hyper tuning

we found that the RF model behaves best in all use cases, now we need to test the models in all

scenarios:

- First scenario: we use only the 130 relation data set, which is the result of using only use

cases that have figures on it.

- Second scenarios: we use the full representation of the reference code, that have +500

relations and +300 Nodes.

- Third scenario: we use the second scenario but we add the functions of the actors as

properties in these nodes.

And the following was the results in each try:

Representation Best Model Test Accuracy (AUCPR)

Scenario 1 RF 88 %

Scenario 2 RF 73.6%

Scenario 3 RF 86 %

Table 8: Results

Now it’s obvious that the third scenario is the best scenario, and when we made the prediction, we

found that 6954 new links with more than 99% of probability to be a true relation.

9.5.5 Discussion

We can conclude from all of our findings that we found a way to parse the document and text, also

the draw.io is the best tool that has a lot of customizations that can help us in making more

representative figures.

Best algorithm for link prediction is the Random Forest model with 86% AUCPR accuracy in the

full reference code, and also we need to find a more enhanced way to represent the use cases in the

reference code, i.e. to convert all functions to be properties.

9.6 A Low Latency Closed Loop for ROBOTIC grasping

In this PoC use case, “Slip Detection (and Force Estimation) and Object Detection” in a robotic

grasping. Primarily, universal grasp action requires object picking with compensatory grip force

control to avoid gross object slippage and then the secondary task for in hand manipulation is to

- 63 -

FGAN-O-029

identify the object type across different properties primarily detecting the class. A Low Latency

Closed Loop System between the haptic hands / algorithms and real robotic hand (Allegro Hand)

using MEC Test Bed is developed. Figure 66 presents the low latency closed loop for the robotic

graping problem. The slip detection, force estimation and object detection are discuss in the

following subsections.

Figure 66: The low latency closed loop for the robotic graping problem

9.6.1 SLIP DETECTION, FORCE ESTIMATION AND OBJECT DETECTION IN A

ROBOTIC GRASPING

Slip detection is a crucial component of robotic grasping. It is the ability of a robotic arm to sense

when its grasp is slipping or losing its grip on an object. This is important for robotic arms so that

they can adjust their grip and maintain a secure hold on the object. Slip detection is achieved by the

use of tactile sensors or through gripper’s joints force feedback, which detect changes in pressure

and friction as the robotic hand interacts with the object. This data is then used to identify when the

object is slipping from the grasp and the robot can adjust its grip accordingly. When the object

begins to slip, the robot applies more grip force, and when it is secure, less force is applied. This

helps the robot maintain its grasp of the object more effectively, allowing it to manipulate it more

precisely. Slip detection in robotic grasping is a process of ensuring that the robotic arm can

accurately grasp objects and keep them in place. To enable this, a low latency machine learning

model control approach can be used. The machine learning model can be trained on a dataset

containing objects, their physical properties, and the desired robotic grip parameters. The model can

then be used to detect when the object is slipping out of the robotic grip, allowing the robot to

adjust its grip parameters accordingly. This approach ensures that the robot can quickly and

accurately detect the slipping objects and make the necessary changes to maintain its grip.

Additionally, the low latency of the machine learning model control approach allows the robot to

respond to slipping objects in a timely manner, ensuring that objects are not dropped or damaged

during the robotic grasping process.

Object recognition in robotic grasping is a complex field of study that has been the focus of many

research projects in the domain of robotics and computer vision. At its core, object recognition is

the process of identifying a specific object within an image or video frame. This task is typically

accomplished by applying specialized algorithms such as convolutional neural networks or other

machine learning techniques. In recent years, object recognition has become increasingly important

for applications in robotics and automation. Haptic force based object recognition is a method of

robotic grasping that relies on the tactile feedback from physical contact with an object. By

measuring the forces applied to the object, the robot can identify the shape and size of objects, and

- 64 -

FGAN-O-029

determine the best way to grasp and manipulate it. This technique can be used in a variety of

circumstances, such as when the object is occluded from view, or when it is too small or too large to

be detected by vision-based object detection. Compared to vision based object detection, haptic

force based object detection offers greater accuracy and reliability, as it is not affected by lighting

conditions or the presence of occluders in the environment. Additionally, haptic force based object

detection is not limited to detecting flat or rigid surfaces, and can even detect the texture and

properties of an object, such as its weight or material composition.

9.7 Model inference using the MEC Test Bed

This section presents the PoC use case solution design and raw data processing into logical features

for learning model to predict valid outputs. For each use case a process of feature engineering and

the methodology used is discussed. Figure 67 present the MEC testbed for the model inference

investigation. The two cases considered are presented as follows.

Figure 67: Model inference using MEC Test Bed .

9.7.1 Case 1 : Slip Detection

Any combination of the following individual features forms the basis of the feature set for the

model to train upon. All individual features and possible combinations were fed to the learning

model during experimentation.

Feature Engineering: Model Features Space-

1. Joint Force 𝐹𝑡

2. Joint Position,𝛩𝑡

3. Force Derivative, 𝛥𝐹𝑡

4. Position Derivative 𝛥𝛩𝑡

The target label for slip event and crumple event are transformed into 4 possible combined classes

for the model to predict the slip and crumple state at any given time step as a combined output

depicted in Table 9.

Events
Resulting Events

Slip Crumple

No No 0

Yes No 1

No Yes 2

Yes Yes 3

Table 9: Transformed events label for multi-class prediction.

- 65 -

FGAN-O-029

Methodology: For the defined problem statement of detecting the slip event as well as crumple

event during the grasp-lift phase of object picking , the time-series readouts data from the 16 Joints

of gripper is transformed into the required input format of the LSTM based model presented in

Figure 68. The data is transformed by applying a sliding window to the time series data set with

window size equal to the number of previous observations before the model predicts the output for

next time_step. The transformed dataset is shuffled to avoid biased learning.

Figure 68: LSTM model for Slip detection

• Input shape : (n_samples,n_previous_time_steps, n_features) The build model

was tried on different features combinations (n_features : [16 - 𝐹𝑡 ,16 - 𝛩𝑡 ,16 - 𝛥𝐹𝑡 ,16 -

𝛥𝛩𝑡])

• Output_shape: (n_samples,n_output) The model predicts a class out of n_outputs (one-

hot encoded) classes (n_outputs : [0,1,2,3]) corresponding to each transformed target class.

9.7.2 Case 2 : Object Recognition

For this case, the following individual features forms are used for training the model.

Feature Engineering: Model Features Space-

1. Joint Force, 𝐹𝑡

2. Joint Position, 𝛩𝑡

3. Mass, 𝑀𝑘𝑔

4. Joint Force x Joint Position , 𝐹𝑡 x 𝛩𝑡

The target labels can be segregated into unique 13 object type (class : unique shapes and sizes,

properties) as well as 6 unique object categories(same shape objects).

• Classes: 13 Objects

• Class categories : 6 Objects categories.

The data-set is pre-processed further based on the unique categories to get the extracted data-set

which is then fed to the classifier. Any combination of above individual features forms the basis of

the feature set for the model to train upon. All individual features and possible combinations were

fed to the learning model during experimentation.

Methodology: For the defined problem statement of class recognition the raw dataset was highly

imbalanced. Class Imbalance : The raw dataset with unique object classes was processed to get the

balanced dataset as to avoid the biased learning of the model due imbalanced samples of data of

individual classes. The train dataset is generated by extracting each class dataset equivalent to the

category which has the least sample in the raw dataset.

• Input data : (n_samples,n_features) The build model was tried on different features

combinations (n_features : [16 - 𝐹𝑡 ,16 - 𝛩𝑡 ,1 - 𝑀𝑘𝑔, 16 - 𝐹𝑡 x 𝛩𝑡])

- 66 -

FGAN-O-029

• Output_shape: (n_samples,n_output) The model predicts a class out of n_outputs (one-

hot encoded) classes (n_outputs : 13 classes) corresponding to each transformed target

class.

9.7.3 Result and Discussion

For case 1, we considered 10 previous time-steps as the length of the observed window for the

model to predict the event class. The model is trained with Adam optimizer with default learning

rate of 0.01 and categorical_crossentropy as loss function.

Furthermore, Random forest is used for the case 2. As the name implies, Random forest consists of

a large number of individual decision trees that operate as an ensemble. Each individual tree in the

random forest spits out a class prediction and the class with the most votes becomes our model’s

prediction.

Illustrative results for both use cases across combination of raw and constructed features trials for

slip detection and object recognition are presented in Figure 69 and Figure 70, respectively, and

summarise in Table 10. It can be observed that there were minor differences in the classifier

behavior across the features trials for the object recognition case, but the overall performance was

highly accurate due to well constructed features and cleaning of noise from the raw data performed

during feature engineering stage. The model trained for slip detection case also performed

reasonably well but a significant increase in the accuracy can be observed for the feature set

involving derivative features of raw data. Thus the derivative features like 𝛥𝛩, 𝛥𝐹 reasonably

impacts the model performance for inference of resultant slip and crumple events during the grasp-

pick phase of lifting the objects.

Figure 69: Confusion matrix for LSTM model for Case 1: slip detection

- 67 -

FGAN-O-029

 Figure 70: Confusion matrix for RF model for Case 2: object detection

Method Fetures
Slip Detection

Train Validation Test

LSTM
𝛩, 𝐹 79.6 80.4 80.6

𝛥𝐹, 𝛥𝛩, 𝛥𝐹 86.4 84.2 85.6

RF

Object Detection

Train Validation Test

𝛩, 𝐹 96.1 97.5 96.9

𝛥𝐹, 𝛥𝛩, 𝛥𝐹 98.1 99.5 98.9

Table 10 - Result table for both use cases (update table with Roger)

- 68 -

FGAN-O-029

9.8 KPI anomaly analysis for 5G networks and beyond

This section presents PoC on examine KPI anomaly analysis for 5g networks and beyond [4] and

produce a reference design. The proposed solution scans list of Network Functions(NF) from EMS,

identifies NF for KPI retrieval and forecasts the KPIs from these NF for future time period. It also

identifies anomalies and it source from the forecasted KPIs.

9.8.1 Design

Using historical KPI data, an ML Models is developed to be re-train at scheduled interval to learn

new insights from the data and improve performance.

Figure 71: KPI anomaly analysis for 5G networks and beyond

- 69 -

FGAN-O-029

Figure 72: Relationship graph representation of KPI anomaly analysis for 5G networks and beyond

9.9 Autonomous Log Troubleshooting (with varied competence) in networks

This section presents the PoC on autonomous log troubleshooting (with varied competence) in

networks. The case study focuses on fault prediction and isolation based on log analysis. The logs

are general unstructured with no standard format, making it tedious to correlating logs across

various vendors.

Through historical logs, machine learning can learn and predict failure. The proposed solution

entails scanning all incoming log traces continuously, detect and report system issues such as

incidents with probable root-cause automatically.

9.9.1 Design

The system takes feedback from user and re-train the Log anomaly detection to improve

performance through self-correction. The main steps for the system include:

1. Logs collection from various open interfaces and NFs

2. Correlation and Analysis of the collected logs

3. performance optimization of log analysis mechanism

9.9.2 Summary

In this document, we discussed use case 15 from [ITU-T Y.Supp 71] and analyzed the design. We

provide extensions to the reference code provided in [Build-a-thon 2022] and build our own graph

based on the reference code.

.

Figure 73: ML-based automated Log Troubleshooting

- 70 -

FGAN-O-029

Fig. 74 – (7. AVANGERS) AUTONOMOUS LOGTROUBLESHOOTING (WITH VARIED COMPETENCE) IN NETWORKS.

10 Conclusion and future research

The PoC described here lays out the skeleton for an evolution framework based on the concepts

described in [4], while leaving details regarding each of its components for further development. To

this end, simplified implementations of modules and controllers are used for the PoC, as well as

random combinations instead of a more complex evolutionary algorithm. Nevertheless, specific

improvements on each of these examples can be made relying on the presented work, with little or

no change in the architecture. That key feature makes this PoC valuable for the future development

of the use cases for AN.

Another key point of focus of our approach is the assurance of security and traceability of the

evolution process through the implementation of a decentralized Marketplace. The design and

operation of the Marketplace has been described throughout this report, and we believe it represents

a strong feature of our approach as well, as, thanks to the implementation of Ethereum and IPFS, it

successfully provides with security, auditability, privacy and scalability through decentralization

and a distributed means of storage. Furthermore, the choice to use the popular and widely adopted

open-source technologies Ethereum and IPFS facilitates its future development and accessibility.

On top of security and auditability, using JSON as the data format for exchanging the controller and

experiment information in the Marketplace enhance the explainability of the process, since it is a

human readable format. Moreover, the deployment based on docker make the PoC portable and by

using open-source tools and providing the source code we have ensured its future use and

reproduction.

Regarding future lines of work, some of the ideas are:

• Implement more complex definitions of Modules and Controllers for solving a specific

problem in an AN.

- 71 -

FGAN-O-029

• Add a list of experiments that is suitable for that use case.

• Implement more complex evolutionary algorithms than random combination that can make

use of the feedback that the Evol_Ctr receives about the experiment results.

• Add the possibility of updating new Modules after the evolution process has started. In order

to make this possible all nodes must be notified of the new upload. Fortunately, IPFS provides

the tools for making this possible without changing the architecture.

• Implement more complex Smart Contracts that would allow for more complex access control,

updating and deleting artifacts, as well as an easier and more intuitive access to files.

• Add a more efficient detection and communication of updates within the system.

We can conclude from all of our findings that we found a way to parse the document and text, also

the draw.io is the best tool that has a lot of customizations that can help us in making more

representative figures.

Best algorithm for link prediction is the Random Forest model with 86% AUCPR accuracy in the

full reference code, and also we need to find a more enhanced way to represent the use cases in the

reference code, i.e. to convert all functions to be properties.

We need a way to include parsable shapes inside the document of use cases instead of images, to

help automate the process further.

Also we need more representative figures or an algorithm for example and NLP to convert the

descriptions of use cases into the reference code.

Another use case study was undertaken to create and develop a PoC for in-grasp manipulation with

a low-latency inference system to solve grasping use cases of slip avoidance and in-hand object

recognition [15]. The allegro gripper’s in-hand joint force sensors detected the grasping state, and a

outlined model in previous section were used to effectively process the information. As a result, the

proposed method has the potential to generate successful inference outputs for low-latency in-grasp

manipulation with abundant kinesthetic information (especially adding the derivative features for

slip detection) by employing a LSTM which captures the temporal change of the joint information.

The logical next step in our research is extending this to other rich tactile based multi-fingered in-

grasp manipulation tasks because the tactile sensor can detect shear forces, which is highly

subjected to change during multi-fingered in-grasp manipulation (e.g. slip and grasping from

different orientations). Moreover, achieving several tasks (e.g. slip avoidance and object

recognition) with one network for avoiding re-training on each task can be a next challenge.

Thus, Build-a-thon challenge in 2022 focussed on creation of a crowdsourced, baseline

representation for AN closed loops (controllers), reviewing and analysing them, and publishing

them in an open repository. The aim of the exercise was to produce reference implementations of

parser, “AN orchestrator”, “openCN” [ITU-T Y.Supp 71], Evolution controller [FGAN-O-023] and

to trigger technical discussions on the standard format for representing closed loops (controllers)

with FG AN members and other stakeholders. This would pave the way for further downstream

extensions on top of the baseline. The main activities included (1) the implementation of a reference

TOSCA orchestrator to demonstrate the parsing and validation of the format in a closed loop (2)

development of an evolution/exploration mechanisms to create new closed loops based on existing

closed loops or controllers. Clause 9 below describes this PoC.

- 72 -

FGAN-O-029

Build-a-thon challenge in 2021 demonstrated and validated important use cases for autonomous

networks, creating PoC implementations and tools in the process relating to emergency

management. Interactions between a higher closed-loop in the OSS and a lower closed-loop in the

RAN to intelligently share RAN resources between the public and emergency responder slice were

used as the background scenario for this PoC. The outcomes of the challenge were submitted by the

various teams that participated in creating the PoC as contributions and was the main learnings were

submitted as ITU J-FET paper [TBD]. The main outputs of the Build-a-thon challenge in 2021

include: (1) the implementation of a higher closed-loop “controllers” in a declarative fashion

(intent), (2) the design and implementation of a lower closed-loop with Cloud Radio Access

Network (C-RAN) to trigger “imperative actions” in the “underlay” based on the intent, (3)

implementation of a simulation environment for data pipeline between various components;

formulation of methods/algorithms for “influencing” lower layer loops using specific logic/models,

and (4) the integration of the closed-loops and systems into an Open Radio Access Network (O-

RAN)-based software platform, ready to be tested in the 5G Berlin testbed. The 2021 PoC study

focused on intent parsing, traffic monitoring, resource computing, and allocation autonomously.

The closed-loops were implemented with several micro-services deployed as docker containers with

specific functions such as monitoring, computing, ML selection, and resource allocation. 2021 was

a collaborative study where we developed and implemented a hierarchical closed-loop that

autonomously handles an emergency use case. Clause 8 below describes this PoC.

As a future direction, build-a-thon Challenge 2023 is planned too, to further build upon the use

cases designed as part of the 2021 and 2022 Build-a-thons, study the autonomy engine defined in

[FGAN-O-023], especially regarding the possibility to plugin different evolution

mechanisms as a service with clear but limited interfaces and interoperability with different

knowledge bases with clear but limited interfaces.

- 73 -

FGAN-O-029

Bibliography

[b-FGAN-I-078] Evolutionary algorithms, and how they could be applied to achieve

adaptation in control system.

[b-FGAN-I-093] S. Sultana and A. Mittermaier. "Build-a-Thon (PoC) – 5G Berlin Test

Network Functional Specification", https://extranet.itu.int/sites/itu-

t/focusgroups/an/input/FGAN-I-093.zip (accessed 07/06, 2022).

[b-oran-arch] O-RAN. "O-RAN Architecture Overview", https://docs.o-ran-

sc.org/en/latest/architecture/ architecture.html (accessed 03/09, 2022).

[b-Gomes] P. H. Gomes, M. Buhrgard, J. Harmatos, S. K. Mohalik, D. Roeland,

and J. Niemöller, "Intent-driven closed loops for autonomous

networks", Journal of ICT Standardization, pp. 257–290-257–290,

2021

[b-Luzar] A. Luzar, S. Stanovnik, and M. Cankar, "Examination and

Comparison of TOSCA Orchestration Tools", in European

Conference on Software Architecture, 2020: Springer, pp. 247-259.

[b-Ram] V. Ram O.V et al. "Proposal for a “Build-a-thon” for ITU AI/ML in

5G Challenge (second edition, 2021), aligned with FGAN WG3",

ITU Focus Group on Autonomous Network (FG-AN).

https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-170-

R1.docx (accessed 02/23, 2022).

[b-oasis] OASIS TOSCA Simple Profile in YAML v1.3, xopera, 2021.

[Online]. Available: https://xlab-si.github.io/xopera-docs/

[b-Nahum] C. V. Nahum et al., "Testbed for 5G connected artificial intelligence

on virtualized networks", IEEE Access, vol. 8, pp. 223202-223213,

2020.

[b-Aliyu] I. Aliyu, M. C. Feliciano, S. Van Engelenburg, D. O. Kim, and C. G.

Lim, "A blockchain-based federated forest for SDN-enabled in-

vehicle network intrusion detection system", IEEE Access, vol. 9, pp.

102593-102608, 2021.

[b-Ryu] Ryu. "Ryu API Reference",

https://ryu.readthedocs.io/en/latest/api_ref.html (accessed 01/25,

2022).

[b-Flexran] Flexran. "Mosaic5G", https://mosaic5g.io/ flexran/ (accessed 01/25,

2022).

[b-docker] Empowering App Development for Developers | Docker, Docker.

[Online]. Available: https://www.docker.com

[b-oai] O. OpenAirInterface. Accessed: Sep. 13. "5G Software Alliance for

Democratising Wireless Innovation",

http://www.openairinterface.org/ (accessed 01/25, 2022).

- 74 -

FGAN-O-029

[b-free5gc] Free5GC. "Free5GC: Open-Source 5GC", https://www.free5gc.org/

(accessed 01/25, 2022).

[b-kubernetes] Kubernetes. “Kubernetes”, (accessed 01/25, 2022).

[b-Afolabi] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck,

"Network slicing and softwarization: A survey on principles, enabling

technologies, and solutions", IEEE Communications Surveys &

Tutorials, vol. 20, no. 3, pp. 2429-2453, 2018.

[b-foukas] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K.

Kontovasilis, "FlexRAN: A flexible and programmable platform for

software-defined radio access networks", in Proceedings of the 12th

International on Conference on emerging Networking EXperiments

and Technologies, 2016, pp. 427-441.

[b-lins] S. Lins et al., "Artificial Intelligence for Enhanced Mobility and 5G

Connectivity in UAV-Based Critical Missions", IEEE Access, vol. 9,

pp. 111792-111801, 2021.

[b-simu5g] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis, "Simu5G–

An OMNeT++ Library for End-to-End Performance Evaluation of 5G

Networks", IEEE Access, vol. 8, pp. 181176-181191, 2020.

[b-liu] F. Liu, Y. Guo, Z. Cai, N. Xiao, and Z. Zhao, "Edge-enabled disaster

rescue: a case study of searching for missing people", ACM

Transactions on Intelligent Systems and Technology (TIST), vol. 10,

no. 6, pp. 1-21, 2019.

[b-raida] V. Raida, P. Svoboda, and M. Rupp, "Real World Performance of

LTE Downlink in a Static Dense Urban Scenario-An Open Dataset",

in GLOBECOM 2020-2020 IEEE Global Communications

Conference, 2020: IEEE, pp. 1-6.

[b-foukas] X. Foukas, M. K. Marina, and K. Kontovasilis, "Orion: RAN slicing

for a flexible and cost-effective multi-service mobile network

architecture", in Proceedings of the 23rd annual international

conference on mobile computing and networking, 2017, pp. 127-140.

[b-okic] A. Okic, L. Zanzi, V. Sciancalepore, A. Redondi, and X. Costa-Pérez,

"π-ROAD: A learn-as-you-go framework for on-demand emergency

slices in V2X scenarios", in IEEE INFOCOM 2021-IEEE Conference

on Computer Communications, 2021: IEEE, pp. 1-10.

[b-tosca] TOSCA Simple Profile in YAML Version 1.3, C. L. OASIS

Committee Specification 01..Edited by Matt Rutkowski, Claude

Noshpitz, 2019. [Online]. Available: https://docs.oasis-

open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-

SimpleProfile-YAML-v1.3.html

- 75 -

FGAN-O-029

[b-nrt-ric] K. Kristiansen. "Near Realtime RIC ", https://wiki.o-ran-

sc.org/display/GS/ Near+Realtime+RIC+Installation (accessed 03/09,

2022).

[b-acumos] S. Zhao, M. Talasila, G. Jacobson, C. Borcea, S. A. Aftab, and J. F.

Murray, "Packaging and sharing machine learning models via the

acumos ai open platform", in 2018 17th IEEE International

Conference on Machine Learning and Applications (ICMLA), 2018:

IEEE, pp. 841-846.

[b-oran-sdk] Z. Huang. "App Writing Guide", https://wiki.o-ran-

sc.org/display/ORANSDK/ App+Writing+Guide (accessed 03/09,

2022).

[b-oran-sc] O-RAN. "O-RAN Software Community",https://github.com/o-ran-sc

(accessed 03/09,2022).

[b-FGAN-I-197] S. Sultana and A. Mittermaier. "Updates on the5G test network, Plans

on intent based-networkslicing", ITU-T FGAN.

https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-

197.zip (accessed 03/12,2022).

