Abstract: This TD is the output of draft Recommendation Q.QKDN_Kx: Protocols for Kx interface for QKDN (Geneva, 10-19 May 2023).

Summary
This is the output of draft Recommendation ITU-T Q.QKDN_Kx: Protocols for Kx interface for QKDN, based on the discussion results on C202 with modifications at the Q2/11 meeting (Geneva, 10-19 May 2023).
Draft Recommendation ITU-T Q.QKDN_Kx

Protocols for Kx interface for QKDN

Summary
Recommendation ITU-T Q.QKDN_Kx specifies protocols for Kx interface in quantum key distribution networks (QKDN).

Keywords
Protocol, QKD (quantum key distribution), QKDN (QKD network), signalling procedure, message parameters
# Table of Contents

1. Scope .......................................................................................................................... 4
2. References ...................................................................................................................... 4
3. Definitions ...................................................................................................................... 4
   3.1. Terms defined elsewhere ......................................................................................... 4
   3.2. Terms defined in this Recommendation ................................................................. 5
4. Abbreviations and acronyms ......................................................................................... 5
5. Conventions .................................................................................................................... 6
6. Kx interface .................................................................................................................... 6
7. Signalling procedure ....................................................................................................... 6
8. Signalling messages and parameters .............................................................................. 7
   8.1. Key relay message .................................................................................................. 7
   8.2. Notification of key relay completion message ....................................................... 8
9. Security considerations ................................................................................................... 8
Annex A Protocol implementation for TCP ........................................................................ 9
Bibliography ....................................................................................................................... 10
Draft new Recommendation ITU-T Q.QKDN_Kx

Protocols for Kx interface for QKDN

1. Scope
This Recommendation specifies protocols at Kx interface for quantum key distribution network (QKDN) especially the following areas.
- signalling procedures for Kx interface for QKDN;
- signalling messages and parameters for Kx interface for QKDN;
- security considerations.

2. References
The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T X.1712] Recommendation ITU-T X.1712 (2021)/Cor.1 (02/2022), Security requirements and measures for quantum key distribution networks - key management.


3. Definitions

3.1. Terms defined elsewhere
This Recommendation uses the following terms defined elsewhere:

3.1.1 key management [ITU-T Y.3800]: All activities performed on keys during their life cycle starting from their reception from the quantum layer, the storage, formatting, relay, synchronization, authentication, to supply to cryptographic application and delete or preserve depending on the key management policy.

3.1.2 key management agent (KMA) [ITU-T Y.3802]: A functional element to manage keys generated by a quantum key distribution (QKD) module/QKD modules in a QKD node (trusted node).

NOTE - KMA acquires keys from a QKD module/QKD modules, synchronizes, resize, formats, and stores them. It also relays keys through key management agent (KMA) links.
3.1.3 **key management agent-key (KMA-key)** [ITU-T Y.3803]: Key data stored and processed in a key management agent (KMA), and securely shared between a KMA and a matching KMA.

3.1.4 **key management agent link (KMA link)** [ITU-T Y.3802]: A communication link connecting KMAs to perform key relay and communications for key management.

3.1.5 **key manager (KM)** [ITU-T Y.3800]: A functional module located in a quantum key distribution (QKD) node to perform key management in the key management layer.

3.1.6 **key manager link (KM link)** [ITU-T Y.3800]: A communication link connecting key managers (KMs) to perform key management.

3.1.7 **key relay** [ITU-T Y.3800]: A method to share keys between arbitrary quantum key distribution (QKD) nodes via intermediate QKD node(s).

3.1.8 **quantum key distribution (QKD)** [b-ETSI GR QKD 007]: Procedure or method for generating and distributing symmetrical cryptographic keys with information theoretical security based on quantum information theory.

3.1.9 **quantum key distribution link (QKD link)** [ITU-T Y.3800]: A communication link between two quantum key distribution (QKD) modules to operate the QKD.

NOTE – A QKD link consists of a quantum channel for the transmission of quantum signals, and a classical channel used to exchange information for synchronization and key distillation.

3.1.10 **quantum key distribution module (QKD module)** [ITU-T Y.3800]: A set of hardware and software components that implements cryptographic functions and quantum optical processes, including quantum key distribution (QKD) protocols, synchronization, distillation for key generation, and is contained within a defined cryptographic boundary.

NOTE – A QKD module is connected to a QKD link, acting as an endpoint module in which a key is generated. These are two types of QKD modules, namely, the transmitters (QKD-Tx) and the receivers (QKD-Rx).

3.1.11 **quantum key distribution network (QKDN)** [ITU-T Y.3800]: A network comprised of two or more quantum key distribution (QKD) nodes connected through QKD links.

NOTE – A QKDN allows sharing keys between the QKD nodes by key relay when they are not directly connected by a QKD link.

3.1.12 **quantum key distribution network controller (QKDN controller)** [ITU-T Y.3800]: A functional module, which is located in a quantum key distribution (QKD) network control layer to control a QKD network.

3.1.13 **quantum key distribution node (QKD node)** [ITU-T Y.3800]: A node that contains one or more quantum key distribution (QKD) modules protected against intrusion and attacks by unauthorized parties.

NOTE – A QKD node can contain a key manager (KM).

This Recommendation uses the following terms defined elsewhere:

3.2.- Terms defined in this Recommendation

None

4. Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

ID Identifier
5. **Conventions**

None.

6. **Kx interface**

Kx interface is at a reference point connecting two key managers (KMs) in each quantum key distribution (QKD) node via a KM link. It is responsible for exchanging information and operations required for key relay, key synchronization and authentication between KMs.

7. **Signalling procedure**

Examples of signalling procedure of key request, key relay, and key supply in QKDN are described in the Appendix I of [ITU-T Q.QKDN_profr]. The protocol suites applied for the signalling are specified in clause 8 of [ITU-T Q.QKDN_profr].

The key is relayed at Kx interface from the source to the destination. A KM sends the key to the KM which is specified in the message from a QKDN controller.

Figure 1 shows signalling procedures for key relay at the Kx interface.

![Figure 1 - Signalling procedures for key relay at the Kx interface](image)

When the key reaches at the destination KM, the destination KM notifies the completion of key relay to the source KM. The notification is sent with the information to specify the transaction linked to the key relay which has been completed.

Figure 2 shows signalling procedures for Notification of key relay completion at the Kx interface.
8. **Signalling messages and parameters**

This clause specifies messages and their parameters for the Kx interface.

In the M/O column of the tables in this clause, M indicates that the parameter is mandatory for signalling, and O indicates that the parameter is optional for signalling.

NOTE – The messages and parameters defined in this clause are independent of a specific protocol. Different protocols can have different implementations of these messages and parameters. The recommended protocol implementations are described in Annex A. A message parameter described in the following tables is not necessarily mapped to a field in the message payload and might be a part of control parameters of one specific protocol. The Data type column of the tables may vary with specific protocols.

### 8.1. Key relay message

Key relay message conveys the key from the source KM to the destination KM.

Table 1 shows parameters of Key relay message.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Data type</th>
<th>M/O</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source KMA ID</td>
<td>ID of KMA that is the source in the entire key relay route</td>
<td>string</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Destination KMA ID</td>
<td>ID of KMA that is the destination in the entire key relay route</td>
<td>string</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Transit KMA IDs</td>
<td>List of IDs of KMA that are the transition nodes of key relay route</td>
<td>string</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Key</td>
<td>Key file <strong>consists of key data and metadata.</strong></td>
<td>Array of objects</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>KMA-key ID</td>
<td>ID of the KMA-key relayed</td>
<td>string</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>KMA-key</td>
<td>KMA-key data relayed</td>
<td>string</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Key extension</td>
<td>Extensions to key file</td>
<td>object</td>
<td>O</td>
<td>Hash value etc.</td>
</tr>
<tr>
<td>Key relay request ID</td>
<td></td>
<td></td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>
Editor’s note 1: The name of parameters of Keys and Key should be considered in future meeting.
Editor’s note 2: The corresponding description and data type of “Key relay request ID” needs to be addressed.

8.2. Notification of key relay completion message

When the key reaches the destination KM, the KM notifies the completion of the key relay to the source KM. The notification is sent with the information to specify the transaction linked to the key relay which has been completed.

Table 2 shows parameters of Notification of key relay completion message.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Data type</th>
<th>M/O</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>Result of key relay</td>
<td>string</td>
<td>M</td>
<td>Success or failure reason</td>
</tr>
<tr>
<td>Key relay request ID</td>
<td></td>
<td></td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

9. Security considerations

Key data, metadata and control and management information are transferred through Kx reference point. Security requirements and measures to protect them are specified in [ITU-T X.1712].
Annex A

**Protocol implementation for using TCP**

(This annex forms an integral part of this Recommendation.)

This annex describes a protocol implementation for messages and parameters for using TCP which are described in clause 8.

NOTE 1 - Some of the parameters are mapped to a part of control information of the protocol instead of being mapped to a field in the data payload.

One KM can connect to another KM using TCP protocol [b-IETF RFC 9293]. The corresponding message format over TCP is as follows. 

<table>
<thead>
<tr>
<th>Version</th>
<th>MessageID</th>
<th>CommandCode</th>
<th>Length</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure A.1 – Message format over TCP

Version: the current version of the protocol format adopted, 2 bytes;

MessageID: the unique identifier of each message, 4 bytes;

CommandCode: a unique code that denotes different Command/Response messages transferred at the Kx interface, 2 bytes;

Length: the length of the message payload, 2 bytes;

Payload: the message parameters of a specific Command/Response message, JSON data format [b-IETF RFC 8259].

NOTE 2 – TLS protocol [b-IETF RFC 5246] can be implemented with TCP protocol for enhanced security.

*Editor's note – Detail implementation of TLS protocol needs to be addressed.*

At the connection establishment, mutual authentication between the KMs shall be performed. After the mutual authentication, a Command/Response message can be transferred at the Kx interface for key relay.

NOTE 3 – When applying TLS protocol, the source KM can verify the validity of a certificate the destination KM possesses and confirm the ID of the destination KM it is connecting to, based on the certificate. Similarly, the destination KM can verify the validity of a certificate the source KM possesses and confirm the ID of the connecting source KM based on the certificate.

Table A.1 shows a list of CommandCode vs. Command/Response message name.

<table>
<thead>
<tr>
<th>CommandCode</th>
<th>Command/Response message name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x01</td>
<td>Key relay</td>
</tr>
<tr>
<td>0x02</td>
<td>Notification of key relay completion</td>
</tr>
</tbody>
</table>
Bibliography

[b-ETSI GR QKD 007] Group Report ETSI GR QKD 007 (2018), Quantum Key Distribution (QKD); Vocabulary.

