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                                PREFACE

This document describes the DoD Standard Transmission Control Protocol
(TCP).  There have been nine earlier editions of the ARPA TCP
specification on which this standard is based, and the present text
draws heavily from them.  There have been many contributors to this work
both in terms of concepts and in terms of text.  This edition clarifies
several details and removes the end-of-letter buffer-size adjustments,
and redescribes the letter mechanism as a push function.

                                                           Jon Postel

                                                           Editor

                                                              [Page iii]
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                     TRANSMISSION CONTROL PROTOCOL

                         DARPA INTERNET PROGRAM
                         PROTOCOL SPECIFICATION

                            1.  INTRODUCTION

The Transmission Control Protocol (TCP) is intended for use as a highly
reliable host-to-host protocol between hosts in packet-switched computer
communication networks, and in interconnected systems of such networks.

This document describes the functions to be performed by the
Transmission Control Protocol, the program that implements it, and its
interface to programs or users that require its services.

1.1.  Motivation

  Computer communication systems are playing an increasingly important
  role in military, government, and civilian environments.  This
  document focuses its attention primarily on military computer
  communication requirements, especially robustness in the presence of
  communication unreliability and availability in the presence of
  congestion, but many of these problems are found in the civilian and
  government sector as well.

  As strategic and tactical computer communication networks are
  developed and deployed, it is essential to provide means of
  interconnecting them and to provide standard interprocess
  communication protocols which can support a broad range of
  applications.  In anticipation of the need for such standards, the
  Deputy Undersecretary of Defense for Research and Engineering has
  declared the Transmission Control Protocol (TCP) described herein to
  be a basis for DoD-wide inter-process communication protocol
  standardization.

  TCP is a connection-oriented, end-to-end reliable protocol designed to
  fit into a layered hierarchy of protocols which support multi-network
  applications.  The TCP provides for reliable inter-process
  communication between pairs of processes in host computers attached to
  distinct but interconnected computer communication networks.  Very few
  assumptions are made as to the reliability of the communication
  protocols below the TCP layer.  TCP assumes it can obtain a simple,
  potentially unreliable datagram service from the lower level
  protocols.  In principle, the TCP should be able to operate above a
  wide spectrum of communication systems ranging from hard-wired
  connections to packet-switched or circuit-switched networks.
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  TCP is based on concepts first described by Cerf and Kahn in [1].  The
  TCP fits into a layered protocol architecture just above a basic
  Internet Protocol [2] which provides a way for the TCP to send and
  receive variable-length segments of information enclosed in internet
  datagram "envelopes".  The internet datagram provides a means for
  addressing source and destination TCPs in different networks.  The
  internet protocol also deals with any fragmentation or reassembly of
  the TCP segments required to achieve transport and delivery through
  multiple networks and interconnecting gateways.  The internet protocol
  also carries information on the precedence, security classification
  and compartmentation of the TCP segments, so this information can be
  communicated end-to-end across multiple networks.

                           Protocol Layering

                        +---------------------+
                        |     higher-level    |
                        +---------------------+
                        |        TCP          |
                        +---------------------+
                        |  internet protocol  |
                        +---------------------+
                        |communication network|
                        +---------------------+

                                Figure 1

  Much of this document is written in the context of TCP implementations
  which are co-resident with higher level protocols in the host
  computer.  Some computer systems will be connected to networks via
  front-end computers which house the TCP and internet protocol layers,
  as well as network specific software.  The TCP specification describes
  an interface to the higher level protocols which appears to be
  implementable even for the front-end case, as long as a suitable
  host-to-front end protocol is implemented.

1.2.  Scope

  The TCP is intended to provide a reliable process-to-process
  communication service in a multinetwork environment.  The TCP is
  intended to be a host-to-host protocol in common use in multiple
  networks.

1.3.  About this Document

  This document represents a specification of the behavior required of
  any TCP implementation, both in its interactions with higher level
  protocols and in its interactions with other TCPs.  The rest of this
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  section offers a very brief view of the protocol interfaces and
  operation.  Section 2 summarizes the philosophical basis for the TCP
  design.  Section 3 offers both a detailed description of the actions
  required of TCP when various events occur (arrival of new segments,
  user calls, errors, etc.) and the details of the formats of TCP
  segments.

1.4.  Interfaces

  The TCP interfaces on one side to user or application processes and on
  the other side to a lower level protocol such as Internet Protocol.

  The interface between an application process and the TCP is
  illustrated in reasonable detail.  This interface consists of a set of
  calls much like the calls an operating system provides to an
  application process for manipulating files.  For example, there are
  calls to open and close connections and to send and receive data on
  established connections.  It is also expected that the TCP can
  asynchronously communicate with application programs.  Although
  considerable freedom is permitted to TCP implementors to design
  interfaces which are appropriate to a particular operating system
  environment, a minimum functionality is required at the TCP/user
  interface for any valid implementation.

  The interface between TCP and lower level protocol is essentially
  unspecified except that it is assumed there is a mechanism whereby the
  two levels can asynchronously pass information to each other.
  Typically, one expects the lower level protocol to specify this
  interface.  TCP is designed to work in a very general environment of
  interconnected networks.  The lower level protocol which is assumed
  throughout this document is the Internet Protocol [2].

1.5.  Operation

  As noted above, the primary purpose of the TCP is to provide reliable,
  securable logical circuit or connection service between pairs of
  processes.  To provide this service on top of a less reliable internet
  communication system requires facilities in the following areas:

    Basic Data Transfer
    Reliability
    Flow Control
    Multiplexing
    Connections
    Precedence and Security

  The basic operation of the TCP in each of these areas is described in
  the following paragraphs.

                                                                [Page 3]
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  Basic Data Transfer:

    The TCP is able to transfer a continuous stream of octets in each
    direction between its users by packaging some number of octets into
    segments for transmission through the internet system.  In general,
    the TCPs decide when to block and forward data at their own
    convenience.

    Sometimes users need to be sure that all the data they have
    submitted to the TCP has been transmitted.  For this purpose a push
    function is defined.  To assure that data submitted to a TCP is
    actually transmitted the sending user indicates that it should be
    pushed through to the receiving user.  A push causes the TCPs to
    promptly forward and deliver data up to that point to the receiver.
    The exact push point might not be visible to the receiving user and
    the push function does not supply a record boundary marker.

  Reliability:

    The TCP must recover from data that is damaged, lost, duplicated, or
    delivered out of order by the internet communication system.  This
    is achieved by assigning a sequence number to each octet
    transmitted, and requiring a positive acknowledgment (ACK) from the
    receiving TCP.  If the ACK is not received within a timeout
    interval, the data is retransmitted.  At the receiver, the sequence
    numbers are used to correctly order segments that may be received
    out of order and to eliminate duplicates.  Damage is handled by
    adding a checksum to each segment transmitted, checking it at the
    receiver, and discarding damaged segments.

    As long as the TCPs continue to function properly and the internet
    system does not become completely partitioned, no transmission
    errors will affect the correct delivery of data.  TCP recovers from
    internet communication system errors.

  Flow Control:

    TCP provides a means for the receiver to govern the amount of data
    sent by the sender.  This is achieved by returning a "window" with
    every ACK indicating a range of acceptable sequence numbers beyond
    the last segment successfully received.  The window indicates an
    allowed number of octets that the sender may transmit before
    receiving further permission.
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  Multiplexing:

    To allow for many processes within a single Host to use TCP
    communication facilities simultaneously, the TCP provides a set of
    addresses or ports within each host.  Concatenated with the network
    and host addresses from the internet communication layer, this forms
    a socket.  A pair of sockets uniquely identifies each connection.
    That is, a socket may be simultaneously used in multiple
    connections.

    The binding of ports to processes is handled independently by each
    Host.  However, it proves useful to attach frequently used processes
    (e.g., a "logger" or timesharing service) to fixed sockets which are
    made known to the public.  These services can then be accessed
    through the known addresses.  Establishing and learning the port
    addresses of other processes may involve more dynamic mechanisms.

  Connections:

    The reliability and flow control mechanisms described above require
    that TCPs initialize and maintain certain status information for
    each data stream.  The combination of this information, including
    sockets, sequence numbers, and window sizes, is called a connection.
    Each connection is uniquely specified by a pair of sockets
    identifying its two sides.

    When two processes wish to communicate, their TCP’s must first
    establish a connection (initialize the status information on each
    side).  When their communication is complete, the connection is
    terminated or closed to free the resources for other uses.

    Since connections must be established between unreliable hosts and
    over the unreliable internet communication system, a handshake
    mechanism with clock-based sequence numbers is used to avoid
    erroneous initialization of connections.

  Precedence and Security:

    The users of TCP may indicate the security and precedence of their
    communication.  Provision is made for default values to be used when
    these features are not needed.
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2.1.  Elements of the Internetwork System

  The internetwork environment consists of hosts connected to networks
  which are in turn interconnected via gateways.  It is assumed here
  that the networks may be either local networks (e.g., the ETHERNET) or
  large networks (e.g., the ARPANET), but in any case are based on
  packet switching technology.  The active agents that produce and
  consume messages are processes.  Various levels of protocols in the
  networks, the gateways, and the hosts support an interprocess
  communication system that provides two-way data flow on logical
  connections between process ports.

  The term packet is used generically here to mean the data of one
  transaction between a host and its network.  The format of data blocks
  exchanged within the a network will generally not be of concern to us.

  Hosts are computers attached to a network, and from the communication
  network’s point of view, are the sources and destinations of packets.
  Processes are viewed as the active elements in host computers (in
  accordance with the fairly common definition of a process as a program
  in execution).  Even terminals and files or other I/O devices are
  viewed as communicating with each other through the use of processes.
  Thus, all communication is viewed as inter-process communication.

  Since a process may need to distinguish among several communication
  streams between itself and another process (or processes), we imagine
  that each process may have a number of ports through which it
  communicates with the ports of other processes.

2.2.  Model of Operation

  Processes transmit data by calling on the TCP and passing buffers of
  data as arguments.  The TCP packages the data from these buffers into
  segments and calls on the internet module to transmit each segment to
  the destination TCP.  The receiving TCP places the data from a segment
  into the receiving user’s buffer and notifies the receiving user.  The
  TCPs include control information in the segments which they use to
  ensure reliable ordered data transmission.

  The model of internet communication is that there is an internet
  protocol module associated with each TCP which provides an interface
  to the local network.  This internet module packages TCP segments
  inside internet datagrams and routes these datagrams to a destination
  internet module or intermediate gateway.  To transmit the datagram
  through the local network, it is embedded in a local network packet.

  The packet switches may perform further packaging, fragmentation, or
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  other operations to achieve the delivery of the local packet to the
  destination internet module.

  At a gateway between networks, the internet datagram is "unwrapped"
  from its local packet and examined to determine through which network
  the internet datagram should travel next.  The internet datagram is
  then "wrapped" in a local packet suitable to the next network and
  routed to the next gateway, or to the final destination.

  A gateway is permitted to break up an internet datagram into smaller
  internet datagram fragments if this is necessary for transmission
  through the next network.  To do this, the gateway produces a set of
  internet datagrams; each carrying a fragment.  Fragments may be
  further broken into smaller fragments at subsequent gateways.  The
  internet datagram fragment format is designed so that the destination
  internet module can reassemble fragments into internet datagrams.

  A destination internet module unwraps the segment from the datagram
  (after reassembling the datagram, if necessary) and passes it to the
  destination TCP.

  This simple model of the operation glosses over many details.  One
  important feature is the type of service.  This provides information
  to the gateway (or internet module) to guide it in selecting the
  service parameters to be used in traversing the next network.
  Included in the type of service information is the precedence of the
  datagram.  Datagrams may also carry security information to permit
  host and gateways that operate in multilevel secure environments to
  properly segregate datagrams for security considerations.

2.3.  The Host Environment

  The TCP is assumed to be a module in an operating system.  The users
  access the TCP much like they would access the file system.  The TCP
  may call on other operating system functions, for example, to manage
  data structures.  The actual interface to the network is assumed to be
  controlled by a device driver module.  The TCP does not call on the
  network device driver directly, but rather calls on the internet
  datagram protocol module which may in turn call on the device driver.

  The mechanisms of TCP do not preclude implementation of the TCP in a
  front-end processor.  However, in such an implementation, a
  host-to-front-end protocol must provide the functionality to support
  the type of TCP-user interface described in this document.
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2.4.  Interfaces

  The TCP/user interface provides for calls made by the user on the TCP
  to OPEN or CLOSE a connection, to SEND or RECEIVE data, or to obtain
  STATUS about a connection.  These calls are like other calls from user
  programs on the operating system, for example, the calls to open, read
  from, and close a file.

  The TCP/internet interface provides calls to send and receive
  datagrams addressed to TCP modules in hosts anywhere in the internet
  system.  These calls have parameters for passing the address, type of
  service, precedence, security, and other control information.

2.5.  Relation to Other Protocols

  The following diagram illustrates the place of the TCP in the protocol
  hierarchy:

                                    
       +------+ +-----+ +-----+       +-----+                    
       |Telnet| | FTP | |Voice|  ...  |     |  Application Level 
       +------+ +-----+ +-----+       +-----+                    
             |   |         |             |                       
            +-----+     +-----+       +-----+                    
            | TCP |     | RTP |  ...  |     |  Host Level        
            +-----+     +-----+       +-----+                    
               |           |             |                       
            +-------------------------------+                    
            |    Internet Protocol & ICMP   |  Gateway Level     
            +-------------------------------+                    
                           |                                     
              +---------------------------+                      
              |   Local Network Protocol  |    Network Level     
              +---------------------------+                      

                         Protocol Relationships

                               Figure 2.

  It is expected that the TCP will be able to support higher level
  protocols efficiently.  It should be easy to interface higher level
  protocols like the ARPANET Telnet or AUTODIN II THP to the TCP.

2.6.  Reliable Communication

  A stream of data sent on a TCP connection is delivered reliably and in
  order at the destination.
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  Transmission is made reliable via the use of sequence numbers and
  acknowledgments.  Conceptually, each octet of data is assigned a
  sequence number.  The sequence number of the first octet of data in a
  segment is transmitted with that segment and is called the segment
  sequence number.  Segments also carry an acknowledgment number which
  is the sequence number of the next expected data octet of
  transmissions in the reverse direction.  When the TCP transmits a
  segment containing data, it puts a copy on a retransmission queue and
  starts a timer; when the acknowledgment for that data is received, the
  segment is deleted from the queue.  If the acknowledgment is not
  received before the timer runs out, the segment is retransmitted.

  An acknowledgment by TCP does not guarantee that the data has been
  delivered to the end user, but only that the receiving TCP has taken
  the responsibility to do so.

  To govern the flow of data between TCPs, a flow control mechanism is
  employed.  The receiving TCP reports a "window" to the sending TCP.
  This window specifies the number of octets, starting with the
  acknowledgment number, that the receiving TCP is currently prepared to
  receive.

2.7.  Connection Establishment and Clearing

  To identify the separate data streams that a TCP may handle, the TCP
  provides a port identifier.  Since port identifiers are selected
  independently by each TCP they might not be unique.  To provide for
  unique addresses within each TCP, we concatenate an internet address
  identifying the TCP with a port identifier to create a socket which
  will be unique throughout all networks connected together.

  A connection is fully specified by the pair of sockets at the ends.  A
  local socket may participate in many connections to different foreign
  sockets.  A connection can be used to carry data in both directions,
  that is, it is "full duplex".

  TCPs are free to associate ports with processes however they choose.
  However, several basic concepts are necessary in any implementation.
  There must be well-known sockets which the TCP associates only with
  the "appropriate" processes by some means.  We envision that processes
  may "own" ports, and that processes can initiate connections only on
  the ports they own.  (Means for implementing ownership is a local
  issue, but we envision a Request Port user command, or a method of
  uniquely allocating a group of ports to a given process, e.g., by
  associating the high order bits of a port name with a given process.)

  A connection is specified in the OPEN call by the local port and
  foreign socket arguments.  In return, the TCP supplies a (short) local
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  connection name by which the user refers to the connection in
  subsequent calls.  There are several things that must be remembered
  about a connection.  To store this information we imagine that there
  is a data structure called a Transmission Control Block (TCB).  One
  implementation strategy would have the local connection name be a
  pointer to the TCB for this connection.  The OPEN call also specifies
  whether the connection establishment is to be actively pursued, or to
  be passively waited for.

  A passive OPEN request means that the process wants to accept incoming
  connection requests rather than attempting to initiate a connection.
  Often the process requesting a passive OPEN will accept a connection
  request from any caller.  In this case a foreign socket of all zeros
  is used to denote an unspecified socket.  Unspecified foreign sockets
  are allowed only on passive OPENs.

  A service process that wished to provide services for unknown other
  processes would issue a passive OPEN request with an unspecified
  foreign socket.  Then a connection could be made with any process that
  requested a connection to this local socket.  It would help if this
  local socket were known to be associated with this service.

  Well-known sockets are a convenient mechanism for a priori associating
  a socket address with a standard service.  For instance, the
  "Telnet-Server" process is permanently assigned to a particular
  socket, and other sockets are reserved for File Transfer, Remote Job
  Entry, Text Generator, Echoer, and Sink processes (the last three
  being for test purposes).  A socket address might be reserved for
  access to a "Look-Up" service which would return the specific socket
  at which a newly created service would be provided.  The concept of a
  well-known socket is part of the TCP specification, but the assignment
  of sockets to services is outside this specification.  (See [4].)

  Processes can issue passive OPENs and wait for matching active OPENs
  from other processes and be informed by the TCP when connections have
  been established.  Two processes which issue active OPENs to each
  other at the same time will be correctly connected.  This flexibility
  is critical for the support of distributed computing in which
  components act asynchronously with respect to each other.

  There are two principal cases for matching the sockets in the local
  passive OPENs and an foreign active OPENs.  In the first case, the
  local passive OPENs has fully specified the foreign socket.  In this
  case, the match must be exact.  In the second case, the local passive
  OPENs has left the foreign socket unspecified.  In this case, any
  foreign socket is acceptable as long as the local sockets match.
  Other possibilities include partially restricted matches.
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  If there are several pending passive OPENs (recorded in TCBs) with the
  same local socket, an foreign active OPEN will be matched to a TCB
  with the specific foreign socket in the foreign active OPEN, if such a
  TCB exists, before selecting a TCB with an unspecified foreign socket.

  The procedures to establish connections utilize the synchronize (SYN)
  control flag and involves an exchange of three messages.  This
  exchange has been termed a three-way hand shake [3].

  A connection is initiated by the rendezvous of an arriving segment
  containing a SYN and a waiting TCB entry each created by a user OPEN
  command.  The matching of local and foreign sockets determines when a
  connection has been initiated.  The connection becomes "established"
  when sequence numbers have been synchronized in both directions.

  The clearing of a connection also involves the exchange of segments,
  in this case carrying the FIN control flag.

2.8.  Data Communication

  The data that flows on a connection may be thought of as a stream of
  octets.  The sending user indicates in each SEND call whether the data
  in that call (and any preceeding calls) should be immediately pushed
  through to the receiving user by the setting of the PUSH flag.

  A sending TCP is allowed to collect data from the sending user and to
  send that data in segments at its own convenience, until the push
  function is signaled, then it must send all unsent data.  When a
  receiving TCP sees the PUSH flag, it must not wait for more data from
  the sending TCP before passing the data to the receiving process.

  There is no necessary relationship between push functions and segment
  boundaries.  The data in any particular segment may be the result of a
  single SEND call, in whole or part, or of multiple SEND calls.

  The purpose of push function and the PUSH flag is to push data through
  from the sending user to the receiving user.  It does not provide a
  record service.

  There is a coupling between the push function and the use of buffers
  of data that cross the TCP/user interface.  Each time a PUSH flag is
  associated with data placed into the receiving user’s buffer, the
  buffer is returned to the user for processing even if the buffer is
  not filled.  If data arrives that fills the user’s buffer before a
  PUSH is seen, the data is passed to the user in buffer size units.

  TCP also provides a means to communicate to the receiver of data that
  at some point further along in the data stream than the receiver is
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  currently reading there is urgent data.  TCP does not attempt to
  define what the user specifically does upon being notified of pending
  urgent data, but the general notion is that the receiving process will
  take action to process the urgent data quickly.

2.9.  Precedence and Security

  The TCP makes use of the internet protocol type of service field and
  security option to provide precedence and security on a per connection
  basis to TCP users.  Not all TCP modules will necessarily function in
  a multilevel secure environment; some may be limited to unclassified
  use only, and others may operate at only one security level and
  compartment.  Consequently, some TCP implementations and services to
  users may be limited to a subset of the multilevel secure case.

  TCP modules which operate in a multilevel secure environment must
  properly mark outgoing segments with the security, compartment, and
  precedence.  Such TCP modules must also provide to their users or
  higher level protocols such as Telnet or THP an interface to allow
  them to specify the desired security level, compartment, and
  precedence of connections.

2.10.  Robustness Principle

  TCP implementations will follow a general principle of robustness:  be
  conservative in what you do, be liberal in what you accept from
  others.
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3.1.  Header Format

  TCP segments are sent as internet datagrams.  The Internet Protocol
  header carries several information fields, including the source and
  destination host addresses [2].  A TCP header follows the internet
  header, supplying information specific to the TCP protocol.  This
  division allows for the existence of host level protocols other than
  TCP.

  TCP Header Format

                                    
    0                   1                   2                   3   
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |          Source Port          |       Destination Port        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        Sequence Number                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Acknowledgment Number                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Data |           |U|A|P|R|S|F|                               |
   | Offset| Reserved  |R|C|S|S|Y|I|            Window             |
   |       |           |G|K|H|T|N|N|                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Checksum            |         Urgent Pointer        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    Options                    |    Padding    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                             data                              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                            TCP Header Format

          Note that one tick mark represents one bit position.

                               Figure 3.

  Source Port:  16 bits

    The source port number.

  Destination Port:  16 bits

    The destination port number.
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  Sequence Number:  32 bits

    The sequence number of the first data octet in this segment (except
    when SYN is present). If SYN is present the sequence number is the
    initial sequence number (ISN) and the first data octet is ISN+1.

  Acknowledgment Number:  32 bits

    If the ACK control bit is set this field contains the value of the
    next sequence number the sender of the segment is expecting to
    receive.  Once a connection is established this is always sent.

  Data Offset:  4 bits

    The number of 32 bit words in the TCP Header.  This indicates where
    the data begins.  The TCP header (even one including options) is an
    integral number of 32 bits long.

  Reserved:  6 bits

    Reserved for future use.  Must be zero.

  Control Bits:  6 bits (from left to right):

    URG:  Urgent Pointer field significant
    ACK:  Acknowledgment field significant
    PSH:  Push Function
    RST:  Reset the connection
    SYN:  Synchronize sequence numbers
    FIN:  No more data from sender

  Window:  16 bits

    The number of data octets beginning with the one indicated in the
    acknowledgment field which the sender of this segment is willing to
    accept.

  Checksum:  16 bits

    The checksum field is the 16 bit one’s complement of the one’s
    complement sum of all 16 bit words in the header and text.  If a
    segment contains an odd number of header and text octets to be
    checksummed, the last octet is padded on the right with zeros to
    form a 16 bit word for checksum purposes.  The pad is not
    transmitted as part of the segment.  While computing the checksum,
    the checksum field itself is replaced with zeros.

    The checksum also covers a 96 bit pseudo header conceptually
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    prefixed to the TCP header.  This pseudo header contains the Source
    Address, the Destination Address, the Protocol, and TCP length.
    This gives the TCP protection against misrouted segments.  This
    information is carried in the Internet Protocol and is transferred
    across the TCP/Network interface in the arguments or results of
    calls by the TCP on the IP.

                     +--------+--------+--------+--------+
                     |           Source Address          |
                     +--------+--------+--------+--------+
                     |         Destination Address       |
                     +--------+--------+--------+--------+
                     |  zero  |  PTCL  |    TCP Length   |
                     +--------+--------+--------+--------+

      The TCP Length is the TCP header length plus the data length in
      octets (this is not an explicitly transmitted quantity, but is
      computed), and it does not count the 12 octets of the pseudo
      header.

  Urgent Pointer:  16 bits

    This field communicates the current value of the urgent pointer as a
    positive offset from the sequence number in this segment.  The
    urgent pointer points to the sequence number of the octet following
    the urgent data.  This field is only be interpreted in segments with
    the URG control bit set.

  Options:  variable

    Options may occupy space at the end of the TCP header and are a
    multiple of 8 bits in length.  All options are included in the
    checksum.  An option may begin on any octet boundary.  There are two
    cases for the format of an option:

      Case 1:  A single octet of option-kind.

      Case 2:  An octet of option-kind, an octet of option-length, and
               the actual option-data octets.

    The option-length counts the two octets of option-kind and
    option-length as well as the option-data octets.

    Note that the list of options may be shorter than the data offset
    field might imply.  The content of the header beyond the
    End-of-Option option must be header padding (i.e., zero).

    A TCP must implement all options.
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    Currently defined options include (kind indicated in octal):

      Kind     Length    Meaning
      ----     ------    -------
       0         -       End of option list.
       1         -       No-Operation.
       2         4       Maximum Segment Size.
      

    Specific Option Definitions

      End of Option List

        +--------+
        |00000000|
        +--------+
         Kind=0

        This option code indicates the end of the option list.  This
        might not coincide with the end of the TCP header according to
        the Data Offset field.  This is used at the end of all options,
        not the end of each option, and need only be used if the end of
        the options would not otherwise coincide with the end of the TCP
        header.

      No-Operation

        +--------+
        |00000001|
        +--------+
         Kind=1

        This option code may be used between options, for example, to
        align the beginning of a subsequent option on a word boundary.
        There is no guarantee that senders will use this option, so
        receivers must be prepared to process options even if they do
        not begin on a word boundary.

      Maximum Segment Size

        +--------+--------+---------+--------+
        |00000010|00000100|   max seg size   |
        +--------+--------+---------+--------+
         Kind=2   Length=4
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        Maximum Segment Size Option Data:  16 bits

          If this option is present, then it communicates the maximum
          receive segment size at the TCP which sends this segment.
          This field must only be sent in the initial connection request
          (i.e., in segments with the SYN control bit set).  If this
          option is not used, any segment size is allowed.

  Padding:  variable

    The TCP header padding is used to ensure that the TCP header ends
    and data begins on a 32 bit boundary.  The padding is composed of
    zeros.

3.2.  Terminology

  Before we can discuss very much about the operation of the TCP we need
  to introduce some detailed terminology.  The maintenance of a TCP
  connection requires the remembering of several variables.  We conceive
  of these variables being stored in a connection record called a
  Transmission Control Block or TCB.  Among the variables stored in the
  TCB are the local and remote socket numbers, the security and
  precedence of the connection, pointers to the user’s send and receive
  buffers, pointers to the retransmit queue and to the current segment.
  In addition several variables relating to the send and receive
  sequence numbers are stored in the TCB.

    Send Sequence Variables

      SND.UNA - send unacknowledged
      SND.NXT - send next
      SND.WND - send window
      SND.UP  - send urgent pointer
      SND.WL1 - segment sequence number used for last window update
      SND.WL2 - segment acknowledgment number used for last window
                update
      ISS     - initial send sequence number

    Receive Sequence Variables

      RCV.NXT - receive next
      RCV.WND - receive window
      RCV.UP  - receive urgent pointer
      IRS     - initial receive sequence number
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  The following diagrams may help to relate some of these variables to
  the sequence space.

  Send Sequence Space

                   1         2          3          4      
              ----------|----------|----------|---------- 
                     SND.UNA    SND.NXT    SND.UNA        
                                          +SND.WND        

        1 - old sequence numbers which have been acknowledged  
        2 - sequence numbers of unacknowledged data            
        3 - sequence numbers allowed for new data transmission 
        4 - future sequence numbers which are not yet allowed  

                          Send Sequence Space

                               Figure 4.
    
    

  The send window is the portion of the sequence space labeled 3 in
  figure 4.

  Receive Sequence Space

                       1          2          3      
                   ----------|----------|---------- 
                          RCV.NXT    RCV.NXT        
                                    +RCV.WND        

        1 - old sequence numbers which have been acknowledged  
        2 - sequence numbers allowed for new reception         
        3 - future sequence numbers which are not yet allowed  

                         Receive Sequence Space

                               Figure 5.
    
    

  The receive window is the portion of the sequence space labeled 2 in
  figure 5.

  There are also some variables used frequently in the discussion that
  take their values from the fields of the current segment.
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    Current Segment Variables

      SEG.SEQ - segment sequence number
      SEG.ACK - segment acknowledgment number
      SEG.LEN - segment length
      SEG.WND - segment window
      SEG.UP  - segment urgent pointer
      SEG.PRC - segment precedence value

  A connection progresses through a series of states during its
  lifetime.  The states are:  LISTEN, SYN-SENT, SYN-RECEIVED,
  ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK,
  TIME-WAIT, and the fictional state CLOSED.  CLOSED is fictional
  because it represents the state when there is no TCB, and therefore,
  no connection.  Briefly the meanings of the states are:

    LISTEN - represents waiting for a connection request from any remote
    TCP and port.

    SYN-SENT - represents waiting for a matching connection request
    after having sent a connection request.

    SYN-RECEIVED - represents waiting for a confirming connection
    request acknowledgment after having both received and sent a
    connection request.

    ESTABLISHED - represents an open connection, data received can be
    delivered to the user.  The normal state for the data transfer phase
    of the connection.

    FIN-WAIT-1 - represents waiting for a connection termination request
    from the remote TCP, or an acknowledgment of the connection
    termination request previously sent.

    FIN-WAIT-2 - represents waiting for a connection termination request
    from the remote TCP.

    CLOSE-WAIT - represents waiting for a connection termination request
    from the local user.

    CLOSING - represents waiting for a connection termination request
    acknowledgment from the remote TCP.

    LAST-ACK - represents waiting for an acknowledgment of the
    connection termination request previously sent to the remote TCP
    (which includes an acknowledgment of its connection termination
    request).
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    TIME-WAIT - represents waiting for enough time to pass to be sure
    the remote TCP received the acknowledgment of its connection
    termination request.

    CLOSED - represents no connection state at all.

  A TCP connection progresses from one state to another in response to
  events.  The events are the user calls, OPEN, SEND, RECEIVE, CLOSE,
  ABORT, and STATUS; the incoming segments, particularly those
  containing the SYN, ACK, RST and FIN flags; and timeouts.

  The state diagram in figure 6 illustrates only state changes, together
  with the causing events and resulting actions, but addresses neither
  error conditions nor actions which are not connected with state
  changes.  In a later section, more detail is offered with respect to
  the reaction of the TCP to events.

  NOTE BENE:  this diagram is only a summary and must not be taken as
  the total specification.
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                              +---------+ ---------\      active OPEN  
                              |  CLOSED |            \    -----------  
                              +---------+<---------\   \   create TCB  
                                |     ^              \   \  snd SYN    
                   passive OPEN |     |   CLOSE        \   \           
                   ------------ |     | ----------       \   \         
                    create TCB  |     | delete TCB         \   \       
                                V     |                      \   \     
                              +---------+            CLOSE    |    \   
                              |  LISTEN |          ---------- |     |  
                              +---------+          delete TCB |     |  
                   rcv SYN      |     |     SEND              |     |  
                  -----------   |     |    -------            |     V  
 +---------+      snd SYN,ACK  /       \   snd SYN          +---------+
 |         |<-----------------           ------------------>|         |
 |   SYN   |                    rcv SYN                     |   SYN   |
 |   RCVD  |<-----------------------------------------------|   SENT  |
 |         |                    snd ACK                     |         |
 |         |------------------           -------------------|         |
 +---------+   rcv ACK of SYN  \       /  rcv SYN,ACK       +---------+
   |           --------------   |     |   -----------                  
   |                  x         |     |     snd ACK                    
   |                            V     V                                
   |  CLOSE                   +---------+                              
   | -------                  |  ESTAB  |                              
   | snd FIN                  +---------+                              
   |                   CLOSE    |     |    rcv FIN                     
   V                  -------   |     |    -------                     
 +---------+          snd FIN  /       \   snd ACK          +---------+
 |  FIN    |<-----------------           ------------------>|  CLOSE  |
 | WAIT-1  |------------------                              |   WAIT  |
 +---------+          rcv FIN  \                            +---------+
   | rcv ACK of FIN   -------   |                            CLOSE  |  
   | --------------   snd ACK   |                           ------- |  
   V        x                   V                           snd FIN V  
 +---------+                  +---------+                   +---------+
 |FINWAIT-2|                  | CLOSING |                   | LAST-ACK|
 +---------+                  +---------+                   +---------+
   |                rcv ACK of FIN |                 rcv ACK of FIN |  
   |  rcv FIN       -------------- |    Timeout=2MSL -------------- |  
   |  -------              x       V    ------------        x       V  
    \ snd ACK                 +---------+delete TCB         +---------+
     ------------------------>|TIME WAIT|------------------>| CLOSED  |
                              +---------+                   +---------+

                      TCP Connection State Diagram
                               Figure 6.
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3.3.  Sequence Numbers

  A fundamental notion in the design is that every octet of data sent
  over a TCP connection has a sequence number.  Since every octet is
  sequenced, each of them can be acknowledged.  The acknowledgment
  mechanism employed is cumulative so that an acknowledgment of sequence
  number X indicates that all octets up to but not including X have been
  received.  This mechanism allows for straight-forward duplicate
  detection in the presence of retransmission.  Numbering of octets
  within a segment is that the first data octet immediately following
  the header is the lowest numbered, and the following octets are
  numbered consecutively.

  It is essential to remember that the actual sequence number space is
  finite, though very large.  This space ranges from 0 to 2**32 - 1.
  Since the space is finite, all arithmetic dealing with sequence
  numbers must be performed modulo 2**32.  This unsigned arithmetic
  preserves the relationship of sequence numbers as they cycle from
  2**32 - 1 to 0 again.  There are some subtleties to computer modulo
  arithmetic, so great care should be taken in programming the
  comparison of such values.  The symbol "=<" means "less than or equal"
  (modulo 2**32).

  The typical kinds of sequence number comparisons which the TCP must
  perform include:

    (a)  Determining that an acknowledgment refers to some sequence
         number sent but not yet acknowledged.

    (b)  Determining that all sequence numbers occupied by a segment
         have been acknowledged (e.g., to remove the segment from a
         retransmission queue).

    (c)  Determining that an incoming segment contains sequence numbers
         which are expected (i.e., that the segment "overlaps" the
         receive window).
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  In response to sending data the TCP will receive acknowledgments.  The
  following comparisons are needed to process the acknowledgments.

    SND.UNA = oldest unacknowledged sequence number

    SND.NXT = next sequence number to be sent

    SEG.ACK = acknowledgment from the receiving TCP (next sequence
              number expected by the receiving TCP)

    SEG.SEQ = first sequence number of a segment

    SEG.LEN = the number of octets occupied by the data in the segment
              (counting SYN and FIN)

    SEG.SEQ+SEG.LEN-1 = last sequence number of a segment

  A new acknowledgment (called an "acceptable ack"), is one for which
  the inequality below holds:

    SND.UNA < SEG.ACK =< SND.NXT

  A segment on the retransmission queue is fully acknowledged if the sum
  of its sequence number and length is less or equal than the
  acknowledgment value in the incoming segment.

  When data is received the following comparisons are needed:

    RCV.NXT = next sequence number expected on an incoming segments, and
        is the left or lower edge of the receive window

    RCV.NXT+RCV.WND-1 = last sequence number expected on an incoming
        segment, and is the right or upper edge of the receive window

    SEG.SEQ = first sequence number occupied by the incoming segment

    SEG.SEQ+SEG.LEN-1 = last sequence number occupied by the incoming
        segment

  A segment is judged to occupy a portion of valid receive sequence
  space if

    RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

  or

    RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND
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  The first part of this test checks to see if the beginning of the
  segment falls in the window, the second part of the test checks to see
  if the end of the segment falls in the window; if the segment passes
  either part of the test it contains data in the window.

  Actually, it is a little more complicated than this.  Due to zero
  windows and zero length segments, we have four cases for the
  acceptability of an incoming segment:

    Segment Receive  Test
    Length  Window
    ------- -------  -------------------------------------------

       0       0     SEG.SEQ = RCV.NXT

       0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

      >0       0     not acceptable

      >0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
                  or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

  Note that when the receive window is zero no segments should be
  acceptable except ACK segments.  Thus, it is be possible for a TCP to
  maintain a zero receive window while transmitting data and receiving
  ACKs.  However, even when the receive window is zero, a TCP must
  process the RST and URG fields of all incoming segments.

  We have taken advantage of the numbering scheme to protect certain
  control information as well.  This is achieved by implicitly including
  some control flags in the sequence space so they can be retransmitted
  and acknowledged without confusion (i.e., one and only one copy of the
  control will be acted upon).  Control information is not physically
  carried in the segment data space.  Consequently, we must adopt rules
  for implicitly assigning sequence numbers to control.  The SYN and FIN
  are the only controls requiring this protection, and these controls
  are used only at connection opening and closing.  For sequence number
  purposes, the SYN is considered to occur before the first actual data
  octet of the segment in which it occurs, while the FIN is considered
  to occur after the last actual data octet in a segment in which it
  occurs.  The segment length (SEG.LEN) includes both data and sequence
  space occupying controls.  When a SYN is present then SEG.SEQ is the
  sequence number of the SYN.
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  Initial Sequence Number Selection

  The protocol places no restriction on a particular connection being
  used over and over again.  A connection is defined by a pair of
  sockets.  New instances of a connection will be referred to as
  incarnations of the connection.  The problem that arises from this is
  -- "how does the TCP identify duplicate segments from previous
  incarnations of the connection?"  This problem becomes apparent if the
  connection is being opened and closed in quick succession, or if the
  connection breaks with loss of memory and is then reestablished.

  To avoid confusion we must prevent segments from one incarnation of a
  connection from being used while the same sequence numbers may still
  be present in the network from an earlier incarnation.  We want to
  assure this, even if a TCP crashes and loses all knowledge of the
  sequence numbers it has been using.  When new connections are created,
  an initial sequence number (ISN) generator is employed which selects a
  new 32 bit ISN.  The generator is bound to a (possibly fictitious) 32
  bit clock whose low order bit is incremented roughly every 4
  microseconds.  Thus, the ISN cycles approximately every 4.55 hours.
  Since we assume that segments will stay in the network no more than
  the Maximum Segment Lifetime (MSL) and that the MSL is less than 4.55
  hours we can reasonably assume that ISN’s will be unique.

  For each connection there is a send sequence number and a receive
  sequence number.  The initial send sequence number (ISS) is chosen by
  the data sending TCP, and the initial receive sequence number (IRS) is
  learned during the connection establishing procedure.

  For a connection to be established or initialized, the two TCPs must
  synchronize on each other’s initial sequence numbers.  This is done in
  an exchange of connection establishing segments carrying a control bit
  called "SYN" (for synchronize) and the initial sequence numbers.  As a
  shorthand, segments carrying the SYN bit are also called "SYNs".
  Hence, the solution requires a suitable mechanism for picking an
  initial sequence number and a slightly involved handshake to exchange
  the ISN’s.

  The synchronization requires each side to send it’s own initial
  sequence number and to receive a confirmation of it in acknowledgment
  from the other side.  Each side must also receive the other side’s
  initial sequence number and send a confirming acknowledgment.

    1) A --> B  SYN my sequence number is X
    2) A <-- B  ACK your sequence number is X
    3) A <-- B  SYN my sequence number is Y
    4) A --> B  ACK your sequence number is Y
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  Because steps 2 and 3 can be combined in a single message this is
  called the three way (or three message) handshake.

  A three way handshake is necessary because sequence numbers are not
  tied to a global clock in the network, and TCPs may have different
  mechanisms for picking the ISN’s.  The receiver of the first SYN has
  no way of knowing whether the segment was an old delayed one or not,
  unless it remembers the last sequence number used on the connection
  (which is not always possible), and so it must ask the sender to
  verify this SYN.  The three way handshake and the advantages of a
  clock-driven scheme are discussed in [3].

  Knowing When to Keep Quiet

  To be sure that a TCP does not create a segment that carries a
  sequence number which may be duplicated by an old segment remaining in
  the network, the TCP must keep quiet for a maximum segment lifetime
  (MSL) before assigning any sequence numbers upon starting up or
  recovering from a crash in which memory of sequence numbers in use was
  lost.  For this specification the MSL is taken to be 2 minutes.  This
  is an engineering choice, and may be changed if experience indicates
  it is desirable to do so.  Note that if a TCP is reinitialized in some
  sense, yet retains its memory of sequence numbers in use, then it need
  not wait at all; it must only be sure to use sequence numbers larger
  than those recently used.

  The TCP Quiet Time Concept

    This specification provides that hosts which "crash" without
    retaining any knowledge of the last sequence numbers transmitted on
    each active (i.e., not closed) connection shall delay emitting any
    TCP segments for at least the agreed Maximum Segment Lifetime (MSL)
    in the internet system of which the host is a part.  In the
    paragraphs below, an explanation for this specification is given.
    TCP implementors may violate the "quiet time" restriction, but only
    at the risk of causing some old data to be accepted as new or new
    data rejected as old duplicated by some receivers in the internet
    system.

    TCPs consume sequence number space each time a segment is formed and
    entered into the network output queue at a source host. The
    duplicate detection and sequencing algorithm in the TCP protocol
    relies on the unique binding of segment data to sequence space to
    the extent that sequence numbers will not cycle through all 2**32
    values before the segment data bound to those sequence numbers has
    been delivered and acknowledged by the receiver and all duplicate
    copies of the segments have "drained" from the internet.  Without
    such an assumption, two distinct TCP segments could conceivably be
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    assigned the same or overlapping sequence numbers, causing confusion
    at the receiver as to which data is new and which is old.  Remember
    that each segment is bound to as many consecutive sequence numbers
    as there are octets of data in the segment.

    Under normal conditions, TCPs keep track of the next sequence number
    to emit and the oldest awaiting acknowledgment so as to avoid
    mistakenly using a sequence number over before its first use has
    been acknowledged.  This alone does not guarantee that old duplicate
    data is drained from the net, so the sequence space has been made
    very large to reduce the probability that a wandering duplicate will
    cause trouble upon arrival.  At 2 megabits/sec. it takes 4.5 hours
    to use up 2**32 octets of sequence space.  Since the maximum segment
    lifetime in the net is not likely to exceed a few tens of seconds,
    this is deemed ample protection for foreseeable nets, even if data
    rates escalate to l0’s of megabits/sec.  At 100 megabits/sec, the
    cycle time is 5.4 minutes which may be a little short, but still
    within reason.

    The basic duplicate detection and sequencing algorithm in TCP can be
    defeated, however, if a source TCP does not have any memory of the
    sequence numbers it last used on a given connection. For example, if
    the TCP were to start all connections with sequence number 0, then
    upon crashing and restarting, a TCP might re-form an earlier
    connection (possibly after half-open connection resolution) and emit
    packets with sequence numbers identical to or overlapping with
    packets still in the network which were emitted on an earlier
    incarnation of the same connection.  In the absence of knowledge
    about the sequence numbers used on a particular connection, the TCP
    specification recommends that the source delay for MSL seconds
    before emitting segments on the connection, to allow time for
    segments from the earlier connection incarnation to drain from the
    system.

    Even hosts which can remember the time of day and used it to select
    initial sequence number values are not immune from this problem
    (i.e., even if time of day is used to select an initial sequence
    number for each new connection incarnation).

    Suppose, for example, that a connection is opened starting with
    sequence number S.  Suppose that this connection is not used much
    and that eventually the initial sequence number function (ISN(t))
    takes on a value equal to the sequence number, say S1, of the last
    segment sent by this TCP on a particular connection.  Now suppose,
    at this instant, the host crashes, recovers, and establishes a new
    incarnation of the connection. The initial sequence number chosen is
    S1 = ISN(t) -- last used sequence number on old incarnation of
    connection!  If the recovery occurs quickly enough, any old
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    duplicates in the net bearing sequence numbers in the neighborhood
    of S1 may arrive and be treated as new packets by the receiver of
    the new incarnation of the connection.

    The problem is that the recovering host may not know for how long it
    crashed nor does it know whether there are still old duplicates in
    the system from earlier connection incarnations.

    One way to deal with this problem is to deliberately delay emitting
    segments for one MSL after recovery from a crash- this is the "quite
    time" specification.  Hosts which prefer to avoid waiting are
    willing to risk possible confusion of old and new packets at a given
    destination may choose not to wait for the "quite time".
    Implementors may provide TCP users with the ability to select on a
    connection by connection basis whether to wait after a crash, or may
    informally implement the "quite time" for all connections.
    Obviously, even where a user selects to "wait," this is not
    necessary after the host has been "up" for at least MSL seconds.

    To summarize: every segment emitted occupies one or more sequence
    numbers in the sequence space, the numbers occupied by a segment are
    "busy" or "in use" until MSL seconds have passed, upon crashing a
    block of space-time is occupied by the octets of the last emitted
    segment, if a new connection is started too soon and uses any of the
    sequence numbers in the space-time footprint of the last segment of
    the previous connection incarnation, there is a potential sequence
    number overlap area which could cause confusion at the receiver.

3.4.  Establishing a connection

  The "three-way handshake" is the procedure used to establish a
  connection.  This procedure normally is initiated by one TCP and
  responded to by another TCP.  The procedure also works if two TCP
  simultaneously initiate the procedure.  When simultaneous attempt
  occurs, each TCP receives a "SYN" segment which carries no
  acknowledgment after it has sent a "SYN".  Of course, the arrival of
  an old duplicate "SYN" segment can potentially make it appear, to the
  recipient, that a simultaneous connection initiation is in progress.
  Proper use of "reset" segments can disambiguate these cases.

  Several examples of connection initiation follow.  Although these
  examples do not show connection synchronization using data-carrying
  segments, this is perfectly legitimate, so long as the receiving TCP
  doesn’t deliver the data to the user until it is clear the data is
  valid (i.e., the data must be buffered at the receiver until the
  connection reaches the ESTABLISHED state).  The three-way handshake
  reduces the possibility of false connections.  It is the
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  implementation of a trade-off between memory and messages to provide
  information for this checking.

  The simplest three-way handshake is shown in figure 7 below.  The
  figures should be interpreted in the following way.  Each line is
  numbered for reference purposes.  Right arrows (-->) indicate
  departure of a TCP segment from TCP A to TCP B, or arrival of a
  segment at B from A.  Left arrows (<--), indicate the reverse.
  Ellipsis (...) indicates a segment which is still in the network
  (delayed).  An "XXX" indicates a segment which is lost or rejected.
  Comments appear in parentheses.  TCP states represent the state AFTER
  the departure or arrival of the segment (whose contents are shown in
  the center of each line).  Segment contents are shown in abbreviated
  form, with sequence number, control flags, and ACK field.  Other
  fields such as window, addresses, lengths, and text have been left out
  in the interest of clarity.

  

      TCP A                                                TCP B

  1.  CLOSED                                               LISTEN

  2.  SYN-SENT    --> <SEQ=100><CTL=SYN>               --> SYN-RECEIVED

  3.  ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK>  <-- SYN-RECEIVED

  4.  ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK>       --> ESTABLISHED

  5.  ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLISHED

          Basic 3-Way Handshake for Connection Synchronization

                                Figure 7.

  In line 2 of figure 7, TCP A begins by sending a SYN segment
  indicating that it will use sequence numbers starting with sequence
  number 100.  In line 3, TCP B sends a SYN and acknowledges the SYN it
  received from TCP A.  Note that the acknowledgment field indicates TCP
  B is now expecting to hear sequence 101, acknowledging the SYN which
  occupied sequence 100.

  At line 4, TCP A responds with an empty segment containing an ACK for
  TCP B’s SYN; and in line 5, TCP A sends some data.  Note that the
  sequence number of the segment in line 5 is the same as in line 4
  because the ACK does not occupy sequence number space (if it did, we
  would wind up ACKing ACK’s!).
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  Simultaneous initiation is only slightly more complex, as is shown in
  figure 8.  Each TCP cycles from CLOSED to SYN-SENT to SYN-RECEIVED to
  ESTABLISHED.

  

      TCP A                                            TCP B

  1.  CLOSED                                           CLOSED

  2.  SYN-SENT     --> <SEQ=100><CTL=SYN>              ...

  3.  SYN-RECEIVED <-- <SEQ=300><CTL=SYN>              <-- SYN-SENT

  4.               ... <SEQ=100><CTL=SYN>              --> SYN-RECEIVED

  5.  SYN-RECEIVED --> <SEQ=100><ACK=301><CTL=SYN,ACK> ...

  6.  ESTABLISHED  <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED

  7.               ... <SEQ=101><ACK=301><CTL=ACK>     --> ESTABLISHED

                Simultaneous Connection Synchronization

                               Figure 8.

  The principle reason for the three-way handshake is to prevent old
  duplicate connection initiations from causing confusion.  To deal with
  this, a special control message, reset, has been devised.  If the
  receiving TCP is in a  non-synchronized state (i.e., SYN-SENT,
  SYN-RECEIVED), it returns to LISTEN on receiving an acceptable reset.
  If the TCP is in one of the synchronized states (ESTABLISHED,
  FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT), it
  aborts the connection and informs its user.  We discuss this latter
  case under "half-open" connections below.
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      TCP A                                                TCP B

  1.  CLOSED                                               LISTEN

  2.  SYN-SENT    --> <SEQ=100><CTL=SYN>               ...

  3.  (duplicate) ... <SEQ=90><CTL=SYN>               --> SYN-RECEIVED

  4.  SYN-SENT    <-- <SEQ=300><ACK=91><CTL=SYN,ACK>  <-- SYN-RECEIVED

  5.  SYN-SENT    --> <SEQ=91><CTL=RST>               --> LISTEN
  

  6.              ... <SEQ=100><CTL=SYN>               --> SYN-RECEIVED

  7.  SYN-SENT    <-- <SEQ=400><ACK=101><CTL=SYN,ACK>  <-- SYN-RECEIVED

  8.  ESTABLISHED --> <SEQ=101><ACK=401><CTL=ACK>      --> ESTABLISHED

                    Recovery from Old Duplicate SYN

                               Figure 9.

  As a simple example of recovery from old duplicates, consider
  figure 9.  At line 3, an old duplicate SYN arrives at TCP B.  TCP B
  cannot tell that this is an old duplicate, so it responds normally
  (line 4).  TCP A detects that the ACK field is incorrect and returns a
  RST (reset) with its SEQ field selected to make the segment
  believable.  TCP B, on receiving the RST, returns to the LISTEN state.
  When the original SYN (pun intended) finally arrives at line 6, the
  synchronization proceeds normally.  If the SYN at line 6 had arrived
  before the RST, a more complex exchange might have occurred with RST’s
  sent in both directions.

  Half-Open Connections and Other Anomalies

  An established connection is said to be  "half-open" if one of the
  TCPs has closed or aborted the connection at its end without the
  knowledge of the other, or if the two ends of the connection have
  become desynchronized owing to a crash that resulted in loss of
  memory.  Such connections will automatically become reset if an
  attempt is made to send data in either direction.  However, half-open
  connections are expected to be unusual, and the recovery procedure is
  mildly involved.

  If at site A the connection no longer exists, then an attempt by the
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  user at site B to send any data on it will result in the site B TCP
  receiving a reset control message.  Such a message indicates to the
  site B TCP that something is wrong, and it is expected to abort the
  connection.

  Assume that two user processes A and B are communicating with one
  another when a crash occurs causing loss of memory to A’s TCP.
  Depending on the operating system supporting A’s TCP, it is likely
  that some error recovery mechanism exists.  When the TCP is up again,
  A is likely to start again from the beginning or from a recovery
  point.  As a result, A will probably try to OPEN the connection again
  or try to SEND on the connection it believes open.  In the latter
  case, it receives the error message "connection not open" from the
  local (A’s) TCP.  In an attempt to establish the connection, A’s TCP
  will send a segment containing SYN.  This scenario leads to the
  example shown in figure 10.  After TCP A crashes, the user attempts to
  re-open the connection.  TCP B, in the meantime, thinks the connection
  is open.

  

      TCP A                                           TCP B

  1.  (CRASH)                               (send 300,receive 100)

  2.  CLOSED                                           ESTABLISHED

  3.  SYN-SENT --> <SEQ=400><CTL=SYN>              --> (??)

  4.  (!!)     <-- <SEQ=300><ACK=100><CTL=ACK>     <-- ESTABLISHED

  5.  SYN-SENT --> <SEQ=100><CTL=RST>              --> (Abort!!)

  6.  SYN-SENT                                         CLOSED

  7.  SYN-SENT --> <SEQ=400><CTL=SYN>              -->

                     Half-Open Connection Discovery

                               Figure 10.

  When the SYN arrives at line 3, TCP B, being in a synchronized state,
  and the incoming segment outside the window, responds with an
  acknowledgment indicating what sequence it next expects to hear (ACK
  100).  TCP A sees that this segment does not acknowledge anything it
  sent and, being unsynchronized, sends a reset (RST) because it has
  detected a half-open connection.  TCP B aborts at line 5.  TCP A will
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  continue to try to establish the connection; the problem is now
  reduced to the basic 3-way handshake of figure 7.

  An interesting alternative case occurs when TCP A crashes and TCP B
  tries to send data on what it thinks is a synchronized connection.
  This is illustrated in figure 11.  In this case, the data arriving at
  TCP A from TCP B (line 2) is unacceptable because no such connection
  exists, so TCP A sends a RST.  The RST is acceptable so TCP B
  processes it and aborts the connection.

  

        TCP A                                              TCP B

  1.  (CRASH)                                   (send 300,receive 100)

  2.  (??)    <-- <SEQ=300><ACK=100><DATA=10><CTL=ACK> <-- ESTABLISHED

  3.          --> <SEQ=100><CTL=RST>                   --> (ABORT!!)

           Active Side Causes Half-Open Connection Discovery

                               Figure 11.

  In figure 12, we find the two TCPs A and B with passive connections
  waiting for SYN.  An old duplicate arriving at TCP B (line 2) stirs B
  into action.  A SYN-ACK is returned (line 3) and causes TCP A to
  generate a RST (the ACK in line 3 is not acceptable).  TCP B accepts
  the reset and returns to its passive LISTEN state.

  

      TCP A                                         TCP B

  1.  LISTEN                                        LISTEN

  2.       ... <SEQ=Z><CTL=SYN>                -->  SYN-RECEIVED

  3.  (??) <-- <SEQ=X><ACK=Z+1><CTL=SYN,ACK>   <--  SYN-RECEIVED

  4.       --> <SEQ=Z+1><CTL=RST>              -->  (return to LISTEN!)

  5.  LISTEN                                        LISTEN

       Old Duplicate SYN Initiates a Reset on two Passive Sockets

                               Figure 12.
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  A variety of other cases are possible, all of which are accounted for
  by the following rules for RST generation and processing.

  Reset Generation

  As a general rule, reset (RST) must be sent whenever a segment arrives
  which apparently is not intended for the current connection.  A reset
  must not be sent if it is not clear that this is the case.

  There are three groups of states:

    1.  If the connection does not exist (CLOSED) then a reset is sent
    in response to any incoming segment except another reset.  In
    particular, SYNs addressed to a non-existent connection are rejected
    by this means.

    If the incoming segment has an ACK field, the reset takes its
    sequence number from the ACK field of the segment, otherwise the
    reset has sequence number zero and the ACK field is set to the sum
    of the sequence number and segment length of the incoming segment.
    The connection remains in the CLOSED state.

    2.  If the connection is in any non-synchronized state (LISTEN,
    SYN-SENT, SYN-RECEIVED), and the incoming segment acknowledges
    something not yet sent (the segment carries an unacceptable ACK), or
    if an incoming segment has a security level or compartment which
    does not exactly match the level and compartment requested for the
    connection, a reset is sent.

    If our SYN has not been acknowledged and the precedence level of the
    incoming segment is higher than the precedence level requested then
    either raise the local precedence level (if allowed by the user and
    the system) or send a reset; or if the precedence level of the
    incoming segment is lower than the precedence level requested then
    continue as if the precedence matched exactly (if the remote TCP
    cannot raise the precedence level to match ours this will be
    detected in the next segment it sends, and the connection will be
    terminated then).  If our SYN has been acknowledged (perhaps in this
    incoming segment) the precedence level of the incoming segment must
    match the local precedence level exactly, if it does not a reset
    must be sent.

    If the incoming segment has an ACK field, the reset takes its
    sequence number from the ACK field of the segment, otherwise the
    reset has sequence number zero and the ACK field is set to the sum
    of the sequence number and segment length of the incoming segment.
    The connection remains in the same state.
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    3.  If the connection is in a synchronized state (ESTABLISHED,
    FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, LAST-ACK, TIME-WAIT),
    any unacceptable segment (out of window sequence number or
    unacceptible acknowledgment number) must elicit only an empty
    acknowledgment segment containing the current send-sequence number
    and an acknowledgment indicating the next sequence number expected
    to be received, and the connection remains in the same state.

    If an incoming segment has a security level, or compartment, or
    precedence which does not exactly match the level, and compartment,
    and precedence requested for the connection,a reset is sent and
    connection goes to the CLOSED state.  The reset takes its sequence
    number from the ACK field of the incoming segment.

  Reset Processing

  In all states except SYN-SENT, all reset (RST) segments are validated
  by checking their SEQ-fields.  A reset is valid if its sequence number
  is in the window.  In the SYN-SENT state (a RST received in response
  to an initial SYN), the RST is acceptable if the ACK field
  acknowledges the SYN.

  The receiver of a RST first validates it, then changes state.  If the
  receiver was in the LISTEN state, it ignores it.  If the receiver was
  in SYN-RECEIVED state and had previously been in the LISTEN state,
  then the receiver returns to the LISTEN state, otherwise the receiver
  aborts the connection and goes to the CLOSED state.  If the receiver
  was in any other state, it aborts the connection and advises the user
  and goes to the CLOSED state.

3.5.  Closing a Connection

  CLOSE is an operation meaning "I have no more data to send."  The
  notion of closing a full-duplex connection is subject to ambiguous
  interpretation, of course, since it may not be obvious how to treat
  the receiving side of the connection.  We have chosen to treat CLOSE
  in a simplex fashion.  The user who CLOSEs may continue to RECEIVE
  until he is told that the other side has CLOSED also.  Thus, a program
  could initiate several SENDs followed by a CLOSE, and then continue to
  RECEIVE until signaled that a RECEIVE failed because the other side
  has CLOSED.  We assume that the TCP will signal a user, even if no
  RECEIVEs are outstanding, that the other side has closed, so the user
  can terminate his side gracefully.  A TCP will reliably deliver all
  buffers SENT before the connection was CLOSED so a user who expects no
  data in return need only wait to hear the connection was CLOSED
  successfully to know that all his data was received at the destination
  TCP.  Users must keep reading connections they close for sending until
  the TCP says no more data.
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  There are essentially three cases:

    1) The user initiates by telling the TCP to CLOSE the connection

    2) The remote TCP initiates by sending a FIN control signal

    3) Both users CLOSE simultaneously

  Case 1:  Local user initiates the close

    In this case, a FIN segment can be constructed and placed on the
    outgoing segment queue.  No further SENDs from the user will be
    accepted by the TCP, and it enters the FIN-WAIT-1 state.  RECEIVEs
    are allowed in this state.  All segments preceding and including FIN
    will be retransmitted until acknowledged.  When the other TCP has
    both acknowledged the FIN and sent a FIN of its own, the first TCP
    can ACK this FIN.  Note that a TCP receiving a FIN will ACK but not
    send its own FIN until its user has CLOSED the connection also.

  Case 2:  TCP receives a FIN from the network

    If an unsolicited FIN arrives from the network, the receiving TCP
    can ACK it and tell the user that the connection is closing.  The
    user will respond with a CLOSE, upon which the TCP can send a FIN to
    the other TCP after sending any remaining data.  The TCP then waits
    until its own FIN is acknowledged whereupon it deletes the
    connection.  If an ACK is not forthcoming, after the user timeout
    the connection is aborted and the user is told.

  Case 3:  both users close simultaneously

    A simultaneous CLOSE by users at both ends of a connection causes
    FIN segments to be exchanged.  When all segments preceding the FINs
    have been processed and acknowledged, each TCP can ACK the FIN it
    has received.  Both will, upon receiving these ACKs, delete the
    connection.
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      TCP A                                                TCP B

  1.  ESTABLISHED                                          ESTABLISHED

  2.  (Close)
      FIN-WAIT-1  --> <SEQ=100><ACK=300><CTL=FIN,ACK>  --> CLOSE-WAIT

  3.  FIN-WAIT-2  <-- <SEQ=300><ACK=101><CTL=ACK>      <-- CLOSE-WAIT

  4.                                                       (Close)
      TIME-WAIT   <-- <SEQ=300><ACK=101><CTL=FIN,ACK>  <-- LAST-ACK

  5.  TIME-WAIT   --> <SEQ=101><ACK=301><CTL=ACK>      --> CLOSED

  6.  (2 MSL)
      CLOSED                                                      

                         Normal Close Sequence

                               Figure 13.

  

      TCP A                                                TCP B

  1.  ESTABLISHED                                          ESTABLISHED

  2.  (Close)                                              (Close)
      FIN-WAIT-1  --> <SEQ=100><ACK=300><CTL=FIN,ACK>  ... FIN-WAIT-1
                  <-- <SEQ=300><ACK=100><CTL=FIN,ACK>  <--
                  ... <SEQ=100><ACK=300><CTL=FIN,ACK>  -->

  3.  CLOSING     --> <SEQ=101><ACK=301><CTL=ACK>      ... CLOSING
                  <-- <SEQ=301><ACK=101><CTL=ACK>      <--
                  ... <SEQ=101><ACK=301><CTL=ACK>      -->

  4.  TIME-WAIT                                            TIME-WAIT
      (2 MSL)                                              (2 MSL)
      CLOSED                                               CLOSED

                      Simultaneous Close Sequence

                               Figure 14.
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3.6.  Precedence and Security

  The intent is that connection be allowed only between ports operating
  with exactly the same security and compartment values and at the
  higher of the precedence level requested by the two ports.

  The precedence and security parameters used in TCP are exactly those
  defined in the Internet Protocol (IP) [2].  Throughout this TCP
  specification the term "security/compartment" is intended to indicate
  the security parameters used in IP including security, compartment,
  user group, and handling restriction.

  A connection attempt with mismatched security/compartment values or a
  lower precedence value must be rejected by sending a reset.  Rejecting
  a connection due to too low a precedence only occurs after an
  acknowledgment of the SYN has been received.

  Note that TCP modules which operate only at the default value of
  precedence will still have to check the precedence of incoming
  segments and possibly raise the precedence level they use on the
  connection.

  The security paramaters may be used even in a non-secure environment
  (the values would indicate unclassified data), thus hosts in
  non-secure environments must be prepared to receive the security
  parameters, though they need not send them.

3.7.  Data Communication

  Once the connection is established data is communicated by the
  exchange of segments.  Because segments may be lost due to errors
  (checksum test failure), or network congestion, TCP uses
  retransmission (after a timeout) to ensure delivery of every segment.
  Duplicate segments may arrive due to network or TCP retransmission.
  As discussed in the section on sequence numbers the TCP performs
  certain tests on the sequence and acknowledgment numbers in the
  segments to verify their acceptability.

  The sender of data keeps track of the next sequence number to use in
  the variable SND.NXT.  The receiver of data keeps track of the next
  sequence number to expect in the variable RCV.NXT.  The sender of data
  keeps track of the oldest unacknowledged sequence number in the
  variable SND.UNA.  If the data flow is momentarily idle and all data
  sent has been acknowledged then the three variables will be equal.

  When the sender creates a segment and transmits it the sender advances
  SND.NXT.  When the receiver accepts a segment it advances RCV.NXT and
  sends an acknowledgment.  When the data sender receives an
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  acknowledgment it advances SND.UNA.  The extent to which the values of
  these variables differ is a measure of the delay in the communication.
  The amount by which the variables are advanced is the length of the
  data in the segment.  Note that once in the ESTABLISHED state all
  segments must carry current acknowledgment information.

  The CLOSE user call implies a push function, as does the FIN control
  flag in an incoming segment.

  Retransmission Timeout

  Because of the variability of the networks that compose an
  internetwork system and the wide range of uses of TCP connections the
  retransmission timeout must be dynamically determined.  One procedure
  for determining a retransmission time out is given here as an
  illustration.

    An Example Retransmission Timeout Procedure

      Measure the elapsed time between sending a data octet with a
      particular sequence number and receiving an acknowledgment that
      covers that sequence number (segments sent do not have to match
      segments received).  This measured elapsed time is the Round Trip
      Time (RTT).  Next compute a Smoothed Round Trip Time (SRTT) as:

        SRTT = ( ALPHA * SRTT ) + ((1-ALPHA) * RTT)

      and based on this, compute the retransmission timeout (RTO) as:

        RTO = min[UBOUND,max[LBOUND,(BETA*SRTT)]]

      where UBOUND is an upper bound on the timeout (e.g., 1 minute),
      LBOUND is a lower bound on the timeout (e.g., 1 second), ALPHA is
      a smoothing factor (e.g., .8 to .9), and BETA is a delay variance
      factor (e.g., 1.3 to 2.0).

  The Communication of Urgent Information

  The objective of the TCP urgent mechanism is to allow the sending user
  to stimulate the receiving user to accept some urgent data and to
  permit the receiving TCP to indicate to the receiving user when all
  the currently known urgent data has been received by the user.

  This mechanism permits a point in the data stream to be designated as
  the end of urgent information.  Whenever this point is in advance of
  the receive sequence number (RCV.NXT) at the receiving TCP, that TCP
  must tell the user to go into "urgent mode"; when the receive sequence
  number catches up to the urgent pointer, the TCP must tell user to go
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  into "normal mode".  If the urgent pointer is updated while the user
  is in "urgent mode", the update will be invisible to the user.

  The method employs a urgent field which is carried in all segments
  transmitted.  The URG control flag indicates that the urgent field is
  meaningful and must be added to the segment sequence number to yield
  the urgent pointer.  The absence of this flag indicates that there is
  no urgent data outstanding.

  To send an urgent indication the user must also send at least one data
  octet.  If the sending user also indicates a push, timely delivery of
  the urgent information to the destination process is enhanced.

  Managing the Window

  The window sent in each segment indicates the range of sequence
  numbers the sender of the window (the data receiver) is currently
  prepared to accept.  There is an assumption that this is related to
  the currently available data buffer space available for this
  connection.

  Indicating a large window encourages transmissions.  If more data
  arrives than can be accepted, it will be discarded.  This will result
  in excessive retransmissions, adding unnecessarily to the load on the
  network and the TCPs.  Indicating a small window may restrict the
  transmission of data to the point of introducing a round trip delay
  between each new segment transmitted.

  The mechanisms provided allow a TCP to advertise a large window and to
  subsequently advertise a much smaller window without having accepted
  that much data.  This, so called "shrinking the window," is strongly
  discouraged.  The robustness principle dictates that TCPs will not
  shrink the window themselves, but will be prepared for such behavior
  on the part of other TCPs.

  The sending TCP must be prepared to accept from the user and send at
  least one octet of new data even if the send window is zero.  The
  sending TCP must regularly retransmit to the receiving TCP even when
  the window is zero.  Two minutes is recommended for the retransmission
  interval when the window is zero.  This retransmission is essential to
  guarantee that when either TCP has a zero window the re-opening of the
  window will be reliably reported to the other.

  When the receiving TCP has a zero window and a segment arrives it must
  still send an acknowledgment showing its next expected sequence number
  and current window (zero).

  The sending TCP packages the data to be transmitted into segments
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  which fit the current window, and may repackage segments on the
  retransmission queue.  Such repackaging is not required, but may be
  helpful.

  In a connection with a one-way data flow, the window information will
  be carried in acknowledgment segments that all have the same sequence
  number so there will be no way to reorder them if they arrive out of
  order.  This is not a serious problem, but it will allow the window
  information to be on occasion temporarily based on old reports from
  the data receiver.  A refinement to avoid this problem is to act on
  the window information from segments that carry the highest
  acknowledgment number (that is segments with acknowledgment number
  equal or greater than the highest previously received).

  The window management procedure has significant influence on the
  communication performance.  The following comments are suggestions to
  implementers.

    Window Management Suggestions

      Allocating a very small window causes data to be transmitted in
      many small segments when better performance is achieved using
      fewer large segments.

      One suggestion for avoiding small windows is for the receiver to
      defer updating a window until the additional allocation is at
      least X percent of the maximum allocation possible for the
      connection (where X might be 20 to 40).

      Another suggestion is for the sender to avoid sending small
      segments by waiting until the window is large enough before
      sending data.  If the the user signals a push function then the
      data must be sent even if it is a small segment.

      Note that the acknowledgments should not be delayed or unnecessary
      retransmissions will result.  One strategy would be to send an
      acknowledgment when a small segment arrives (with out updating the
      window information), and then to send another acknowledgment with
      new window information when the window is larger.

      The segment sent to probe a zero window may also begin a break up
      of transmitted data into smaller and smaller segments.  If a
      segment containing a single data octet sent to probe a zero window
      is accepted, it consumes one octet of the window now available.
      If the sending TCP simply sends as much as it can whenever the
      window is non zero, the transmitted data will be broken into
      alternating big and small segments.  As time goes on, occasional
      pauses in the receiver making window allocation available will
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      result in breaking the big segments into a small and not quite so
      big pair. And after a while the data transmission will be in
      mostly small segments.

      The suggestion here is that the TCP implementations need to
      actively attempt to combine small window allocations into larger
      windows, since the mechanisms for managing the window tend to lead
      to many small windows in the simplest minded implementations.

3.8.  Interfaces

  There are of course two interfaces of concern:  the user/TCP interface
  and the TCP/lower-level interface.  We have a fairly elaborate model
  of the user/TCP interface, but the interface to the lower level
  protocol module is left unspecified here, since it will be specified
  in detail by the specification of the lowel level protocol.  For the
  case that the lower level is IP we note some of the parameter values
  that TCPs might use.

  User/TCP Interface

    The following functional description of user commands to the TCP is,
    at best, fictional, since every operating system will have different
    facilities.  Consequently, we must warn readers that different TCP
    implementations may have different user interfaces.  However, all
    TCPs must provide a certain minimum set of services to guarantee
    that all TCP implementations can support the same protocol
    hierarchy.  This section specifies the functional interfaces
    required of all TCP implementations.

    TCP User Commands

      The following sections functionally characterize a USER/TCP
      interface.  The notation used is similar to most procedure or
      function calls in high level languages, but this usage is not
      meant to rule out trap type service calls (e.g., SVCs, UUOs,
      EMTs).

      The user commands described below specify the basic functions the
      TCP must perform to support interprocess communication.
      Individual implementations must define their own exact format, and
      may provide combinations or subsets of the basic functions in
      single calls.  In particular, some implementations may wish to
      automatically OPEN a connection on the first SEND or RECEIVE
      issued by the user for a given connection.
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      In providing interprocess communication facilities, the TCP must
      not only accept commands, but must also return information to the
      processes it serves.  The latter consists of:

        (a) general information about a connection (e.g., interrupts,
        remote close, binding of unspecified foreign socket).

        (b) replies to specific user commands indicating success or
        various types of failure.

      Open

        Format:  OPEN (local port, foreign socket, active/passive
        [, timeout] [, precedence] [, security/compartment] [, options])
        -> local connection name

        We assume that the local TCP is aware of the identity of the
        processes it serves and will check the authority of the process
        to use the connection specified.  Depending upon the
        implementation of the TCP, the local network and TCP identifiers
        for the source address will either be supplied by the TCP or the
        lower level protocol (e.g., IP).  These considerations are the
        result of concern about security, to the extent that no TCP be
        able to masquerade as another one, and so on.  Similarly, no
        process can masquerade as another without the collusion of the
        TCP.

        If the active/passive flag is set to passive, then this is a
        call to LISTEN for an incoming connection.  A passive open may
        have either a fully specified foreign socket to wait for a
        particular connection or an unspecified foreign socket to wait
        for any call.  A fully specified passive call can be made active
        by the subsequent execution of a SEND.

        A transmission control block (TCB) is created and partially
        filled in with data from the OPEN command parameters.

        On an active OPEN command, the TCP will begin the procedure to
        synchronize (i.e., establish) the connection at once.

        The timeout, if present, permits the caller to set up a timeout
        for all data submitted to TCP.  If data is not successfully
        delivered to the destination within the timeout period, the TCP
        will abort the connection.  The present global default is five
        minutes.

        The TCP or some component of the operating system will verify
        the users authority to open a connection with the specified
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        precedence or security/compartment.  The absence of precedence
        or security/compartment specification in the OPEN call indicates
        the default values must be used.

        TCP will accept incoming requests as matching only if the
        security/compartment information is exactly the same and only if
        the precedence is equal to or higher than the precedence
        requested in the OPEN call.

        The precedence for the connection is the higher of the values
        requested in the OPEN call and received from the incoming
        request, and fixed at that value for the life of the
        connection.Implementers may want to give the user control of
        this precedence negotiation.  For example, the user might be
        allowed to specify that the precedence must be exactly matched,
        or that any attempt to raise the precedence be confirmed by the
        user.

        A local connection name will be returned to the user by the TCP.
        The local connection name can then be used as a short hand term
        for the connection defined by the <local socket, foreign socket>
        pair.

      Send

        Format:  SEND (local connection name, buffer address, byte
        count, PUSH flag, URGENT flag [,timeout])

        This call causes the data contained in the indicated user buffer
        to be sent on the indicated connection.  If the connection has
        not been opened, the SEND is considered an error.  Some
        implementations may allow users to SEND first; in which case, an
        automatic OPEN would be done.  If the calling process is not
        authorized to use this connection, an error is returned.

        If the PUSH flag is set, the data must be transmitted promptly
        to the receiver, and the PUSH bit will be set in the last TCP
        segment created from the buffer.  If the PUSH flag is not set,
        the data may be combined with data from subsequent SENDs for
        transmission efficiency.

        If the URGENT flag is set, segments sent to the destination TCP
        will have the urgent pointer set.  The receiving TCP will signal
        the urgent condition to the receiving process if the urgent
        pointer indicates that data preceding the urgent pointer has not
        been consumed by the receiving process.  The purpose of urgent
        is to stimulate the receiver to process the urgent data and to
        indicate to the receiver when all the currently known urgent
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        data has been received.  The number of times the sending user’s
        TCP signals urgent will not necessarily be equal to the number
        of times the receiving user will be notified of the presence of
        urgent data.

        If no foreign socket was specified in the OPEN, but the
        connection is established (e.g., because a LISTENing connection
        has become specific due to a foreign segment arriving for the
        local socket), then the designated buffer is sent to the implied
        foreign socket.  Users who make use of OPEN with an unspecified
        foreign socket can make use of SEND without ever explicitly
        knowing the foreign socket address.

        However, if a SEND is attempted before the foreign socket
        becomes specified, an error will be returned.  Users can use the
        STATUS call to determine the status of the connection.  In some
        implementations the TCP may notify the user when an unspecified
        socket is bound.

        If a timeout is specified, the current user timeout for this
        connection is changed to the new one.

        In the simplest implementation, SEND would not return control to
        the sending process until either the transmission was complete
        or the timeout had been exceeded.  However, this simple method
        is both subject to deadlocks (for example, both sides of the
        connection might try to do SENDs before doing any RECEIVEs) and
        offers poor performance, so it is not recommended.  A more
        sophisticated implementation would return immediately to allow
        the process to run concurrently with network I/O, and,
        furthermore, to allow multiple SENDs to be in progress.
        Multiple SENDs are served in first come, first served order, so
        the TCP will queue those it cannot service immediately.

        We have implicitly assumed an asynchronous user interface in
        which a SEND later elicits some kind of SIGNAL or
        pseudo-interrupt from the serving TCP.  An alternative is to
        return a response immediately.  For instance, SENDs might return
        immediate local acknowledgment, even if the segment sent had not
        been acknowledged by the distant TCP.  We could optimistically
        assume eventual success.  If we are wrong, the connection will
        close anyway due to the timeout.  In implementations of this
        kind (synchronous), there will still be some asynchronous
        signals, but these will deal with the connection itself, and not
        with specific segments or buffers.

        In order for the process to distinguish among error or success
        indications for different SENDs, it might be appropriate for the
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        buffer address to be returned along with the coded response to
        the SEND request.  TCP-to-user signals are discussed below,
        indicating the information which should be returned to the
        calling process.

      Receive

        Format:  RECEIVE (local connection name, buffer address, byte
        count) -> byte count, urgent flag, push flag

        This command allocates a receiving buffer associated with the
        specified connection.  If no OPEN precedes this command or the
        calling process is not authorized to use this connection, an
        error is returned.

        In the simplest implementation, control would not return to the
        calling program until either the buffer was filled, or some
        error occurred, but this scheme is highly subject to deadlocks.
        A more sophisticated implementation would permit several
        RECEIVEs to be outstanding at once.  These would be filled as
        segments arrive.  This strategy permits increased throughput at
        the cost of a more elaborate scheme (possibly asynchronous) to
        notify the calling program that a PUSH has been seen or a buffer
        filled.

        If enough data arrive to fill the buffer before a PUSH is seen,
        the PUSH flag will not be set in the response to the RECEIVE.
        The buffer will be filled with as much data as it can hold.  If
        a PUSH is seen before the buffer is filled the buffer will be
        returned partially filled and PUSH indicated.

        If there is urgent data the user will have been informed as soon
        as it arrived via a TCP-to-user signal.  The receiving user
        should thus be in "urgent mode".  If the URGENT flag is on,
        additional urgent data remains.  If the URGENT flag is off, this
        call to RECEIVE has returned all the urgent data, and the user
        may now leave "urgent mode".  Note that data following the
        urgent pointer (non-urgent data) cannot be delivered to the user
        in the same buffer with preceeding urgent data unless the
        boundary is clearly marked for the user.

        To distinguish among several outstanding RECEIVEs and to take
        care of the case that a buffer is not completely filled, the
        return code is accompanied by both a buffer pointer and a byte
        count indicating the actual length of the data received.

        Alternative implementations of RECEIVE might have the TCP
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        allocate buffer storage, or the TCP might share a ring buffer
        with the user.

      Close

        Format:  CLOSE (local connection name)

        This command causes the connection specified to be closed.  If
        the connection is not open or the calling process is not
        authorized to use this connection, an error is returned.
        Closing connections is intended to be a graceful operation in
        the sense that outstanding SENDs will be transmitted (and
        retransmitted), as flow control permits, until all have been
        serviced.  Thus, it should be acceptable to make several SEND
        calls, followed by a CLOSE, and expect all the data to be sent
        to the destination.  It should also be clear that users should
        continue to RECEIVE on CLOSING connections, since the other side
        may be trying to transmit the last of its data.  Thus, CLOSE
        means "I have no more to send" but does not mean "I will not
        receive any more."  It may happen (if the user level protocol is
        not well thought out) that the closing side is unable to get rid
        of all its data before timing out.  In this event, CLOSE turns
        into ABORT, and the closing TCP gives up.

        The user may CLOSE the connection at any time on his own
        initiative, or in response to various prompts from the TCP
        (e.g., remote close executed, transmission timeout exceeded,
        destination inaccessible).

        Because closing a connection requires communication with the
        foreign TCP, connections may remain in the closing state for a
        short time.  Attempts to reopen the connection before the TCP
        replies to the CLOSE command will result in error responses.

        Close also implies push function.

      Status

        Format:  STATUS (local connection name) -> status data

        This is an implementation dependent user command and could be
        excluded without adverse effect.  Information returned would
        typically come from the TCB associated with the connection.

        This command returns a data block containing the following
        information:

          local socket,
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          foreign socket,
          local connection name,
          receive window,
          send window,
          connection state,
          number of buffers awaiting acknowledgment,
          number of buffers pending receipt,
          urgent state,
          precedence,
          security/compartment,
          and transmission timeout.

        Depending on the state of the connection, or on the
        implementation itself, some of this information may not be
        available or meaningful.  If the calling process is not
        authorized to use this connection, an error is returned.  This
        prevents unauthorized processes from gaining information about a
        connection.

      Abort

        Format:  ABORT (local connection name)

        This command causes all pending SENDs and RECEIVES to be
        aborted, the TCB to be removed, and a special RESET message to
        be sent to the TCP on the other side of the connection.
        Depending on the implementation, users may receive abort
        indications for each outstanding SEND or RECEIVE, or may simply
        receive an ABORT-acknowledgment.

    TCP-to-User Messages

      It is assumed that the operating system environment provides a
      means for the TCP to asynchronously signal the user program.  When
      the TCP does signal a user program, certain information is passed
      to the user.  Often in the specification the information will be
      an error message.  In other cases there will be information
      relating to the completion of processing a SEND or RECEIVE or
      other user call.

      The following information is provided:

        Local Connection Name                    Always
        Response String                          Always
        Buffer Address                           Send & Receive
        Byte count (counts bytes received)       Receive
        Push flag                                Receive
        Urgent flag                              Receive
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  TCP/Lower-Level Interface

    The TCP calls on a lower level protocol module to actually send and
    receive information over a network.  One case is that of the ARPA
    internetwork system where the lower level module is the Internet
    Protocol (IP) [2].

    If the lower level protocol is IP it provides arguments for a type
    of service and for a time to live.  TCP uses the following settings
    for these parameters:

      Type of Service = Precedence: routine, Delay: normal, Throughput:
      normal, Reliability: normal; or 00000000.

      Time to Live    = one minute, or 00111100.

        Note that the assumed maximum segment lifetime is two minutes.
        Here we explicitly ask that a segment be destroyed if it cannot
        be delivered by the internet system within one minute.

    If the lower level is IP (or other protocol that provides this
    feature) and source routing is used, the interface must allow the
    route information to be communicated.  This is especially important
    so that the source and destination addresses used in the TCP
    checksum be the originating source and ultimate destination. It is
    also important to preserve the return route to answer connection
    requests.

    Any lower level protocol will have to provide the source address,
    destination address, and protocol fields, and some way to determine
    the "TCP length", both to provide the functional equivlent service
    of IP and to be used in the TCP checksum.
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3.9.  Event Processing

  The processing depicted in this section is an example of one possible
  implementation.  Other implementations may have slightly different
  processing sequences, but they should differ from those in this
  section only in detail, not in substance.

  The activity of the TCP can be characterized as responding to events.
  The events that occur can be cast into three categories:  user calls,
  arriving segments, and timeouts.  This section describes the
  processing the TCP does in response to each of the events.  In many
  cases the processing required depends on the state of the connection.

    Events that occur:

      User Calls

        OPEN
        SEND
        RECEIVE
        CLOSE
        ABORT
        STATUS

      Arriving Segments

        SEGMENT ARRIVES

      Timeouts

        USER TIMEOUT
        RETRANSMISSION TIMEOUT
        TIME-WAIT TIMEOUT

  The model of the TCP/user interface is that user commands receive an
  immediate return and possibly a delayed response via an event or
  pseudo interrupt.  In the following descriptions, the term "signal"
  means cause a delayed response.

  Error responses are given as character strings.  For example, user
  commands referencing connections that do not exist receive "error:
  connection not open".

  Please note in the following that all arithmetic on sequence numbers,
  acknowledgment numbers, windows, et cetera, is modulo 2**32 the size
  of the sequence number space.  Also note that "=<" means less than or
  equal to (modulo 2**32).

[Page 52]                                                               



September 1981                                                          
                                           Transmission Control Protocol
                                                Functional Specification

  A natural way to think about processing incoming segments is to
  imagine that they are first tested for proper sequence number (i.e.,
  that their contents lie in the range of the expected "receive window"
  in the sequence number space) and then that they are generally queued
  and processed in sequence number order.

  When a segment overlaps other already received segments we reconstruct
  the segment to contain just the new data, and adjust the header fields
  to be consistent.

  Note that if no state change is mentioned the TCP stays in the same
  state.
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  OPEN Call

    CLOSED STATE (i.e., TCB does not exist)

      Create a new transmission control block (TCB) to hold connection
      state information.  Fill in local socket identifier, foreign
      socket, precedence, security/compartment, and user timeout
      information.  Note that some parts of the foreign socket may be
      unspecified in a passive OPEN and are to be filled in by the
      parameters of the incoming SYN segment.  Verify the security and
      precedence requested are allowed for this user, if not return
      "error:  precedence not allowed" or "error:  security/compartment
      not allowed."  If passive enter the LISTEN state and return.  If
      active and the foreign socket is unspecified, return "error:
      foreign socket unspecified"; if active and the foreign socket is
      specified, issue a SYN segment.  An initial send sequence number
      (ISS) is selected.  A SYN segment of the form <SEQ=ISS><CTL=SYN>
      is sent.  Set SND.UNA to ISS, SND.NXT to ISS+1, enter SYN-SENT
      state, and return.

      If the caller does not have access to the local socket specified,
      return "error:  connection illegal for this process".  If there is
      no room to create a new connection, return "error:  insufficient
      resources".

    LISTEN STATE

      If active and the foreign socket is specified, then change the
      connection from passive to active, select an ISS.  Send a SYN
      segment, set SND.UNA to ISS, SND.NXT to ISS+1.  Enter SYN-SENT
      state.  Data associated with SEND may be sent with SYN segment or
      queued for transmission after entering ESTABLISHED state.  The
      urgent bit if requested in the command must be sent with the data
      segments sent as a result of this command.  If there is no room to
      queue the request, respond with "error:  insufficient resources".
      If Foreign socket was not specified, then return "error:  foreign
      socket unspecified".

[Page 54]                                                               



September 1981                                                          
                                           Transmission Control Protocol
                                                Functional Specification
OPEN Call

    SYN-SENT STATE
    SYN-RECEIVED STATE
    ESTABLISHED STATE
    FIN-WAIT-1 STATE
    FIN-WAIT-2 STATE
    CLOSE-WAIT STATE
    CLOSING STATE
    LAST-ACK STATE
    TIME-WAIT STATE

      Return "error:  connection already exists".
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  SEND Call

    CLOSED STATE (i.e., TCB does not exist)

      If the user does not have access to such a connection, then return
      "error:  connection illegal for this process".

      Otherwise, return "error:  connection does not exist".

    LISTEN STATE

      If the foreign socket is specified, then change the connection
      from passive to active, select an ISS.  Send a SYN segment, set
      SND.UNA to ISS, SND.NXT to ISS+1.  Enter SYN-SENT state.  Data
      associated with SEND may be sent with SYN segment or queued for
      transmission after entering ESTABLISHED state.  The urgent bit if
      requested in the command must be sent with the data segments sent
      as a result of this command.  If there is no room to queue the
      request, respond with "error:  insufficient resources".  If
      Foreign socket was not specified, then return "error:  foreign
      socket unspecified".

    SYN-SENT STATE
    SYN-RECEIVED STATE

      Queue the data for transmission after entering ESTABLISHED state.
      If no space to queue, respond with "error:  insufficient
      resources".

    ESTABLISHED STATE
    CLOSE-WAIT STATE

      Segmentize the buffer and send it with a piggybacked
      acknowledgment (acknowledgment value = RCV.NXT).  If there is
      insufficient space to remember this buffer, simply return "error:
      insufficient resources".

      If the urgent flag is set, then SND.UP <- SND.NXT-1 and set the
      urgent pointer in the outgoing segments.
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    FIN-WAIT-1 STATE
    FIN-WAIT-2 STATE
    CLOSING STATE
    LAST-ACK STATE
    TIME-WAIT STATE

      Return "error:  connection closing" and do not service request.
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  RECEIVE Call

    CLOSED STATE (i.e., TCB does not exist)

      If the user does not have access to such a connection, return
      "error:  connection illegal for this process".

      Otherwise return "error:  connection does not exist".

    LISTEN STATE
    SYN-SENT STATE
    SYN-RECEIVED STATE

      Queue for processing after entering ESTABLISHED state.  If there
      is no room to queue this request, respond with "error:
      insufficient resources".

    ESTABLISHED STATE
    FIN-WAIT-1 STATE
    FIN-WAIT-2 STATE

      If insufficient incoming segments are queued to satisfy the
      request, queue the request.  If there is no queue space to
      remember the RECEIVE, respond with "error:  insufficient
      resources".

      Reassemble queued incoming segments into receive buffer and return
      to user.  Mark "push seen" (PUSH) if this is the case.

      If RCV.UP is in advance of the data currently being passed to the
      user notify the user of the presence of urgent data.

      When the TCP takes responsibility for delivering data to the user
      that fact must be communicated to the sender via an
      acknowledgment.  The formation of such an acknowledgment is
      described below in the discussion of processing an incoming
      segment.
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    CLOSE-WAIT STATE

      Since the remote side has already sent FIN, RECEIVEs must be
      satisfied by text already on hand, but not yet delivered to the
      user.  If no text is awaiting delivery, the RECEIVE will get a
      "error:  connection closing" response.  Otherwise, any remaining
      text can be used to satisfy the RECEIVE.

    CLOSING STATE
    LAST-ACK STATE
    TIME-WAIT STATE

      Return "error:  connection closing".
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  CLOSE Call

    CLOSED STATE (i.e., TCB does not exist)

      If the user does not have access to such a connection, return
      "error:  connection illegal for this process".

      Otherwise, return "error:  connection does not exist".

    LISTEN STATE

      Any outstanding RECEIVEs are returned with "error:  closing"
      responses.  Delete TCB, enter CLOSED state, and return.

    SYN-SENT STATE

      Delete the TCB and return "error:  closing" responses to any
      queued SENDs, or RECEIVEs.

    SYN-RECEIVED STATE

      If no SENDs have been issued and there is no pending data to send,
      then form a FIN segment and send it, and enter FIN-WAIT-1 state;
      otherwise queue for processing after entering ESTABLISHED state.

    ESTABLISHED STATE

      Queue this until all preceding SENDs have been segmentized, then
      form a FIN segment and send it.  In any case, enter FIN-WAIT-1
      state.

    FIN-WAIT-1 STATE
    FIN-WAIT-2 STATE

      Strictly speaking, this is an error and should receive a "error:
      connection closing" response.  An "ok" response would be
      acceptable, too, as long as a second FIN is not emitted (the first
      FIN may be retransmitted though).
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    CLOSE-WAIT STATE

      Queue this request until all preceding SENDs have been
      segmentized; then send a FIN segment, enter CLOSING state.

    CLOSING STATE
    LAST-ACK STATE
    TIME-WAIT STATE

      Respond with "error:  connection closing".

                                                               [Page 61]



                                                          September 1981
Transmission Control Protocol
Functional Specification
                                                              ABORT Call

  ABORT Call

    CLOSED STATE (i.e., TCB does not exist)

      If the user should not have access to such a connection, return
      "error:  connection illegal for this process".

      Otherwise return "error:  connection does not exist".

    LISTEN STATE

      Any outstanding RECEIVEs should be returned with "error:
      connection reset" responses.  Delete TCB, enter CLOSED state, and
      return.

    SYN-SENT STATE

      All queued SENDs and RECEIVEs should be given "connection reset"
      notification, delete the TCB, enter CLOSED state, and return.

    SYN-RECEIVED STATE
    ESTABLISHED STATE
    FIN-WAIT-1 STATE
    FIN-WAIT-2 STATE
    CLOSE-WAIT STATE

      Send a reset segment:

        <SEQ=SND.NXT><CTL=RST>

      All queued SENDs and RECEIVEs should be given "connection reset"
      notification; all segments queued for transmission (except for the
      RST formed above) or retransmission should be flushed, delete the
      TCB, enter CLOSED state, and return.

    CLOSING STATE
    LAST-ACK STATE
    TIME-WAIT STATE

      Respond with "ok" and delete the TCB, enter CLOSED state, and
      return.
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  STATUS Call

    CLOSED STATE (i.e., TCB does not exist)

      If the user should not have access to such a connection, return
      "error:  connection illegal for this process".

      Otherwise return "error:  connection does not exist".

    LISTEN STATE

      Return "state = LISTEN", and the TCB pointer.

    SYN-SENT STATE

      Return "state = SYN-SENT", and the TCB pointer.

    SYN-RECEIVED STATE

      Return "state = SYN-RECEIVED", and the TCB pointer.

    ESTABLISHED STATE

      Return "state = ESTABLISHED", and the TCB pointer.

    FIN-WAIT-1 STATE

      Return "state = FIN-WAIT-1", and the TCB pointer.

    FIN-WAIT-2 STATE

      Return "state = FIN-WAIT-2", and the TCB pointer.

    CLOSE-WAIT STATE

      Return "state = CLOSE-WAIT", and the TCB pointer.

    CLOSING STATE

      Return "state = CLOSING", and the TCB pointer.

    LAST-ACK STATE

      Return "state = LAST-ACK", and the TCB pointer.
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    TIME-WAIT STATE

      Return "state = TIME-WAIT", and the TCB pointer.
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  SEGMENT ARRIVES

    If the state is CLOSED (i.e., TCB does not exist) then

      all data in the incoming segment is discarded.  An incoming
      segment containing a RST is discarded.  An incoming segment not
      containing a RST causes a RST to be sent in response.  The
      acknowledgment and sequence field values are selected to make the
      reset sequence acceptable to the TCP that sent the offending
      segment.

      If the ACK bit is off, sequence number zero is used,

        <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

      If the ACK bit is on,

        <SEQ=SEG.ACK><CTL=RST>

      Return.

    If the state is LISTEN then

      first check for an RST

        An incoming RST should be ignored.  Return.

      second check for an ACK

        Any acknowledgment is bad if it arrives on a connection still in
        the LISTEN state.  An acceptable reset segment should be formed
        for any arriving ACK-bearing segment.  The RST should be
        formatted as follows:

          <SEQ=SEG.ACK><CTL=RST>

        Return.

      third check for a SYN

        If the SYN bit is set, check the security.  If the
        security/compartment on the incoming segment does not exactly
        match the security/compartment in the TCB then send a reset and
        return.

          <SEQ=SEG.ACK><CTL=RST>
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        If the SEG.PRC is greater than the TCB.PRC then if allowed by
        the user and the system set TCB.PRC<-SEG.PRC, if not allowed
        send a reset and return.

          <SEQ=SEG.ACK><CTL=RST>

        If the SEG.PRC is less than the TCB.PRC then continue.

        Set RCV.NXT to SEG.SEQ+1, IRS is set to SEG.SEQ and any other
        control or text should be queued for processing later.  ISS
        should be selected and a SYN segment sent of the form:

          <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

        SND.NXT is set to ISS+1 and SND.UNA to ISS.  The connection
        state should be changed to SYN-RECEIVED.  Note that any other
        incoming control or data (combined with SYN) will be processed
        in the SYN-RECEIVED state, but processing of SYN and ACK should
        not be repeated.  If the listen was not fully specified (i.e.,
        the foreign socket was not fully specified), then the
        unspecified fields should be filled in now.

      fourth other text or control

        Any other control or text-bearing segment (not containing SYN)
        must have an ACK and thus would be discarded by the ACK
        processing.  An incoming RST segment could not be valid, since
        it could not have been sent in response to anything sent by this
        incarnation of the connection.  So you are unlikely to get here,
        but if you do, drop the segment, and return.

    If the state is SYN-SENT then

      first check the ACK bit

        If the ACK bit is set

          If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send a reset (unless
          the RST bit is set, if so drop the segment and return)

            <SEQ=SEG.ACK><CTL=RST>

          and discard the segment.  Return.

          If SND.UNA =< SEG.ACK =< SND.NXT then the ACK is acceptable.

      second check the RST bit
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        If the RST bit is set

          If the ACK was acceptable then signal the user "error:
          connection reset", drop the segment, enter CLOSED state,
          delete TCB, and return.  Otherwise (no ACK) drop the segment
          and return.

      third check the security and precedence

        If the security/compartment in the segment does not exactly
        match the security/compartment in the TCB, send a reset

          If there is an ACK

            <SEQ=SEG.ACK><CTL=RST>

          Otherwise

            <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

        If there is an ACK

          The precedence in the segment must match the precedence in the
          TCB, if not, send a reset

            <SEQ=SEG.ACK><CTL=RST>

        If there is no ACK

          If the precedence in the segment is higher than the precedence
          in the TCB then if allowed by the user and the system raise
          the precedence in the TCB to that in the segment, if not
          allowed to raise the prec then send a reset.

            <SEQ=0><ACK=SEG.SEQ+SEG.LEN><CTL=RST,ACK>

          If the precedence in the segment is lower than the precedence
          in the TCB continue.

        If a reset was sent, discard the segment and return.

      fourth check the SYN bit

        This step should be reached only if the ACK is ok, or there is
        no ACK, and it the segment did not contain a RST.

        If the SYN bit is on and the security/compartment and precedence

                                                               [Page 67]



                                                          September 1981
Transmission Control Protocol
Functional Specification
                                                         SEGMENT ARRIVES

        are acceptable then, RCV.NXT is set to SEG.SEQ+1, IRS is set to
        SEG.SEQ.  SND.UNA should be advanced to equal SEG.ACK (if there
        is an ACK), and any segments on the retransmission queue which
        are thereby acknowledged should be removed.

        If SND.UNA > ISS (our SYN has been ACKed), change the connection
        state to ESTABLISHED, form an ACK segment

          <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

        and send it.  Data or controls which were queued for
        transmission may be included.  If there are other controls or
        text in the segment then continue processing at the sixth step
        below where the URG bit is checked, otherwise return.

        Otherwise enter SYN-RECEIVED, form a SYN,ACK segment

          <SEQ=ISS><ACK=RCV.NXT><CTL=SYN,ACK>

        and send it.  If there are other controls or text in the
        segment, queue them for processing after the ESTABLISHED state
        has been reached, return.

      fifth, if neither of the SYN or RST bits is set then drop the
      segment and return.
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    Otherwise,

    first check sequence number

      SYN-RECEIVED STATE
      ESTABLISHED STATE
      FIN-WAIT-1 STATE
      FIN-WAIT-2 STATE
      CLOSE-WAIT STATE
      CLOSING STATE
      LAST-ACK STATE
      TIME-WAIT STATE

        Segments are processed in sequence.  Initial tests on arrival
        are used to discard old duplicates, but further processing is
        done in SEG.SEQ order.  If a segment’s contents straddle the
        boundary between old and new, only the new parts should be
        processed.

        There are four cases for the acceptability test for an incoming
        segment:

        Segment Receive  Test
        Length  Window
        ------- -------  -------------------------------------------

           0       0     SEG.SEQ = RCV.NXT

           0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

          >0       0     not acceptable

          >0      >0     RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND
                      or RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

        If the RCV.WND is zero, no segments will be acceptable, but
        special allowance should be made to accept valid ACKs, URGs and
        RSTs.

        If an incoming segment is not acceptable, an acknowledgment
        should be sent in reply (unless the RST bit is set, if so drop
        the segment and return):

          <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

        After sending the acknowledgment, drop the unacceptable segment
        and return.
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        In the following it is assumed that the segment is the idealized
        segment that begins at RCV.NXT and does not exceed the window.
        One could tailor actual segments to fit this assumption by
        trimming off any portions that lie outside the window (including
        SYN and FIN), and only processing further if the segment then
        begins at RCV.NXT.  Segments with higher begining sequence
        numbers may be held for later processing.

    second check the RST bit,

      SYN-RECEIVED STATE

        If the RST bit is set

          If this connection was initiated with a passive OPEN (i.e.,
          came from the LISTEN state), then return this connection to
          LISTEN state and return.  The user need not be informed.  If
          this connection was initiated with an active OPEN (i.e., came
          from SYN-SENT state) then the connection was refused, signal
          the user "connection refused".  In either case, all segments
          on the retransmission queue should be removed.  And in the
          active OPEN case, enter the CLOSED state and delete the TCB,
          and return.

      ESTABLISHED
      FIN-WAIT-1
      FIN-WAIT-2
      CLOSE-WAIT

        If the RST bit is set then, any outstanding RECEIVEs and SEND
        should receive "reset" responses.  All segment queues should be
        flushed.  Users should also receive an unsolicited general
        "connection reset" signal.  Enter the CLOSED state, delete the
        TCB, and return.

      CLOSING STATE
      LAST-ACK STATE
      TIME-WAIT

        If the RST bit is set then, enter the CLOSED state, delete the
        TCB, and return.
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    third check security and precedence

      SYN-RECEIVED

        If the security/compartment and precedence in the segment do not
        exactly match the security/compartment and precedence in the TCB
        then send a reset, and return.

      ESTABLISHED STATE

        If the security/compartment and precedence in the segment do not
        exactly match the security/compartment and precedence in the TCB
        then send a reset, any outstanding RECEIVEs and SEND should
        receive "reset" responses.  All segment queues should be
        flushed.  Users should also receive an unsolicited general
        "connection reset" signal.  Enter the CLOSED state, delete the
        TCB, and return.

      Note this check is placed following the sequence check to prevent
      a segment from an old connection between these ports with a
      different security or precedence from causing an abort of the
      current connection.

    fourth, check the SYN bit,

      SYN-RECEIVED
      ESTABLISHED STATE
      FIN-WAIT STATE-1
      FIN-WAIT STATE-2
      CLOSE-WAIT STATE
      CLOSING STATE
      LAST-ACK STATE
      TIME-WAIT STATE

        If the SYN is in the window it is an error, send a reset, any
        outstanding RECEIVEs and SEND should receive "reset" responses,
        all segment queues should be flushed, the user should also
        receive an unsolicited general "connection reset" signal, enter
        the CLOSED state, delete the TCB, and return.

        If the SYN is not in the window this step would not be reached
        and an ack would have been sent in the first step (sequence
        number check).

                                                               [Page 71]



                                                          September 1981
Transmission Control Protocol
Functional Specification
                                                         SEGMENT ARRIVES

    fifth check the ACK field,

      if the ACK bit is off drop the segment and return

      if the ACK bit is on

        SYN-RECEIVED STATE

          If SND.UNA =< SEG.ACK =< SND.NXT then enter ESTABLISHED state
          and continue processing.

            If the segment acknowledgment is not acceptable, form a
            reset segment,

              <SEQ=SEG.ACK><CTL=RST>

            and send it.

        ESTABLISHED STATE

          If SND.UNA < SEG.ACK =< SND.NXT then, set SND.UNA <- SEG.ACK.
          Any segments on the retransmission queue which are thereby
          entirely acknowledged are removed.  Users should receive
          positive acknowledgments for buffers which have been SENT and
          fully acknowledged (i.e., SEND buffer should be returned with
          "ok" response).  If the ACK is a duplicate
          (SEG.ACK < SND.UNA), it can be ignored.  If the ACK acks
          something not yet sent (SEG.ACK > SND.NXT) then send an ACK,
          drop the segment, and return.

          If SND.UNA < SEG.ACK =< SND.NXT, the send window should be
          updated.  If (SND.WL1 < SEG.SEQ or (SND.WL1 = SEG.SEQ and
          SND.WL2 =< SEG.ACK)), set SND.WND <- SEG.WND, set
          SND.WL1 <- SEG.SEQ, and set SND.WL2 <- SEG.ACK.

          Note that SND.WND is an offset from SND.UNA, that SND.WL1
          records the sequence number of the last segment used to update
          SND.WND, and that SND.WL2 records the acknowledgment number of
          the last segment used to update SND.WND.  The check here
          prevents using old segments to update the window.
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        FIN-WAIT-1 STATE

          In addition to the processing for the ESTABLISHED state, if
          our FIN is now acknowledged then enter FIN-WAIT-2 and continue
          processing in that state.

        FIN-WAIT-2 STATE

          In addition to the processing for the ESTABLISHED state, if
          the retransmission queue is empty, the user’s CLOSE can be
          acknowledged ("ok") but do not delete the TCB.

        CLOSE-WAIT STATE

          Do the same processing as for the ESTABLISHED state.

        CLOSING STATE

          In addition to the processing for the ESTABLISHED state, if
          the ACK acknowledges our FIN then enter the TIME-WAIT state,
          otherwise ignore the segment.

        LAST-ACK STATE

          The only thing that can arrive in this state is an
          acknowledgment of our FIN.  If our FIN is now acknowledged,
          delete the TCB, enter the CLOSED state, and return.

        TIME-WAIT STATE

          The only thing that can arrive in this state is a
          retransmission of the remote FIN.  Acknowledge it, and restart
          the 2 MSL timeout.

    sixth, check the URG bit,

      ESTABLISHED STATE
      FIN-WAIT-1 STATE
      FIN-WAIT-2 STATE

        If the URG bit is set, RCV.UP <- max(RCV.UP,SEG.UP), and signal
        the user that the remote side has urgent data if the urgent
        pointer (RCV.UP) is in advance of the data consumed.  If the
        user has already been signaled (or is still in the "urgent
        mode") for this continuous sequence of urgent data, do not
        signal the user again.
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      CLOSE-WAIT STATE
      CLOSING STATE
      LAST-ACK STATE
      TIME-WAIT

        This should not occur, since a FIN has been received from the
        remote side.  Ignore the URG.

    seventh, process the segment text,

      ESTABLISHED STATE
      FIN-WAIT-1 STATE
      FIN-WAIT-2 STATE

        Once in the ESTABLISHED state, it is possible to deliver segment
        text to user RECEIVE buffers.  Text from segments can be moved
        into buffers until either the buffer is full or the segment is
        empty.  If the segment empties and carries an PUSH flag, then
        the user is informed, when the buffer is returned, that a PUSH
        has been received.

        When the TCP takes responsibility for delivering the data to the
        user it must also acknowledge the receipt of the data.

        Once the TCP takes responsibility for the data it advances
        RCV.NXT over the data accepted, and adjusts RCV.WND as
        apporopriate to the current buffer availability.  The total of
        RCV.NXT and RCV.WND should not be reduced.

        Please note the window management suggestions in section 3.7.

        Send an acknowledgment of the form:

          <SEQ=SND.NXT><ACK=RCV.NXT><CTL=ACK>

        This acknowledgment should be piggybacked on a segment being
        transmitted if possible without incurring undue delay.
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      CLOSE-WAIT STATE
      CLOSING STATE
      LAST-ACK STATE
      TIME-WAIT STATE

        This should not occur, since a FIN has been received from the
        remote side.  Ignore the segment text.

    eighth, check the FIN bit,

      Do not process the FIN if the state is CLOSED, LISTEN or SYN-SENT
      since the SEG.SEQ cannot be validated; drop the segment and
      return.

      If the FIN bit is set, signal the user "connection closing" and
      return any pending RECEIVEs with same message, advance RCV.NXT
      over the FIN, and send an acknowledgment for the FIN.  Note that
      FIN implies PUSH for any segment text not yet delivered to the
      user.

        SYN-RECEIVED STATE
        ESTABLISHED STATE

          Enter the CLOSE-WAIT state.

        FIN-WAIT-1 STATE

          If our FIN has been ACKed (perhaps in this segment), then
          enter TIME-WAIT, start the time-wait timer, turn off the other
          timers; otherwise enter the CLOSING state.

        FIN-WAIT-2 STATE

          Enter the TIME-WAIT state.  Start the time-wait timer, turn
          off the other timers.

        CLOSE-WAIT STATE

          Remain in the CLOSE-WAIT state.

        CLOSING STATE

          Remain in the CLOSING state.

        LAST-ACK STATE

          Remain in the LAST-ACK state.
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        TIME-WAIT STATE

          Remain in the TIME-WAIT state.  Restart the 2 MSL time-wait
          timeout.

    and return.
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  USER TIMEOUT

    For any state if the user timeout expires, flush all queues, signal
    the user "error:  connection aborted due to user timeout" in general
    and for any outstanding calls, delete the TCB, enter the CLOSED
    state and return.

  RETRANSMISSION TIMEOUT

    For any state if the retransmission timeout expires on a segment in
    the retransmission queue, send the segment at the front of the
    retransmission queue again, reinitialize the retransmission timer,
    and return.

  TIME-WAIT TIMEOUT

    If the time-wait timeout expires on a connection delete the TCB,
    enter the CLOSED state and return.
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1822
          BBN Report 1822, "The Specification of the Interconnection of
          a Host and an IMP".  The specification of interface between a
          host and the ARPANET.

ACK
          A control bit (acknowledge) occupying no sequence space, which
          indicates that the acknowledgment field of this segment
          specifies the next sequence number the sender of this segment
          is expecting to receive, hence acknowledging receipt of all
          previous sequence numbers.

ARPANET message
          The unit of transmission between a host and an IMP in the
          ARPANET.  The maximum size is about 1012 octets (8096 bits).

ARPANET packet
          A unit of transmission used internally in the ARPANET between
          IMPs.  The maximum size is about 126 octets (1008 bits).

connection
          A logical communication path identified by a pair of sockets.

datagram
          A message sent in a packet switched computer communications
          network.

Destination Address
          The destination address, usually the network and host
          identifiers.

FIN
          A control bit (finis) occupying one sequence number, which
          indicates that the sender will send no more data or control
          occupying sequence space.

fragment
          A portion of a logical unit of data, in particular an internet
          fragment is a portion of an internet datagram.

FTP
          A file transfer protocol.
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header
          Control information at the beginning of a message, segment,
          fragment, packet or block of data.

host
          A computer.  In particular a source or destination of messages
          from the point of view of the communication network.

Identification
          An Internet Protocol field.  This identifying value assigned
          by the sender aids in assembling the fragments of a datagram.

IMP
          The Interface Message Processor, the packet switch of the
          ARPANET.

internet address
          A source or destination address specific to the host level.

internet datagram
          The unit of data exchanged between an internet module and the
          higher level protocol together with the internet header.

internet fragment
          A portion of the data of an internet datagram with an internet
          header.

IP
          Internet Protocol.

IRS
          The Initial Receive Sequence number.  The first sequence
          number used by the sender on a connection.

ISN
          The Initial Sequence Number.  The first sequence number used
          on a connection, (either ISS or IRS).  Selected on a clock
          based procedure.

ISS
          The Initial Send Sequence number.  The first sequence number
          used by the sender on a connection.

leader
          Control information at the beginning of a message or block of
          data.  In particular, in the ARPANET, the control information
          on an ARPANET message at the host-IMP interface.
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left sequence
          This is the next sequence number to be acknowledged by the
          data receiving TCP (or the lowest currently unacknowledged
          sequence number) and is sometimes referred to as the left edge
          of the send window.

local packet
          The unit of transmission within a local network.

module
          An implementation, usually in software, of a protocol or other
          procedure.

MSL
          Maximum Segment Lifetime, the time a TCP segment can exist in
          the internetwork system.  Arbitrarily defined to be 2 minutes.

octet
          An eight bit byte.

Options
          An Option field may contain several options, and each option
          may be several octets in length.  The options are used
          primarily in testing situations; for example, to carry
          timestamps.  Both the Internet Protocol and TCP provide for
          options fields.

packet
          A package of data with a header which may or may not be
          logically complete.  More often a physical packaging than a
          logical packaging of data.

port
          The portion of a socket that specifies which logical input or
          output channel of a process is associated with the data.

process
          A program in execution.  A source or destination of data from
          the point of view of the TCP or other host-to-host protocol.

PUSH
          A control bit occupying no sequence space, indicating that
          this segment contains data that must be pushed through to the
          receiving user.

RCV.NXT
          receive next sequence number
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RCV.UP
          receive urgent pointer

RCV.WND
          receive window

receive next sequence number
          This is the next sequence number the local TCP is expecting to
          receive.

receive window
          This represents the sequence numbers the local (receiving) TCP
          is willing to receive.  Thus, the local TCP considers that
          segments overlapping the range RCV.NXT to
          RCV.NXT + RCV.WND - 1 carry acceptable data or control.
          Segments containing sequence numbers entirely outside of this
          range are considered duplicates and discarded.

RST
          A control bit (reset), occupying no sequence space, indicating
          that the receiver should delete the connection without further
          interaction.  The receiver can determine, based on the
          sequence number and acknowledgment fields of the incoming
          segment, whether it should honor the reset command or ignore
          it.  In no case does receipt of a segment containing RST give
          rise to a RST in response.

RTP
          Real Time Protocol:  A host-to-host protocol for communication
          of time critical information.

SEG.ACK
          segment acknowledgment

SEG.LEN
          segment length

SEG.PRC
          segment precedence value

SEG.SEQ
          segment sequence

SEG.UP
          segment urgent pointer field
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SEG.WND
          segment window field

segment
          A logical unit of data, in particular a TCP segment is the
          unit of data transfered between a pair of TCP modules.

segment acknowledgment
          The sequence number in the acknowledgment field of the
          arriving segment.

segment length
          The amount of sequence number space occupied by a segment,
          including any controls which occupy sequence space.

segment sequence
          The number in the sequence field of the arriving segment.

send sequence
          This is the next sequence number the local (sending) TCP will
          use on the connection.  It is initially selected from an
          initial sequence number curve (ISN) and is incremented for
          each octet of data or sequenced control transmitted.

send window
          This represents the sequence numbers which the remote
          (receiving) TCP is willing to receive.  It is the value of the
          window field specified in segments from the remote (data
          receiving) TCP.  The range of new sequence numbers which may
          be emitted by a TCP lies between SND.NXT and
          SND.UNA + SND.WND - 1. (Retransmissions of sequence numbers
          between SND.UNA and SND.NXT are expected, of course.)

SND.NXT
          send sequence

SND.UNA
          left sequence

SND.UP
          send urgent pointer

SND.WL1
          segment sequence number at last window update

SND.WL2
          segment acknowledgment number at last window update
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SND.WND
          send window

socket
          An address which specifically includes a port identifier, that
          is, the concatenation of an Internet Address with a TCP port.

Source Address
          The source address, usually the network and host identifiers.

SYN
          A control bit in the incoming segment, occupying one sequence
          number, used at the initiation of a connection, to indicate
          where the sequence numbering will start.

TCB
          Transmission control block, the data structure that records
          the state of a connection.

TCB.PRC
          The precedence of the connection.

TCP
          Transmission Control Protocol:  A host-to-host protocol for
          reliable communication in internetwork environments.

TOS
          Type of Service, an Internet Protocol field.

Type of Service
          An Internet Protocol field which indicates the type of service
          for this internet fragment.

URG
          A control bit (urgent), occupying no sequence space, used to
          indicate that the receiving user should be notified to do
          urgent processing as long as there is data to be consumed with
          sequence numbers less than the value indicated in the urgent
          pointer.

urgent pointer
          A control field meaningful only when the URG bit is on.  This
          field communicates the value of the urgent pointer which
          indicates the data octet associated with the sending user’s
          urgent call.
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1. Introduction

1.1 Summary of Contents of Document

   This memo specifies the base architecture for IPsec compliant
   systems.  The goal of the architecture is to provide various security
   services for traffic at the IP layer, in both the IPv4 and IPv6
   environments.  This document describes the goals of such systems,
   their components and how they fit together with each other and into
   the IP environment.  It also describes the security services offered
   by the IPsec protocols, and how these services can be employed in the
   IP environment.  This document does not address all aspects of IPsec
   architecture.  Subsequent documents will address additional
   architectural details of a more advanced nature, e.g., use of IPsec
   in NAT environments and more complete support for IP multicast.  The
   following fundamental components of the IPsec security architecture
   are discussed in terms of their underlying, required functionality.
   Additional RFCs (see Section 1.3 for pointers to other documents)
   define the protocols in (a), (c), and (d).

        a. Security Protocols -- Authentication Header (AH) and
           Encapsulating Security Payload (ESP)
        b. Security Associations -- what they are and how they work,
           how they are managed, associated processing
        c. Key Management -- manual and automatic (The Internet Key
           Exchange (IKE))
        d. Algorithms for authentication and encryption

   This document is not an overall Security Architecture for the
   Internet; it addresses security only at the IP layer, provided
   through the use of a combination of cryptographic and protocol
   security mechanisms.

   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
   SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
   document, are to be interpreted as described in RFC 2119 [Bra97].

1.2 Audience

   The target audience for this document includes implementers of this
   IP security technology and others interested in gaining a general
   background understanding of this system.  In particular, prospective
   users of this technology (end users or system administrators) are
   part of the target audience.  A glossary is provided as an appendix
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   to help fill in gaps in background/vocabulary.  This document assumes
   that the reader is familiar with the Internet Protocol, related
   networking technology, and general security terms and concepts.

1.3 Related Documents

   As mentioned above, other documents provide detailed definitions of
   some of the components of IPsec and of their inter-relationship.
   They include RFCs on the following topics:

        a. "IP Security Document Roadmap" [TDG97] -- a document
           providing guidelines for specifications describing encryption
           and authentication algorithms used in this system.
        b. security protocols -- RFCs describing the Authentication
           Header (AH) [KA98a] and Encapsulating Security Payload (ESP)
           [KA98b] protocols.
        c. algorithms for authentication and encryption -- a separate
           RFC for each algorithm.
        d. automatic key management -- RFCs on "The Internet Key
           Exchange (IKE)" [HC98], "Internet Security Association and
           Key Management Protocol (ISAKMP)" [MSST97],"The OAKLEY Key
           Determination Protocol" [Orm97], and "The Internet IP
           Security Domain of Interpretation for ISAKMP" [Pip98].

2. Design Objectives

2.1 Goals/Objectives/Requirements/Problem Description

   IPsec is designed to provide interoperable, high quality,
   cryptographically-based security for IPv4 and IPv6.  The set of
   security services offered includes access control, connectionless
   integrity, data origin authentication, protection against replays (a
   form of partial sequence integrity), confidentiality (encryption),
   and limited traffic flow confidentiality.  These services are
   provided at the IP layer, offering protection for IP and/or upper
   layer protocols.

   These objectives are met through the use of two traffic security
   protocols, the Authentication Header (AH) and the Encapsulating
   Security Payload (ESP), and through the use of cryptographic key
   management procedures and protocols.  The set of IPsec protocols
   employed in any context, and the ways in which they are employed,
   will be determined by the security and system requirements of users,
   applications, and/or sites/organizations.

   When these mechanisms are correctly implemented and deployed, they
   ought not to adversely affect users, hosts, and other Internet
   components that do not employ these security mechanisms for

Kent & Atkinson             Standards Track                     [Page 4]



RFC 2401              Security Architecture for IP         November 1998

   protection of their traffic.  These mechanisms also are designed to
   be algorithm-independent.  This modularity permits selection of
   different sets of algorithms without affecting the other parts of the
   implementation.  For example, different user communities may select
   different sets of algorithms (creating cliques) if required.

   A standard set of default algorithms is specified to facilitate
   interoperability in the global Internet.  The use of these
   algorithms, in conjunction with IPsec traffic protection and key
   management protocols, is intended to permit system and application
   developers to deploy high quality, Internet layer, cryptographic
   security technology.

2.2 Caveats and Assumptions

   The suite of IPsec protocols and associated default algorithms are
   designed to provide high quality security for Internet traffic.
   However, the security offered by use of these protocols ultimately
   depends on the quality of the their implementation, which is outside
   the scope of this set of standards.  Moreover, the security of a
   computer system or network is a function of many factors, including
   personnel, physical, procedural, compromising emanations, and
   computer security practices.  Thus IPsec is only one part of an
   overall system security architecture.

   Finally, the security afforded by the use of IPsec is critically
   dependent on many aspects of the operating environment in which the
   IPsec implementation executes.  For example, defects in OS security,
   poor quality of random number sources, sloppy system management
   protocols and practices, etc. can all degrade the security provided
   by IPsec.  As above, none of these environmental attributes are
   within the scope of this or other IPsec standards.

3. System Overview

   This section provides a high level description of how IPsec works,
   the components of the system, and how they fit together to provide
   the security services noted above.  The goal of this description is
   to enable the reader to "picture" the overall process/system, see how
   it fits into the IP environment, and to provide context for later
   sections of this document, which describe each of the components in
   more detail.

   An IPsec implementation operates in a host or a security gateway
   environment, affording protection to IP traffic.  The protection
   offered is based on requirements defined by a Security Policy
   Database (SPD) established and maintained by a user or system
   administrator, or by an application operating within constraints
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   established by either of the above.  In general, packets are selected
   for one of three processing modes based on IP and transport layer
   header information (Selectors, Section 4.4.2) matched against entries
   in the database (SPD).  Each packet is either afforded IPsec security
   services, discarded, or allowed to bypass IPsec, based on the
   applicable database policies identified by the Selectors.

3.1 What IPsec Does

   IPsec provides security services at the IP layer by enabling a system
   to select required security protocols, determine the algorithm(s) to
   use for the service(s), and put in place any cryptographic keys
   required to provide the requested services.  IPsec can be used to
   protect one or more "paths" between a pair of hosts, between a pair
   of security gateways, or between a security gateway and a host.  (The
   term "security gateway" is used throughout the IPsec documents to
   refer to an intermediate system that implements IPsec protocols.  For
   example, a router or a firewall implementing IPsec is a security
   gateway.)

   The set of security services that IPsec can provide includes access
   control, connectionless integrity, data origin authentication,
   rejection of replayed packets (a form of partial sequence integrity),
   confidentiality (encryption), and limited traffic flow
   confidentiality.  Because these services are provided at the IP
   layer, they can be used by any higher layer protocol, e.g., TCP, UDP,
   ICMP, BGP, etc.

   The IPsec DOI also supports negotiation of IP compression [SMPT98],
   motivated in part by the observation that when encryption is employed
   within IPsec, it prevents effective compression by lower protocol
   layers.

3.2 How IPsec Works

   IPsec uses two protocols to provide traffic security --
   Authentication Header (AH) and Encapsulating Security Payload (ESP).
   Both protocols are described in more detail in their respective RFCs
   [KA98a, KA98b].

        o The IP Authentication Header (AH) [KA98a] provides
          connectionless integrity, data origin authentication, and an
          optional anti-replay service.
        o The Encapsulating Security Payload (ESP) protocol [KA98b] may
          provide confidentiality (encryption), and limited traffic flow
          confidentiality.  It also may provide connectionless
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          integrity, data origin authentication, and an anti-replay
          service.  (One or the other set of these security services
          must be applied whenever ESP is invoked.)
        o Both AH and ESP are vehicles for access control, based on the
          distribution of cryptographic keys and the management of
          traffic flows relative to these security protocols.

   These protocols may be applied alone or in combination with each
   other to provide a desired set of security services in IPv4 and IPv6.
   Each protocol supports two modes of use: transport mode and tunnel
   mode.  In transport mode the protocols provide protection primarily
   for upper layer protocols; in tunnel mode, the protocols are applied
   to tunneled IP packets.  The differences between the two modes are
   discussed in Section 4.

   IPsec allows the user (or system administrator) to control the
   granularity at which a security service is offered.  For example, one
   can create a single encrypted tunnel to carry all the traffic between
   two security gateways or a separate encrypted tunnel can be created
   for each TCP connection between each pair of hosts communicating
   across these gateways.  IPsec management must incorporate facilities
   for specifying:

        o which security services to use and in what combinations
        o the granularity at which a given security protection should be
          applied
        o the algorithms used to effect cryptographic-based security

   Because these security services use shared secret values
   (cryptographic keys), IPsec relies on a separate set of mechanisms
   for putting these keys in place. (The keys are used for
   authentication/integrity and encryption services.)  This document
   requires support for both manual and automatic distribution of keys.
   It specifies a specific public-key based approach (IKE -- [MSST97,
   Orm97, HC98]) for automatic key management, but other automated key
   distribution techniques MAY be used.  For example, KDC-based systems
   such as Kerberos and other public-key systems such as SKIP could be
   employed.

3.3 Where IPsec May Be Implemented

   There are several ways in which IPsec may be implemented in a host or
   in conjunction with a router or firewall (to create a security
   gateway).  Several common examples are provided below:

        a. Integration of IPsec into the native IP implementation.  This
           requires access to the IP source code and is applicable to
           both hosts and security gateways.
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        b. "Bump-in-the-stack" (BITS) implementations, where IPsec is
           implemented "underneath" an existing implementation of an IP
           protocol stack, between the native IP and the local network
           drivers.  Source code access for the IP stack is not required
           in this context, making this implementation approach
           appropriate for use with legacy systems.  This approach, when
           it is adopted, is usually employed in hosts.

        c. The use of an outboard crypto processor is a common design
           feature of network security systems used by the military, and
           of some commercial systems as well.  It is sometimes referred
           to as a "Bump-in-the-wire" (BITW) implementation.  Such
           implementations may be designed to serve either a host or a
           gateway (or both).  Usually the BITW device is IP
           addressable.  When supporting a single host, it may be quite
           analogous to a BITS implementation, but in supporting a
           router or firewall, it must operate like a security gateway.

4. Security Associations

   This section defines Security Association management requirements for
   all IPv6 implementations and for those IPv4 implementations that
   implement AH, ESP, or both.  The concept of a "Security Association"
   (SA) is fundamental to IPsec.  Both AH and ESP make use of SAs and a
   major function of IKE is the establishment and maintenance of
   Security Associations.  All implementations of AH or ESP MUST support
   the concept of a Security Association as described below.  The
   remainder of this section describes various aspects of Security
   Association management, defining required characteristics for SA
   policy management, traffic processing, and SA management techniques.

4.1 Definition and Scope

   A Security Association (SA) is a simplex "connection" that affords
   security services to the traffic carried by it.  Security services
   are afforded to an SA by the use of AH, or ESP, but not both.  If
   both AH and ESP protection is applied to a traffic stream, then two
   (or more) SAs are created to afford protection to the traffic stream.
   To secure typical, bi-directional communication between two hosts, or
   between two security gateways, two Security Associations (one in each
   direction) are required.

   A security association is uniquely identified by a triple consisting
   of a Security Parameter Index (SPI), an IP Destination Address, and a
   security protocol (AH or ESP) identifier.  In principle, the
   Destination Address may be a unicast address, an IP broadcast
   address, or a multicast group address.  However, IPsec SA management
   mechanisms currently are defined only for unicast SAs.  Hence, in the
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   discussions that follow, SAs will be described in the context of
   point-to-point communication, even though the concept is applicable
   in the point-to-multipoint case as well.

   As noted above, two types of SAs are defined: transport mode and
   tunnel mode.  A transport mode SA is a security association between
   two hosts.  In IPv4, a transport mode security protocol header
   appears immediately after the IP header and any options, and before
   any higher layer protocols (e.g., TCP or UDP).  In IPv6, the security
   protocol header appears after the base IP header and extensions, but
   may appear before or after destination options, and before higher
   layer protocols.  In the case of ESP, a transport mode SA provides
   security services only for these higher layer protocols, not for the
   IP header or any extension headers preceding the ESP header.  In the
   case of AH, the protection is also extended to selected portions of
   the IP header, selected portions of extension headers, and selected
   options (contained in the IPv4 header, IPv6 Hop-by-Hop extension
   header, or IPv6 Destination extension headers).  For more details on
   the coverage afforded by AH, see the AH specification [KA98a].

   A tunnel mode SA is essentially an SA applied to an IP tunnel.
   Whenever either end of a security association is a security gateway,
   the SA MUST be tunnel mode.  Thus an SA between two security gateways
   is always a tunnel mode SA, as is an SA between a host and a security
   gateway.  Note that for the case where traffic is destined for a
   security gateway, e.g., SNMP commands, the security gateway is acting
   as a host and transport mode is allowed.  But in that case, the
   security gateway is not acting as a gateway, i.e., not transiting
   traffic.  Two hosts MAY establish a tunnel mode SA between
   themselves.  The requirement for any (transit traffic) SA involving a
   security gateway to be a tunnel SA arises due to the need to avoid
   potential problems with regard to fragmentation and reassembly of
   IPsec packets, and in circumstances where multiple paths (e.g., via
   different security gateways) exist to the same destination behind the
   security gateways.

   For a tunnel mode SA, there is an "outer" IP header that specifies
   the IPsec processing destination, plus an "inner" IP header that
   specifies the (apparently) ultimate destination for the packet.  The
   security protocol header appears after the outer IP header, and
   before the inner IP header.  If AH is employed in tunnel mode,
   portions of the outer IP header are afforded protection (as above),
   as well as all of the tunneled IP packet (i.e., all of the inner IP
   header is protected, as well as higher layer protocols).  If ESP is
   employed, the protection is afforded only to the tunneled packet, not
   to the outer header.
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   In summary,
           a) A host MUST support both transport and tunnel mode.
           b) A security gateway is required to support only tunnel
              mode.  If it supports transport mode, that should be used
              only when the security gateway is acting as a host, e.g.,
              for network management.

4.2 Security Association Functionality

   The set of security services offered by an SA depends on the security
   protocol selected, the SA mode, the endpoints of the SA, and on the
   election of optional services within the protocol.  For example, AH
   provides data origin authentication and connectionless integrity for
   IP datagrams (hereafter referred to as just "authentication").  The
   "precision" of the authentication service is a function of the
   granularity of the security association with which AH is employed, as
   discussed in Section 4.4.2, "Selectors".

   AH also offers an anti-replay (partial sequence integrity) service at
   the discretion of the receiver, to help counter denial of service
   attacks.  AH is an appropriate protocol to employ when
   confidentiality is not required (or is not permitted, e.g , due to
   government restrictions on use of encryption).  AH also provides
   authentication for selected portions of the IP header, which may be
   necessary in some contexts.  For example, if the integrity of an IPv4
   option or IPv6 extension header must be protected en route between
   sender and receiver, AH can provide this service (except for the
   non-predictable but mutable parts of the IP header.)

   ESP optionally provides confidentiality for traffic.  (The strength
   of the confidentiality service depends in part, on the encryption
   algorithm employed.)  ESP also may optionally provide authentication
   (as defined above).  If authentication is negotiated for an ESP SA,
   the receiver also may elect to enforce an anti-replay service with
   the same features as the AH anti-replay service.  The scope of the
   authentication offered by ESP is narrower than for AH, i.e., the IP
   header(s) "outside" the ESP header is(are) not protected.  If only
   the upper layer protocols need to be authenticated, then ESP
   authentication is an appropriate choice and is more space efficient
   than use of AH encapsulating ESP.  Note that although both
   confidentiality and authentication are optional, they cannot both be
   omitted. At least one of them MUST be selected.

   If confidentiality service is selected, then an ESP (tunnel mode) SA
   between two security gateways can offer partial traffic flow
   confidentiality.  The use of tunnel mode allows the inner IP headers
   to be encrypted, concealing the identities of the (ultimate) traffic
   source and destination.  Moreover, ESP payload padding also can be
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   invoked to hide the size of the packets, further concealing the
   external characteristics of the traffic.  Similar traffic flow
   confidentiality services may be offered when a mobile user is
   assigned a dynamic IP address in a dialup context, and establishes a
   (tunnel mode) ESP SA to a corporate firewall (acting as a security
   gateway).  Note that fine granularity SAs generally are more
   vulnerable to traffic analysis than coarse granularity ones which are
   carrying traffic from many subscribers.

4.3 Combining Security Associations

   The IP datagrams transmitted over an individual SA are afforded
   protection by exactly one security protocol, either AH or ESP, but
   not both.  Sometimes a security policy may call for a combination of
   services for a particular traffic flow that is not achievable with a
   single SA.  In such instances it will be necessary to employ multiple
   SAs to implement the required security policy.  The term "security
   association bundle" or "SA bundle" is applied to a sequence of SAs
   through which traffic must be processed to satisfy a security policy.
   The order of the sequence is defined by the policy.  (Note that the
   SAs that comprise a bundle may terminate at different endpoints. For
   example, one SA may extend between a mobile host and a security
   gateway and a second, nested SA may extend to a host behind the
   gateway.)

   Security associations may be combined into bundles in two ways:
   transport adjacency and iterated tunneling.

           o Transport adjacency refers to applying more than one
             security protocol to the same IP datagram, without invoking
             tunneling.  This approach to combining AH and ESP allows
             for only one level of combination; further nesting yields
             no added benefit (assuming use of adequately strong
             algorithms in each protocol) since the processing is
             performed at one IPsec instance at the (ultimate)
             destination.

             Host 1 --- Security ---- Internet -- Security --- Host 2
              | |        Gwy 1                      Gwy 2        | |
              | |                                                | |
              | -----Security Association 1 (ESP transport)------- |
              |                                                    |
              -------Security Association 2 (AH transport)----------

           o Iterated tunneling refers to the application of multiple
             layers of security protocols effected through IP tunneling.
             This approach allows for multiple levels of nesting, since
             each tunnel can originate or terminate at a different IPsec
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             site along the path.  No special treatment is expected for
             ISAKMP traffic at intermediate security gateways other than
             what can be specified through appropriate SPD entries (See
             Case 3 in Section 4.5)

             There are 3 basic cases of iterated tunneling -- support is
             required only for cases 2 and 3.:

             1. both endpoints for the SAs are the same -- The inner and
                outer tunnels could each be either AH or ESP, though it
                is unlikely that Host 1 would specify both to be the
                same, i.e., AH inside of AH or ESP inside of ESP.

                Host 1 --- Security ---- Internet -- Security --- Host 2
                 | |        Gwy 1                      Gwy 2        | |
                 | |                                                | |
                 | -------Security Association 1 (tunnel)---------- | |
                 |                                                    |
                 ---------Security Association 2 (tunnel)--------------

             2. one endpoint of the SAs is the same -- The inner and
                uter tunnels could each be either AH or ESP.

                Host 1 --- Security ---- Internet -- Security --- Host 2
                 | |        Gwy 1                      Gwy 2         |
                 | |                                     |           |
                 | ----Security Association 1 (tunnel)----           |
                 |                                                   |
                 ---------Security Association 2 (tunnel)-------------

             3. neither endpoint is the same -- The inner and outer
                tunnels could each be either AH or ESP.

                Host 1 --- Security ---- Internet -- Security --- Host 2
                 |          Gwy 1                      Gwy 2         |
                 |            |                          |           |
                 |            --Security Assoc 1 (tunnel)-           |
                 |                                                   |
                 -----------Security Association 2 (tunnel)-----------

   These two approaches also can be combined, e.g., an SA bundle could
   be constructed from one tunnel mode SA and one or two transport mode
   SAs, applied in sequence.  (See Section 4.5 "Basic Combinations of
   Security Associations.") Note that nested tunnels can also occur
   where neither the source nor the destination endpoints of any of the
   tunnels are the same.  In that case, there would be no host or
   security gateway with a bundle corresponding to the nested tunnels.
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   For transport mode SAs, only one ordering of security protocols seems
   appropriate.  AH is applied to both the upper layer protocols and
   (parts of) the IP header.  Thus if AH is used in a transport mode, in
   conjunction with ESP, AH SHOULD appear as the first header after IP,
   prior to the appearance of ESP.  In that context, AH is applied to
   the ciphertext output of ESP.  In contrast, for tunnel mode SAs, one
   can imagine uses for various orderings of AH and ESP.  The required
   set of SA bundle types that MUST be supported by a compliant IPsec
   implementation is described in Section 4.5.

4.4 Security Association Databases

   Many of the details associated with processing IP traffic in an IPsec
   implementation are largely a local matter, not subject to
   standardization.  However, some external aspects of the processing
   must be standardized, to ensure interoperability and to provide a
   minimum management capability that is essential for productive use of
   IPsec.  This section describes a general model for processing IP
   traffic relative to security associations, in support of these
   interoperability and functionality goals.  The model described below
   is nominal; compliant implementations need not match details of this
   model as presented, but the external behavior of such implementations
   must be mappable to the externally observable characteristics of this
   model.

   There are two nominal databases in this model: the Security Policy
   Database and the Security Association Database.  The former specifies
   the policies that determine the disposition of all IP traffic inbound
   or outbound from a host, security gateway, or BITS or BITW IPsec
   implementation.  The latter database contains parameters that are
   associated with each (active) security association.  This section
   also defines the concept of a Selector, a set of IP and upper layer
   protocol field values that is used by the Security Policy Database to
   map traffic to a policy, i.e., an SA (or SA bundle).

   Each interface for which IPsec is enabled requires nominally separate
   inbound vs. outbound databases (SAD and SPD), because of the
   directionality of many of the fields that are used as selectors.
   Typically there is just one such interface, for a host or security
   gateway (SG).  Note that an SG would always have at least 2
   interfaces, but the "internal" one to the corporate net, usually
   would not have IPsec enabled and so only one pair of SADs and one
   pair of SPDs would be needed.  On the other hand, if a host had
   multiple interfaces or an SG had multiple external interfaces, it
   might be necessary to have separate SAD and SPD pairs for each
   interface.
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4.4.1 The Security Policy Database (SPD)

   Ultimately, a security association is a management construct used to
   enforce a security policy in the IPsec environment.  Thus an
   essential element of SA processing is an underlying Security Policy
   Database (SPD) that specifies what services are to be offered to IP
   datagrams and in what fashion.  The form of the database and its
   interface are outside the scope of this specification.  However, this
   section does specify certain minimum management functionality that
   must be provided, to allow a user or system administrator to control
   how IPsec is applied to traffic transmitted or received by a host or
   transiting a security gateway.

   The SPD must be consulted during the processing of all traffic
   (INBOUND and OUTBOUND), including non-IPsec traffic.  In order to
   support this, the SPD requires distinct entries for inbound and
   outbound traffic.  One can think of this as separate SPDs (inbound
   vs.  outbound).  In addition, a nominally separate SPD must be
   provided for each IPsec-enabled interface.

   An SPD must discriminate among traffic that is afforded IPsec
   protection and traffic that is allowed to bypass IPsec.  This applies
   to the IPsec protection to be applied by a sender and to the IPsec
   protection that must be present at the receiver.  For any outbound or
   inbound datagram, three processing choices are possible: discard,
   bypass IPsec, or apply IPsec.  The first choice refers to traffic
   that is not allowed to exit the host, traverse the security gateway,
   or be delivered to an application at all.  The second choice refers
   to traffic that is allowed to pass without additional IPsec
   protection.  The third choice refers to traffic that is afforded
   IPsec protection, and for such traffic the SPD must specify the
   security services to be provided, protocols to be employed,
   algorithms to be used, etc.

   For every IPsec implementation, there MUST be an administrative
   interface that allows a user or system administrator to manage the
   SPD.  Specifically, every inbound or outbound packet is subject to
   processing by IPsec and the SPD must specify what action will be
   taken in each case.  Thus the administrative interface must allow the
   user (or system administrator) to specify the security processing to
   be applied to any packet entering or exiting the system, on a packet
   by packet basis.  (In a host IPsec implementation making use of a
   socket interface, the SPD may not need to be consulted on a per
   packet basis, but the effect is still the same.)  The management
   interface for the SPD MUST allow creation of entries consistent with
   the selectors defined in Section 4.4.2, and MUST support (total)
   ordering of these entries.  It is expected that through the use of
   wildcards in various selector fields, and because all packets on a
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   single UDP or TCP connection will tend to match a single SPD entry,
   this requirement will not impose an unreasonably detailed level of
   SPD specification.  The selectors are analogous to what are found in
   a stateless firewall or filtering router and which are currently
   manageable this way.

   In host systems, applications MAY be allowed to select what security
   processing is to be applied to the traffic they generate and consume.
   (Means of signalling such requests to the IPsec implementation are
   outside the scope of this standard.)  However, the system
   administrator MUST be able to specify whether or not a user or
   application can override (default) system policies.  Note that
   application specified policies may satisfy system requirements, so
   that the system may not need to do additional IPsec processing beyond
   that needed to meet an application’s requirements.  The form of the
   management interface is not specified by this document and may differ
   for hosts vs. security gateways, and within hosts the interface may
   differ for socket-based vs.  BITS implementations.  However, this
   document does specify a standard set of SPD elements that all IPsec
   implementations MUST support.

   The SPD contains an ordered list of policy entries.  Each policy
   entry is keyed by one or more selectors that define the set of IP
   traffic encompassed by this policy entry.  (The required selector
   types are defined in Section 4.4.2.)  These define the granularity of
   policies or SAs.  Each entry includes an indication of whether
   traffic matching this policy will be bypassed, discarded, or subject
   to IPsec processing.  If IPsec processing is to be applied, the entry
   includes an SA (or SA bundle) specification, listing the IPsec
   protocols, modes, and algorithms to be employed, including any
   nesting requirements.  For example, an entry may call for all
   matching traffic to be protected by ESP in transport mode using
   3DES-CBC with an explicit IV, nested inside of AH in tunnel mode
   using HMAC/SHA-1.  For each selector, the policy entry specifies how
   to derive the corresponding values for a new Security Association
   Database (SAD, see Section 4.4.3) entry from those in the SPD and the
   packet (Note that at present, ranges are only supported for IP
   addresses; but wildcarding can be expressed for all selectors):

           a. use the value in the packet itself -- This will limit use
              of the SA to those packets which have this packet’s value
              for the selector even if the selector for the policy entry
              has a range of allowed values or a wildcard for this
              selector.
           b. use the value associated with the policy entry -- If this
              were to be just a single value, then there would be no
              difference between (b) and (a).  However, if the allowed
              values for the selector are a range (for IP addresses) or
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              wildcard, then in the case of a range,(b) would enable use
              of the SA by any packet with a selector value within the
              range not just by packets with the selector value of the
              packet that triggered the creation of the SA.  In the case
              of a wildcard, (b) would allow use of the SA by packets
              with any value for this selector.

   For example, suppose there is an SPD entry where the allowed value
   for source address is any of a range of hosts (192.168.2.1 to
   192.168.2.10).  And suppose that a packet is to be sent that has a
   source address of 192.168.2.3.  The value to be used for the SA could
   be any of the sample values below depending on what the policy entry
   for this selector says is the source of the selector value:

           source for the  example of
           value to be     new SAD
           used in the SA  selector value
           --------------- ------------
           a. packet       192.168.2.3 (one host)
           b. SPD entry    192.168.2.1 to 192.168.2.10 (range of hosts)

   Note that if the SPD entry had an allowed value of wildcard for the
   source address, then the SAD selector value could be wildcard (any
   host).  Case (a) can be used to prohibit sharing, even among packets
   that match the same SPD entry.

   As described below in Section 4.4.3, selectors may include "wildcard"
   entries and hence the selectors for two entries may overlap.  (This
   is analogous to the overlap that arises with ACLs or filter entries
   in routers or packet filtering firewalls.)  Thus, to ensure
   consistent, predictable processing, SPD entries MUST be ordered and
   the SPD MUST always be searched in the same order, so that the first
   matching entry is consistently selected.  (This requirement is
   necessary as the effect of processing traffic against SPD entries
   must be deterministic, but there is no way to canonicalize SPD
   entries given the use of wildcards for some selectors.)  More detail
   on matching of packets against SPD entries is provided in Section 5.

   Note that if ESP is specified, either (but not both) authentication
   or encryption can be omitted.  So it MUST be possible to configure
   the SPD value for the authentication or encryption algorithms to be
   "NULL".  However, at least one of these services MUST be selected,
   i.e., it MUST NOT be possible to configure both of them as "NULL".

   The SPD can be used to map traffic to specific SAs or SA bundles.
   Thus it can function both as the reference database for security
   policy and as the map to existing SAs (or SA bundles).  (To
   accommodate the bypass and discard policies cited above, the SPD also
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   MUST provide a means of mapping traffic to these functions, even
   though they are not, per se, IPsec processing.)  The way in which the
   SPD operates is different for inbound vs. outbound traffic and it
   also may differ for host vs.  security gateway, BITS, and BITW
   implementations.  Sections 5.1 and 5.2 describe the use of the SPD
   for outbound and inbound processing, respectively.

   Because a security policy may require that more than one SA be
   applied to a specified set of traffic, in a specific order, the
   policy entry in the SPD must preserve these ordering requirements,
   when present.  Thus, it must be possible for an IPsec implementation
   to determine that an outbound or inbound packet must be processed
   thorough a sequence of SAs.  Conceptually, for outbound processing,
   one might imagine links (to the SAD) from an SPD entry for which
   there are active SAs, and each entry would consist of either a single
   SA or an ordered list of SAs that comprise an SA bundle.  When a
   packet is matched against an SPD entry and there is an existing SA or
   SA bundle that can be used to carry the traffic, the processing of
   the packet is controlled by the SA or SA bundle entry on the list.
   For an inbound IPsec packet for which multiple IPsec SAs are to be
   applied, the lookup based on destination address, IPsec protocol, and
   SPI should identify a single SA.

   The SPD is used to control the flow of ALL traffic through an IPsec
   system, including security and key management traffic (e.g., ISAKMP)
   from/to entities behind a security gateway.  This means that ISAKMP
   traffic must be explicitly accounted for in the SPD, else it will be
   discarded.  Note that a security gateway could prohibit traversal of
   encrypted packets in various ways, e.g., having a DISCARD entry in
   the SPD for ESP packets or providing proxy key exchange.  In the
   latter case, the traffic would be internally routed to the key
   management module in the security gateway.

4.4.2  Selectors

   An SA (or SA bundle) may be fine-grained or coarse-grained, depending
   on the selectors used to define the set of traffic for the SA.  For
   example, all traffic between two hosts may be carried via a single
   SA, and afforded a uniform set of security services.  Alternatively,
   traffic between a pair of hosts might be spread over multiple SAs,
   depending on the applications being used (as defined by the Next
   Protocol and Port fields), with different security services offered
   by different SAs.  Similarly, all traffic between a pair of security
   gateways could be carried on a single SA, or one SA could be assigned
   for each communicating host pair.  The following selector parameters
   MUST be supported for SA management to facilitate control of SA
   granularity.  Note that in the case of receipt of a packet with an
   ESP header, e.g., at an encapsulating security gateway or BITW
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   implementation, the transport layer protocol, source/destination
   ports, and Name (if present) may be "OPAQUE", i.e., inaccessible
   because of encryption or fragmentation.  Note also that both Source
   and Destination addresses should either be IPv4 or IPv6.

      - Destination IP Address (IPv4 or IPv6): this may be a single IP
        address (unicast, anycast, broadcast (IPv4 only), or multicast
        group), a range of addresses (high and low values (inclusive),
        address + mask, or a wildcard address.  The last three are used
        to support more than one destination system sharing the same SA
        (e.g., behind a security gateway). Note that this selector is
        conceptually different from the "Destination IP Address" field
        in the <Destination IP Address, IPsec Protocol, SPI> tuple used
        to uniquely identify an SA.  When a tunneled packet arrives at
        the tunnel endpoint, its SPI/Destination address/Protocol are
        used to look up the SA for this packet in the SAD.  This
        destination address comes from the encapsulating IP header.
        Once the packet has been processed according to the tunnel SA
        and has come out of the tunnel, its selectors are "looked up" in
        the Inbound SPD.  The Inbound SPD has a selector called
        destination address.  This IP destination address is the one in
        the inner (encapsulated) IP header.  In the case of a
        transport’d packet, there will be only one IP header and this
        ambiguity does not exist.  [REQUIRED for all implementations]

      - Source IP Address(es) (IPv4 or IPv6): this may be a single IP
        address (unicast, anycast, broadcast (IPv4 only), or multicast
        group), range of addresses (high and low values inclusive),
        address + mask, or a wildcard address.  The last three are used
        to support more than one source system sharing the same SA
        (e.g., behind a security gateway or in a multihomed host).
        [REQUIRED for all implementations]

      - Name: There are 2 cases (Note that these name forms are
        supported in the IPsec DOI.)
                1. User ID
                    a. a fully qualified user name string (DNS), e.g.,
                       mozart@foo.bar.com
                    b. X.500 distinguished name, e.g., C = US, SP = MA,
                       O = GTE Internetworking, CN = Stephen T. Kent.
                2. System name (host, security gateway, etc.)
                    a. a fully qualified DNS name, e.g., foo.bar.com
                    b. X.500 distinguished name
                    c. X.500 general name

        NOTE: One of the possible values of this selector is "OPAQUE".
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        [REQUIRED for the following cases.  Note that support for name
        forms other than addresses is not required for manually keyed
        SAs.
                o User ID
                    - native host implementations
                    - BITW and BITS implementations acting as HOSTS
                      with only one user
                    - security gateway implementations for INBOUND
                      processing.
                o System names -- all implementations]

      - Data sensitivity level: (IPSO/CIPSO labels)
        [REQUIRED for all systems providing information flow security as
        per Section 8, OPTIONAL for all other systems.]

      - Transport Layer Protocol: Obtained from the IPv4 "Protocol" or
        the IPv6 "Next Header" fields.  This may be an individual
        protocol number.  These packet fields may not contain the
        Transport Protocol due to the presence of IP extension headers,
        e.g., a Routing Header, AH, ESP, Fragmentation Header,
        Destination Options, Hop-by-hop options, etc.  Note that the
        Transport Protocol may not be available in the case of receipt
        of a packet with an ESP header, thus a value of "OPAQUE" SHOULD
        be supported.
        [REQUIRED for all implementations]

        NOTE: To locate the transport protocol, a system has to chain
        through the packet headers checking the "Protocol" or "Next
        Header" field until it encounters either one it recognizes as a
        transport protocol, or until it reaches one that isn’t on its
        list of extension headers, or until it encounters an ESP header
        that renders the transport protocol opaque.

      - Source and Destination (e.g., TCP/UDP) Ports: These may be
        individual UDP or TCP port values or a wildcard port.  (The use
        of the Next Protocol field and the Source and/or Destination
        Port fields (in conjunction with the Source and/or Destination
        Address fields), as an SA selector is sometimes referred to as
        "session-oriented keying.").  Note that the source and
        destination ports may not be available in the case of receipt of
        a packet with an ESP header, thus a value of "OPAQUE" SHOULD be
        supported.

        The following table summarizes the relationship between the
        "Next Header" value in the packet and SPD and the derived Port
        Selector value for the SPD and SAD.
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          Next Hdr        Transport Layer   Derived Port Selector Field
          in Packet       Protocol in SPD   Value in SPD and SAD
          --------        ---------------   ---------------------------
          ESP             ESP or ANY        ANY (i.e., don’t look at it)
          -don’t care-    ANY               ANY (i.e., don’t look at it)
          specific value  specific value    NOT ANY (i.e., drop packet)
             fragment
          specific value  specific value    actual port selector field
             not fragment

        If the packet has been fragmented, then the port information may
        not be available in the current fragment.  If so, discard the
        fragment.  An ICMP PMTU should be sent for the first fragment,
        which will have the port information.  [MAY be supported]

   The IPsec implementation context determines how selectors are used.
   For example, a host implementation integrated into the stack may make
   use of a socket interface.  When a new connection is established the
   SPD can be consulted and an SA (or SA bundle) bound to the socket.
   Thus traffic sent via that socket need not result in additional
   lookups to the SPD/SAD.  In contrast, a BITS, BITW, or security
   gateway implementation needs to look at each packet and perform an
   SPD/SAD lookup based on the selectors. The allowable values for the
   selector fields differ between the traffic flow, the security
   association, and the security policy.

   The following table summarizes the kinds of entries that one needs to
   be able to express in the SPD and SAD.  It shows how they relate to
   the fields in data traffic being subjected to IPsec screening.
   (Note: the "wild" or "wildcard" entry for src and dst addresses
   includes a mask, range, etc.)

 Field         Traffic Value       SAD Entry            SPD Entry
 --------      -------------   ----------------   --------------------
 src addr      single IP addr  single,range,wild  single,range,wildcard
 dst addr      single IP addr  single,range,wild  single,range,wildcard
 xpt protocol* xpt protocol    single,wildcard    single,wildcard
 src port*     single src port single,wildcard    single,wildcard
 dst port*     single dst port single,wildcard    single,wildcard
 user id*      single user id  single,wildcard    single,wildcard
 sec. labels   single value    single,wildcard    single,wildcard

       * The SAD and SPD entries for these fields could be "OPAQUE"
         because the traffic value is encrypted.

   NOTE: In principle, one could have selectors and/or selector values
   in the SPD which cannot be negotiated for an SA or SA bundle.
   Examples might include selector values used to select traffic for
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   discarding or enumerated lists which cause a separate SA to be
   created for each item on the list.  For now, this is left for future
   versions of this document and the list of required selectors and
   selector values is the same for the SPD and the SAD.  However, it is
   acceptable to have an administrative interface that supports use of
   selector values which cannot be negotiated provided that it does not
   mislead the user into believing it is creating an SA with these
   selector values.  For example, the interface may allow the user to
   specify an enumerated list of values but would result in the creation
   of a separate policy and SA for each item on the list.  A vendor
   might support such an interface to make it easier for its customers
   to specify clear and concise policy specifications.

4.4.3 Security Association Database (SAD)

   In each IPsec implementation there is a nominal Security Association
   Database, in which each entry defines the parameters associated with
   one SA.  Each SA has an entry in the SAD.  For outbound processing,
   entries are pointed to by entries in the SPD.  Note that if an SPD
   entry does not currently point to an SA that is appropriate for the
   packet, the implementation creates an appropriate SA (or SA Bundle)
   and links the SPD entry to the SAD entry (see Section 5.1.1).  For
   inbound processing, each entry in the SAD is indexed by a destination
   IP address, IPsec protocol type, and SPI.  The following parameters
   are associated with each entry in the SAD.  This description does not
   purport to be a MIB, but only a specification of the minimal data
   items required to support an SA in an IPsec implementation.

   For inbound processing: The following packet fields are used to look
   up the SA in the SAD:

         o Outer Header’s Destination IP address: the IPv4 or IPv6
           Destination address.
           [REQUIRED for all implementations]
         o IPsec Protocol: AH or ESP, used as an index for SA lookup
           in this database.  Specifies the IPsec protocol to be
           applied to the traffic on this SA.
           [REQUIRED for all implementations]
         o SPI: the 32-bit value used to distinguish among different
           SAs terminating at the same destination and using the same
           IPsec protocol.
           [REQUIRED for all implementations]

   For each of the selectors defined in Section 4.4.2, the SA entry in
   the SAD MUST contain the value or values which were negotiated at the
   time the SA was created.  For the sender, these values are used to
   decide whether a given SA is appropriate for use with an outbound
   packet.  This is part of checking to see if there is an existing SA
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   that can be used.  For the receiver, these values are used to check
   that the selector values in an inbound packet match those for the SA
   (and thus indirectly those for the matching policy).  For the
   receiver, this is part of verifying that the SA was appropriate for
   this packet.  (See Section 6 for rules for ICMP messages.)  These
   fields can have the form of specific values, ranges, wildcards, or
   "OPAQUE" as described in section 4.4.2, "Selectors".  Note that for
   an ESP SA, the encryption algorithm or the authentication algorithm
   could be "NULL".  However they MUST not both be "NULL".

   The following SAD fields are used in doing IPsec processing:

         o Sequence Number Counter: a 32-bit value used to generate the
           Sequence Number field in AH or ESP headers.
           [REQUIRED for all implementations, but used only for outbound
           traffic.]
         o Sequence Counter Overflow: a flag indicating whether overflow
           of the Sequence Number Counter should generate an auditable
           event and prevent transmission of additional packets on the
           SA.
           [REQUIRED for all implementations, but used only for outbound
           traffic.]
         o Anti-Replay Window: a 32-bit counter and a bit-map (or
           equivalent) used to determine whether an inbound AH or ESP
           packet is a replay.
           [REQUIRED for all implementations but used only for inbound
           traffic. NOTE: If anti-replay has been disabled by the
           receiver, e.g., in the case of a manually keyed SA, then the
           Anti-Replay Window is not used.]
         o AH Authentication algorithm, keys, etc.
           [REQUIRED for AH implementations]
         o ESP Encryption algorithm, keys, IV mode, IV, etc.
           [REQUIRED for ESP implementations]
         o ESP authentication algorithm, keys, etc. If the
           authentication service is not selected, this field will be
           null.
           [REQUIRED for ESP implementations]
         o Lifetime of this Security Association: a time interval after
           which an SA must be replaced with a new SA (and new SPI) or
           terminated, plus an indication of which of these actions
           should occur.  This may be expressed as a time or byte count,
           or a simultaneous use of both, the first lifetime to expire
           taking precedence. A compliant implementation MUST support
           both types of lifetimes, and must support a simultaneous use
           of both.  If time is employed, and if IKE employs X.509
           certificates for SA establishment, the SA lifetime must be
           constrained by the validity intervals of the certificates,
           and the NextIssueDate of the CRLs used in the IKE exchange
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           for the SA.  Both initiator and responder are responsible for
           constraining SA lifetime in this fashion.
           [REQUIRED for all implementations]

           NOTE: The details of how to handle the refreshing of keys
           when SAs expire is a local matter.  However, one reasonable
           approach is:
             (a) If byte count is used, then the implementation
                 SHOULD count the number of bytes to which the IPsec
                 algorithm is applied.  For ESP, this is the encryption
                 algorithm (including Null encryption) and for AH,
                 this is the authentication algorithm.  This includes
                 pad bytes, etc.  Note that implementations SHOULD be
                 able to handle having the counters at the ends of an
                 SA get out of synch, e.g., because of packet loss or
                 because the implementations at each end of the SA
                 aren’t doing things the same way.
             (b) There SHOULD be two kinds of lifetime -- a soft
                 lifetime which warns the implementation to initiate
                 action such as setting up a replacement SA and a
                 hard lifetime when the current SA ends.
             (c) If the entire packet does not get delivered during
                 the SAs lifetime, the packet SHOULD be discarded.

         o IPsec protocol mode: tunnel, transport or wildcard.
           Indicates which mode of AH or ESP is applied to traffic on
           this SA.  Note that if this field is "wildcard" at the
           sending end of the SA, then the application has to specify
           the mode to the IPsec implementation.  This use of wildcard
           allows the same SA to be used for either tunnel or transport
           mode traffic on a per packet basis, e.g., by different
           sockets.  The receiver does not need to know the mode in
           order to properly process the packet’s IPsec headers.

           [REQUIRED as follows, unless implicitly defined by context:
                   - host implementations must support all modes
                   - gateway implementations must support tunnel mode]

           NOTE: The use of wildcard for the protocol mode of an inbound
           SA may add complexity to the situation in the receiver (host
           only).  Since the packets on such an SA could be delivered in
           either tunnel or transport mode, the security of an incoming
           packet could depend in part on which mode had been used to
           deliver it.  If, as a result, an application cared about the
           SA mode of a given packet, then the application would need a
           mechanism to obtain this mode information.
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         o Path MTU: any observed path MTU and aging variables.  See
           Section 6.1.2.4
           [REQUIRED for all implementations but used only for outbound
           traffic]

4.5 Basic Combinations of Security Associations

   This section describes four examples of combinations of security
   associations that MUST be supported by compliant IPsec hosts or
   security gateways.  Additional combinations of AH and/or ESP in
   tunnel and/or transport modes MAY be supported at the discretion of
   the implementor.  Compliant implementations MUST be capable of
   generating these four combinations and on receipt, of processing
   them, but SHOULD be able to receive and process any combination.  The
   diagrams and text below describe the basic cases.  The legend for the
   diagrams is:

        ==== = one or more security associations (AH or ESP, transport
               or tunnel)
        ---- = connectivity (or if so labelled, administrative boundary)
        Hx   = host x
        SGx  = security gateway x
        X*   = X supports IPsec

   NOTE: The security associations below can be either AH or ESP.  The
   mode (tunnel vs transport) is determined by the nature of the
   endpoints.  For host-to-host SAs, the mode can be either transport or
   tunnel.

   Case 1.  The case of providing end-to-end security between 2 hosts
        across the Internet (or an Intranet).

                 ====================================
                 |                                  |
                H1* ------ (Inter/Intranet) ------ H2*

        Note that either transport or tunnel mode can be selected by the
        hosts.  So the headers in a packet between H1 and H2 could look
        like any of the following:

                  Transport                  Tunnel
             -----------------          ---------------------
             1. [IP1][AH][upper]        4. [IP2][AH][IP1][upper]
             2. [IP1][ESP][upper]       5. [IP2][ESP][IP1][upper]
             3. [IP1][AH][ESP][upper]
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        Note that there is no requirement to support general nesting,
        but in transport mode, both AH and ESP can be applied to the
        packet.  In this event, the SA establishment procedure MUST
        ensure that first ESP, then AH are applied to the packet.

   Case 2.  This case illustrates simple virtual private networks
        support.

                       ===========================
                       |                         |
  ---------------------|----                  ---|-----------------------
  |                    |   |                  |  |                      |
  |  H1 -- (Local --- SG1* |--- (Internet) ---| SG2* --- (Local --- H2  |
  |        Intranet)       |                  |          Intranet)      |
  --------------------------                  ---------------------------
      admin. boundary                               admin. boundary

        Only tunnel mode is required here.  So the headers in a packet
        between SG1 and SG2 could look like either of the following:

                        Tunnel
                ---------------------
                4. [IP2][AH][IP1][upper]
                5. [IP2][ESP][IP1][upper]

   Case 3.  This case combines cases 1 and 2, adding end-to-end security
        between the sending and receiving hosts.  It imposes no new
        requirements on the hosts or security gateways, other than a
        requirement for a security gateway to be configurable to pass
        IPsec traffic (including ISAKMP traffic) for hosts behind it.

     ===============================================================
     |                                                             |
     |                 =========================                   |
     |                 |                       |                   |
  ---|-----------------|----                ---|-------------------|---
  |  |                 |   |                |  |                   |  |
  | H1* -- (Local --- SG1* |-- (Internet) --| SG2* --- (Local --- H2* |
  |        Intranet)       |                |          Intranet)      |
  --------------------------                ---------------------------
       admin. boundary                            admin. boundary

   Case 4.  This covers the situation where a remote host (H1) uses the
        Internet to reach an organization’s firewall (SG2) and to then
        gain access to some server or other machine (H2).  The remote
        host could be a mobile host (H1) dialing up to a local PPP/ARA
        server (not shown) on the Internet and then crossing the
        Internet to the home organization’s firewall (SG2), etc.  The
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        details of support for this case, (how H1 locates SG2,
        authenticates it, and verifies its authorization to represent
        H2) are discussed in Section 4.6.3, "Locating a Security
        Gateway".

        ======================================================
        |                                                    |
        |==============================                      |
        ||                            |                      |
        ||                         ---|----------------------|---
        ||                         |  |                      |  |
        H1* ----- (Internet) ------| SG2* ---- (Local ----- H2* |
              ^                    |           Intranet)        |
              |                    ------------------------------
        could be dialup              admin. boundary (optional)
        to PPP/ARA server

        Only tunnel mode is required between H1 and SG2.  So the choices
        for the SA between H1 and SG2 would be one of the ones in case
        2.  The choices for the SA between H1 and H2 would be one of the
        ones in case 1.

        Note that in this case, the sender MUST apply the transport
        header before the tunnel header.  Therefore the management
        interface to the IPsec implementation MUST support configuration
        of the SPD and SAD to ensure this ordering of IPsec header
        application.

   As noted above, support for additional combinations of AH and ESP is
   optional.  Use of other, optional combinations may adversely affect
   interoperability.

4.6 SA and Key Management

   IPsec mandates support for both manual and automated SA and
   cryptographic key management.  The IPsec protocols, AH and ESP, are
   largely independent of the associated SA management techniques,
   although the techniques involved do affect some of the security
   services offered by the protocols.  For example, the optional anti-
   replay services available for AH and ESP require automated SA
   management.  Moreover, the granularity of key distribution employed
   with IPsec determines the granularity of authentication provided.
   (See also a discussion of this issue in Section 4.7.)  In general,
   data origin authentication in AH and ESP is limited by the extent to
   which secrets used with the authentication algorithm (or with a key
   management protocol that creates such secrets) are shared among
   multiple possible sources.
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   The following text describes the minimum requirements for both types
   of SA management.

4.6.1 Manual Techniques

   The simplest form of management is manual management, in which a
   person manually configures each system with keying material and
   security association management data relevant to secure communication
   with other systems.  Manual techniques are practical in small, static
   environments but they do not scale well.  For example, a company
   could create a Virtual Private Network (VPN) using IPsec in security
   gateways at several sites.  If the number of sites is small, and
   since all the sites come under the purview of a single administrative
   domain, this is likely to be a feasible context for manual management
   techniques.  In this case, the security gateway might selectively
   protect traffic to and from other sites within the organization using
   a manually configured key, while not protecting traffic for other
   destinations.  It also might be appropriate when only selected
   communications need to be secured.  A similar argument might apply to
   use of IPsec entirely within an organization for a small number of
   hosts and/or gateways.  Manual management techniques often employ
   statically configured, symmetric keys, though other options also
   exist.

4.6.2 Automated SA and Key Management

   Widespread deployment and use of IPsec requires an Internet-standard,
   scalable, automated, SA management protocol.  Such support is
   required to facilitate use of the anti-replay features of AH and ESP,
   and to accommodate on-demand creation of SAs, e.g., for user- and
   session-oriented keying.  (Note that the notion of "rekeying" an SA
   actually implies creation of a new SA with a new SPI, a process that
   generally implies use of an automated SA/key management protocol.)

   The default automated key management protocol selected for use with
   IPsec is IKE [MSST97, Orm97, HC98] under the IPsec domain of
   interpretation [Pip98].  Other automated SA management protocols MAY
   be employed.

   When an automated SA/key management protocol is employed, the output
   from this protocol may be used to generate multiple keys, e.g., for a
   single ESP SA.  This may arise because:

       o the encryption algorithm uses multiple keys (e.g., triple DES)
       o the authentication algorithm uses multiple keys
       o both encryption and authentication algorithms are employed
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   The Key Management System may provide a separate string of bits for
   each key or it may generate one string of bits from which all of them
   are extracted.  If a single string of bits is provided, care needs to
   be taken to ensure that the parts of the system that map the string
   of bits to the required keys do so in the same fashion at both ends
   of the SA.  To ensure that the IPsec implementations at each end of
   the SA use the same bits for the same keys, and irrespective of which
   part of the system divides the string of bits into individual keys,
   the encryption key(s) MUST be taken from the first (left-most, high-
   order) bits and the authentication key(s) MUST be taken from the
   remaining bits.  The number of bits for each key is defined in the
   relevant algorithm specification RFC.  In the case of multiple
   encryption keys or multiple authentication keys, the specification
   for the algorithm must specify the order in which they are to be
   selected from a single string of bits provided to the algorithm.

4.6.3 Locating a Security Gateway

   This section discusses issues relating to how a host learns about the
   existence of relevant security gateways and once a host has contacted
   these security gateways, how it knows that these are the correct
   security gateways.  The details of where the required information is
   stored is a local matter.

   Consider a situation in which a remote host (H1) is using the
   Internet to gain access to a server or other machine (H2) and there
   is a security gateway (SG2), e.g., a firewall, through which H1’s
   traffic must pass.  An example of this situation would be a mobile
   host (Road Warrior) crossing the Internet to the home organization’s
   firewall (SG2).  (See Case 4 in the section 4.5 Basic Combinations of
   Security Associations.) This situation raises several issues:

        1. How does H1 know/learn about the existence of the security
           gateway SG2?
        2. How does it authenticate SG2, and once it has authenticated
           SG2, how does it confirm that SG2 has been authorized to
           represent H2?
        3. How does SG2 authenticate H1 and verify that H1 is authorized
           to contact H2?
        4. How does H1 know/learn about backup gateways which provide
           alternate paths to H2?

   To address these problems, a host or security gateway MUST have an
   administrative interface that allows the user/administrator to
   configure the address of a security gateway for any sets of
   destination addresses that require its use. This includes the ability
   to configure:
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        o the requisite information for locating and authenticating the
          security gateway and verifying its authorization to represent
          the destination host.
        o the requisite information for locating and authenticating any
          backup gateways and verifying their authorization to represent
          the destination host.

   It is assumed that the SPD is also configured with policy information
   that covers any other IPsec requirements for the path to the security
   gateway and the destination host.

   This document does not address the issue of how to automate the
   discovery/verification of security gateways.

4.7 Security Associations and Multicast

   The receiver-orientation of the Security Association implies that, in
   the case of unicast traffic, the destination system will normally
   select the SPI value.  By having the destination select the SPI
   value, there is no potential for manually configured Security
   Associations to conflict with automatically configured (e.g., via a
   key management protocol) Security Associations or for Security
   Associations from multiple sources to conflict with each other.  For
   multicast traffic, there are multiple destination systems per
   multicast group.  So some system or person will need to coordinate
   among all multicast groups to select an SPI or SPIs on behalf of each
   multicast group and then communicate the group’s IPsec information to
   all of the legitimate members of that multicast group via mechanisms
   not defined here.

   Multiple senders to a multicast group SHOULD use a single Security
   Association (and hence Security Parameter Index) for all traffic to
   that group when a symmetric key encryption or authentication
   algorithm is employed. In such circumstances, the receiver knows only
   that the message came from a system possessing the key for that
   multicast group.  In such circumstances, a receiver generally will
   not be able to authenticate which system sent the multicast traffic.
   Specifications for other, more general multicast cases are deferred
   to later IPsec documents.

   At the time this specification was published, automated protocols for
   multicast key distribution were not considered adequately mature for
   standardization.  For multicast groups having relatively few members,
   manual key distribution or multiple use of existing unicast key
   distribution algorithms such as modified Diffie-Hellman appears
   feasible.  For very large groups, new scalable techniques will be
   needed.  An example of current work in this area is the Group Key
   Management Protocol (GKMP) [HM97].
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5. IP Traffic Processing

   As mentioned in Section 4.4.1 "The Security Policy Database (SPD)",
   the SPD must be consulted during the processing of all traffic
   (INBOUND and OUTBOUND), including non-IPsec traffic.  If no policy is
   found in the SPD that matches the packet (for either inbound or
   outbound traffic), the packet MUST be discarded.

   NOTE: All of the cryptographic algorithms used in IPsec expect their
   input in canonical network byte order (see Appendix in RFC 791) and
   generate their output in canonical network byte order.  IP packets
   are also transmitted in network byte order.

5.1 Outbound IP Traffic Processing

5.1.1 Selecting and Using an SA or SA Bundle

   In a security gateway or BITW implementation (and in many BITS
   implementations), each outbound packet is compared against the SPD to
   determine what processing is required for the packet.  If the packet
   is to be discarded, this is an auditable event.  If the traffic is
   allowed to bypass IPsec processing, the packet continues through
   "normal" processing for the environment in which the IPsec processing
   is taking place.  If IPsec processing is required, the packet is
   either mapped to an existing SA (or SA bundle), or a new SA (or SA
   bundle) is created for the packet.  Since a packet’s selectors might
   match multiple policies or multiple extant SAs and since the SPD is
   ordered, but the SAD is not, IPsec MUST:

           1. Match the packet’s selector fields against the outbound
              policies in the SPD to locate the first appropriate
              policy, which will point to zero or more SA bundles in the
              SAD.

           2. Match the packet’s selector fields against those in the SA
              bundles found in (1) to locate the first SA bundle that
              matches.  If no SAs were found or none match, create an
              appropriate SA bundle and link the SPD entry to the SAD
              entry.  If no key management entity is found, drop the
              packet.

           3. Use the SA bundle found/created in (2) to do the required
              IPsec processing, e.g., authenticate and encrypt.

   In a host IPsec implementation based on sockets, the SPD will be
   consulted whenever a new socket is created, to determine what, if
   any, IPsec processing will be applied to the traffic that will flow
   on that socket.
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   NOTE: A compliant implementation MUST not allow instantiation of an
   ESP SA that employs both a NULL encryption and a NULL authentication
   algorithm.  An attempt to negotiate such an SA is an auditable event.

5.1.2 Header Construction for Tunnel Mode

   This section describes the handling of the inner and outer IP
   headers, extension headers, and options for AH and ESP tunnels.  This
   includes how to construct the encapsulating (outer) IP header, how to
   handle fields in the inner IP header, and what other actions should
   be taken.  The general idea is modeled after the one used in RFC
   2003, "IP Encapsulation with IP":

        o The outer IP header Source Address and Destination Address
          identify the "endpoints" of the tunnel (the encapsulator and
          decapsulator).  The inner IP header Source Address and
          Destination Addresses identify the original sender and
          recipient of the datagram, (from the perspective of this
          tunnel), respectively.  (see footnote 3 after the table in
          5.1.2.1 for more details on the encapsulating source IP
          address.)
        o The inner IP header is not changed except to decrement the TTL
          as noted below, and remains unchanged during its delivery to
          the tunnel exit point.
        o No change to IP options or extension headers in the inner
          header occurs during delivery of the encapsulated datagram
          through the tunnel.
        o If need be, other protocol headers such as the IP
          Authentication header may be inserted between the outer IP
          header and the inner IP header.

   The tables in the following sub-sections show the handling for the
   different header/option fields (constructed = the value in the outer
   field is constructed independently of the value in the inner).

5.1.2.1 IPv4 -- Header Construction for Tunnel Mode

                        <-- How Outer Hdr Relates to Inner Hdr -->
                        Outer Hdr at                 Inner Hdr at
   IPv4                 Encapsulator                 Decapsulator
     Header fields:     --------------------         ------------
       version          4 (1)                        no change
       header length    constructed                  no change
       TOS              copied from inner hdr (5)    no change
       total length     constructed                  no change
       ID               constructed                  no change
       flags (DF,MF)    constructed, DF (4)          no change
       fragmt offset    constructed                  no change
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       TTL              constructed (2)              decrement (2)
       protocol         AH, ESP, routing hdr         no change
       checksum         constructed                  constructed (2)
       src address      constructed (3)              no change
       dest address     constructed (3)              no change
   Options            never copied                 no change

        1. The IP version in the encapsulating header can be different
           from the value in the inner header.

        2. The TTL in the inner header is decremented by the
           encapsulator prior to forwarding and by the decapsulator if
           it forwards the packet.  (The checksum changes when the TTL
           changes.)

           Note: The decrementing of the TTL is one of the usual actions
           that takes place when forwarding a packet.  Packets
           originating from the same node as the encapsulator do not
           have their TTL’s decremented, as the sending node is
           originating the packet rather than forwarding it.

        3. src and dest addresses depend on the SA, which is used to
           determine the dest address which in turn determines which src
           address (net interface) is used to forward the packet.

           NOTE: In principle, the encapsulating IP source address can
           be any of the encapsulator’s interface addresses or even an
           address different from any of the encapsulator’s IP
           addresses, (e.g., if it’s acting as a NAT box) so long as the
           address is reachable through the encapsulator from the
           environment into which the packet is sent.  This does not
           cause a problem because IPsec does not currently have any
           INBOUND processing requirement that involves the Source
           Address of the encapsulating IP header.  So while the
           receiving tunnel endpoint looks at the Destination Address in
           the encapsulating IP header, it only looks at the Source
           Address in the inner (encapsulated) IP header.

        4. configuration determines whether to copy from the inner
           header (IPv4 only), clear or set the DF.

        5. If Inner Hdr is IPv4 (Protocol = 4), copy the TOS.  If Inner
           Hdr is IPv6 (Protocol = 41), map the Class to TOS.

5.1.2.2 IPv6 -- Header Construction for Tunnel Mode

   See previous section 5.1.2 for notes 1-5 indicated by (footnote
   number).
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                        <-- How Outer Hdr  Relates Inner Hdr --->
                        Outer Hdr at                 Inner Hdr at
   IPv6                 Encapsulator                 Decapsulator
     Header fields:     --------------------         ------------
       version          6 (1)                        no change
       class            copied or configured (6)     no change
       flow id          copied or configured         no change
       len              constructed                  no change
       next header      AH,ESP,routing hdr           no change
       hop limit        constructed (2)              decrement (2)
       src address      constructed (3)              no change
       dest address     constructed (3)              no change
     Extension headers  never copied                 no change

        6. If Inner Hdr is IPv6 (Next Header = 41), copy the Class.  If
           Inner Hdr is IPv4 (Next Header = 4), map the TOS to Class.

5.2 Processing Inbound IP Traffic

   Prior to performing AH or ESP processing, any IP fragments are
   reassembled.  Each inbound IP datagram to which IPsec processing will
   be applied is identified by the appearance of the AH or ESP values in
   the IP Next Protocol field (or of AH or ESP as an extension header in
   the IPv6 context).

   Note: Appendix C contains sample code for a bitmask check for a 32
   packet window that can be used for implementing anti-replay service.

5.2.1 Selecting and Using an SA or SA Bundle

   Mapping the IP datagram to the appropriate SA is simplified because
   of the presence of the SPI in the AH or ESP header.  Note that the
   selector checks are made on the inner headers not the outer (tunnel)
   headers.  The steps followed are:

           1. Use the packet’s destination address (outer IP header),
              IPsec protocol, and SPI to look up the SA in the SAD.  If
              the SA lookup fails, drop the packet and log/report the
              error.

           2. Use the SA found in (1) to do the IPsec processing, e.g.,
              authenticate and decrypt.  This step includes matching the
              packet’s (Inner Header if tunneled) selectors to the
              selectors in the SA.  Local policy determines the
              specificity of the SA selectors (single value, list,
              range, wildcard).  In general, a packet’s source address
              MUST match the SA selector value.  However, an ICMP packet
              received on a tunnel mode SA may have a source address
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              other than that bound to the SA and thus such packets
              should be permitted as exceptions to this check.  For an
              ICMP packet, the selectors from the enclosed problem
              packet (the source and destination addresses and ports
              should be swapped) should be checked against the selectors
              for the SA.  Note that some or all of these selectors may
              be inaccessible because of limitations on how many bits of
              the problem packet the ICMP packet is allowed to carry or
              due to encryption.  See Section 6.

              Do (1) and (2) for every IPsec header until a Transport
              Protocol Header or an IP header that is NOT for this
              system is encountered.  Keep track of what SAs have been
              used and their order of application.

           3. Find an incoming policy in the SPD that matches the
              packet.  This could be done, for example, by use of
              backpointers from the SAs to the SPD or by matching the
              packet’s selectors (Inner Header if tunneled) against
              those of the policy entries in the SPD.

           4. Check whether the required IPsec processing has been
              applied, i.e., verify that the SA’s found in (1) and (2)
              match the kind and order of SAs required by the policy
              found in (3).

              NOTE: The correct "matching" policy will not necessarily
              be the first inbound policy found.  If the check in (4)
              fails, steps (3) and (4) are repeated until all policy
              entries have been checked or until the check succeeds.

   At the end of these steps, pass the resulting packet to the Transport
   Layer or forward the packet.  Note that any IPsec headers processed
   in these steps may have been removed, but that this information,
   i.e., what SAs were used and the order of their application, may be
   needed for subsequent IPsec or firewall processing.

   Note that in the case of a security gateway, if forwarding causes a
   packet to exit via an IPsec-enabled interface, then additional IPsec
   processing may be applied.

5.2.2 Handling of AH and ESP tunnels

   The handling of the inner and outer IP headers, extension headers,
   and options for AH and ESP tunnels should be performed as described
   in the tables in Section 5.1.
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6. ICMP Processing (relevant to IPsec)

   The focus of this section is on the handling of ICMP error messages.
   Other ICMP traffic, e.g., Echo/Reply, should be treated like other
   traffic and can be protected on an end-to-end basis using SAs in the
   usual fashion.

   An ICMP error message protected by AH or ESP and generated by a
   router SHOULD be processed and forwarded in a tunnel mode SA.  Local
   policy determines whether or not it is subjected to source address
   checks by the router at the destination end of the tunnel.  Note that
   if the router at the originating end of the tunnel is forwarding an
   ICMP error message from another router, the source address check
   would fail.  An ICMP message protected by AH or ESP and generated by
   a router MUST NOT be forwarded on a transport mode SA (unless the SA
   has been established to the router acting as a host, e.g., a Telnet
   connection used to manage a router).  An ICMP message generated by a
   host SHOULD be checked against the source IP address selectors bound
   to the SA in which the message arrives.  Note that even if the source
   of an ICMP error message is authenticated, the returned IP header
   could be invalid. Accordingly, the selector values in the IP header
   SHOULD also be checked to be sure that they are consistent with the
   selectors for the SA over which the ICMP message was received.

   The table in Appendix D characterize ICMP messages as being either
   host generated, router generated, both, unknown/unassigned.  ICMP
   messages falling into the last two categories should be handled as
   determined by the receiver’s policy.

   An ICMP message not protected by AH or ESP is unauthenticated and its
   processing and/or forwarding may result in denial of service.  This
   suggests that, in general, it would be desirable to ignore such
   messages.  However, it is expected that many routers (vs. security
   gateways) will not implement IPsec for transit traffic and thus
   strict adherence to this rule would cause many ICMP messages to be
   discarded.  The result is that some critical IP functions would be
   lost, e.g., redirection and PMTU processing.  Thus it MUST be
   possible to configure an IPsec implementation to accept or reject
   (router) ICMP traffic as per local security policy.

   The remainder of this section addresses how PMTU processing MUST be
   performed at hosts and security gateways.  It addresses processing of
   both authenticated and unauthenticated ICMP PMTU messages.  However,
   as noted above, unauthenticated ICMP messages MAY be discarded based
   on local policy.
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6.1 PMTU/DF Processing

6.1.1 DF Bit

   In cases where a system (host or gateway) adds an encapsulating
   header (ESP tunnel or AH tunnel), it MUST support the option of
   copying the DF bit from the original packet to the encapsulating
   header (and processing ICMP PMTU messages).  This means that it MUST
   be possible to configure the system’s treatment of the DF bit (set,
   clear, copy from encapsulated header) for each interface.  (See
   Appendix B for rationale.)

6.1.2 Path MTU Discovery (PMTU)

   This section discusses IPsec handling for Path MTU Discovery
   messages.  ICMP PMTU is used here to refer to an ICMP message for:

           IPv4 (RFC 792):
                   - Type = 3 (Destination Unreachable)
                   - Code = 4 (Fragmentation needed and DF set)
                   - Next-Hop MTU in the low-order 16 bits of the second
                     word of the ICMP header (labelled "unused" in RFC
                     792), with high-order 16 bits set to zero

           IPv6 (RFC 1885):
                   - Type = 2 (Packet Too Big)
                   - Code = 0 (Fragmentation needed)
                   - Next-Hop MTU in the 32 bit MTU field of the ICMP6
                     message

6.1.2.1 Propagation of PMTU

   The amount of information returned with the ICMP PMTU message (IPv4
   or IPv6) is limited and this affects what selectors are available for
   use in further propagating the PMTU information.  (See Appendix B for
   more detailed discussion of this topic.)

   o PMTU message with 64 bits of IPsec header -- If the ICMP PMTU
     message contains only 64 bits of the IPsec header (minimum for
     IPv4), then a security gateway MUST support the following options
     on a per SPI/SA basis:

        a. if the originating host can be determined (or the possible
           sources narrowed down to a manageable number), send the PM
           information to all the possible originating hosts.
        b. if the originating host cannot be determined, store the PMTU
           with the SA and wait until the next packet(s) arrive from the
           originating host for the relevant security association.  If
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           the packet(s) are bigger than the PMTU, drop the packet(s),
           and compose ICMP PMTU message(s) with the new packet(s) and
           the updated PMTU, and send the ICMP message(s) about the
           problem to the originating host. Retain the PMTU information
           for any message that might arrive subsequently (see Section
           6.1.2.4, "PMTU Aging").

   o PMTU message with >64 bits of IPsec header -- If the ICMP message
     contains more information from the original packet then there may
     be enough non-opaque information to immediately determine to which
     host to propagate the ICMP/PMTU message and to provide that system
     with the 5 fields (source address, destination address, source
     port, destination port, transport protocol) needed to determine
     where to store/update the PMTU.  Under such circumstances, a
     security gateway MUST generate an ICMP PMTU message immediately
     upon receipt of an ICMP PMTU from further down the path.

   o Distributing the PMTU to the Transport Layer -- The host mechanism
     for getting the updated PMTU to the transport layer is unchanged,
     as specified in RFC 1191 (Path MTU Discovery).

6.1.2.2 Calculation of PMTU

   The calculation of PMTU from an ICMP PMTU MUST take into account the
   addition of any IPsec header -- AH transport, ESP transport, AH/ESP
   transport, ESP tunnel, AH tunnel.  (See Appendix B for discussion of
   implementation issues.)

   Note: In some situations the addition of IPsec headers could result
   in an effective PMTU (as seen by the host or application) that is
   unacceptably small.  To avoid this problem, the implementation may
   establish a threshold below which it will not report a reduced PMTU.
   In such cases, the implementation would apply IPsec and then fragment
   the resulting packet according to the PMTU.  This would result in a
   more efficient use of the available bandwidth.

6.1.2.3 Granularity of PMTU Processing

   In hosts, the granularity with which ICMP PMTU processing can be done
   differs depending on the implementation situation.  Looking at a
   host, there are 3 situations that are of interest with respect to
   PMTU issues (See Appendix B for additional details on this topic.):

        a. Integration of IPsec into the native IP implementation
        b. Bump-in-the-stack implementations, where IPsec is implemented
           "underneath" an existing implementation of a TCP/IP protocol
           stack, between the native IP and the local network drivers
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        c. No IPsec implementation -- This case is included because it
           is relevant in cases where a security gateway is sending PMTU
           information back to a host.

   Only in case (a) can the PMTU data be maintained at the same
   granularity as communication associations.  In (b) and (c), the IP
   layer will only be able to maintain PMTU data at the granularity of
   source and destination IP addresses (and optionally TOS), as
   described in RFC 1191.  This is an important difference, because more
   than one communication association may map to the same source and
   destination IP addresses, and each communication association may have
   a different amount of IPsec header overhead (e.g., due to use of
   different transforms or different algorithms).

   Implementation of the calculation of PMTU and support for PMTUs at
   the granularity of individual communication associations is a local
   matter.  However, a socket-based implementation of IPsec in a host
   SHOULD maintain the information on a per socket basis.  Bump in the
   stack systems MUST pass an ICMP PMTU to the host IP implementation,
   after adjusting it for any IPsec header overhead added by these
   systems.  The calculation of the overhead SHOULD be determined by
   analysis of the SPI and any other selector information present in a
   returned ICMP PMTU message.

6.1.2.4 PMTU Aging

   In all systems (host or gateway) implementing IPsec and maintaining
   PMTU information, the PMTU associated with a security association
   (transport or tunnel) MUST be "aged" and some mechanism put in place
   for updating the PMTU in a timely manner, especially for discovering
   if the PMTU is smaller than it needs to be.  A given PMTU has to
   remain in place long enough for a packet to get from the source end
   of the security association to the system at the other end of the
   security association and propagate back an ICMP error message if the
   current PMTU is too big.  Note that if there are nested tunnels,
   multiple packets and round trip times might be required to get an
   ICMP message back to an encapsulator or originating host.

   Systems SHOULD use the approach described in the Path MTU Discovery
   document (RFC 1191, Section 6.3), which suggests periodically
   resetting the PMTU to the first-hop data-link MTU and then letting
   the normal PMTU Discovery processes update the PMTU as necessary.
   The period SHOULD be configurable.
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7. Auditing

   Not all systems that implement IPsec will implement auditing.  For
   the most part, the granularity of auditing is a local matter.
   However, several auditable events are identified in the AH and ESP
   specifications and for each of these events a minimum set of
   information that SHOULD be included in an audit log is defined.
   Additional information also MAY be included in the audit log for each
   of these events, and additional events, not explicitly called out in
   this specification, also MAY result in audit log entries.  There is
   no requirement for the receiver to transmit any message to the
   purported transmitter in response to the detection of an auditable
   event, because of the potential to induce denial of service via such
   action.

8. Use in Systems Supporting Information Flow Security

   Information of various sensitivity levels may be carried over a
   single network.  Information labels (e.g., Unclassified, Company
   Proprietary, Secret) [DoD85, DoD87] are often employed to distinguish
   such information.  The use of labels facilitates segregation of
   information, in support of information flow security models, e.g.,
   the Bell-LaPadula model [BL73].  Such models, and corresponding
   supporting technology, are designed to prevent the unauthorized flow
   of sensitive information, even in the face of Trojan Horse attacks.
   Conventional, discretionary access control (DAC) mechanisms, e.g.,
   based on access control lists, generally are not sufficient to
   support such policies, and thus facilities such as the SPD do not
   suffice in such environments.

   In the military context, technology that supports such models is
   often referred to as multi-level security (MLS).  Computers and
   networks often are designated "multi-level secure" if they support
   the separation of labelled data in conjunction with information flow
   security policies.  Although such technology is more broadly
   applicable than just military applications, this document uses the
   acronym "MLS" to designate the technology, consistent with much
   extant literature.

   IPsec mechanisms can easily support MLS networking.  MLS networking
   requires the use of strong Mandatory Access Controls (MAC), which
   unprivileged users or unprivileged processes are incapable of
   controlling or violating.  This section pertains only to the use of
   these IP security mechanisms in MLS (information flow security
   policy) environments.  Nothing in this section applies to systems not
   claiming to provide MLS.
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   As used in this section, "sensitivity information" might include
   implementation-defined hierarchic levels, categories, and/or
   releasability information.

   AH can be used to provide strong authentication in support of
   mandatory access control decisions in MLS environments.  If explicit
   IP sensitivity information (e.g., IPSO [Ken91]) is used and
   confidentiality is not considered necessary within the particular
   operational environment, AH can be used to authenticate the binding
   between sensitivity labels in the IP header and the IP payload
   (including user data).  This is a significant improvement over
   labeled IPv4 networks where the sensitivity information is trusted
   even though there is no authentication or cryptographic binding of
   the information to the IP header and user data.  IPv4 networks might
   or might not use explicit labelling.  IPv6 will normally use implicit
   sensitivity information that is part of the IPsec Security
   Association but not transmitted with each packet instead of using
   explicit sensitivity information.  All explicit IP sensitivity
   information MUST be authenticated using either ESP, AH, or both.

   Encryption is useful and can be desirable even when all of the hosts
   are within a protected environment, for example, behind a firewall or
   disjoint from any external connectivity.  ESP can be used, in
   conjunction with appropriate key management and encryption
   algorithms, in support of both DAC and MAC.  (The choice of
   encryption and authentication algorithms, and the assurance level of
   an IPsec implementation will determine the environments in which an
   implementation may be deemed sufficient to satisfy MLS requirements.)
   Key management can make use of sensitivity information to provide
   MAC.  IPsec implementations on systems claiming to provide MLS SHOULD
   be capable of using IPsec to provide MAC for IP-based communications.

8.1 Relationship Between Security Associations and Data Sensitivity

   Both the Encapsulating Security Payload and the Authentication Header
   can be combined with appropriate Security Association policies to
   provide multi-level secure networking.  In this case each SA (or SA
   bundle) is normally used for only a single instance of sensitivity
   information.  For example, "PROPRIETARY - Internet Engineering" must
   be associated with a different SA (or SA bundle) from "PROPRIETARY -
   Finance".

8.2 Sensitivity Consistency Checking

   An MLS implementation (both host and router) MAY associate
   sensitivity information, or a range of sensitivity information with
   an interface, or a configured IP address with its associated prefix
   (the latter is sometimes referred to as a logical interface, or an

Kent & Atkinson             Standards Track                    [Page 40]



RFC 2401              Security Architecture for IP         November 1998

   interface alias).  If such properties exist, an implementation SHOULD
   compare the sensitivity information associated with the packet
   against the sensitivity information associated with the interface or
   address/prefix from which the packet arrived, or through which the
   packet will depart.  This check will either verify that the
   sensitivities match, or that the packet’s sensitivity falls within
   the range of the interface or address/prefix.

   The checking SHOULD be done on both inbound and outbound processing.

8.3 Additional MLS Attributes for Security Association Databases

   Section 4.4 discussed two Security Association databases (the
   Security Policy Database (SPD) and the Security Association Database
   (SAD)) and the associated policy selectors and SA attributes.  MLS
   networking introduces an additional selector/attribute:

           - Sensitivity information.

   The Sensitivity information aids in selecting the appropriate
   algorithms and key strength, so that the traffic gets a level of
   protection appropriate to its importance or sensitivity as described
   in section 8.1.  The exact syntax of the sensitivity information is
   implementation defined.

8.4 Additional Inbound Processing Steps for MLS Networking

   After an inbound packet has passed through IPsec processing, an MLS
   implementation SHOULD first check the packet’s sensitivity (as
   defined by the SA (or SA bundle) used for the packet) with the
   interface or address/prefix as described in section 8.2 before
   delivering the datagram to an upper-layer protocol or forwarding it.

   The MLS system MUST retain the binding between the data received in
   an IPsec protected packet and the sensitivity information in the SA
   or SAs used for processing, so appropriate policy decisions can be
   made when delivering the datagram to an application or forwarding
   engine.  The means for maintaining this binding are implementation
   specific.

8.5 Additional Outbound Processing Steps for MLS Networking

   An MLS implementation of IPsec MUST perform two additional checks
   besides the normal steps detailed in section 5.1.1.  When consulting
   the SPD or the SAD to find an outbound security association, the MLS
   implementation MUST use the sensitivity of the data to select an
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   appropriate outbound SA or SA bundle.  The second check comes before
   forwarding the packet out to its destination, and is the sensitivity
   consistency checking described in section 8.2.

8.6 Additional MLS Processing for Security Gateways

   An MLS security gateway MUST follow the previously mentioned inbound
   and outbound processing rules as well as perform some additional
   processing specific to the intermediate protection of packets in an
   MLS environment.

   A security gateway MAY act as an outbound proxy, creating SAs for MLS
   systems that originate packets forwarded by the gateway.  These MLS
   systems may explicitly label the packets to be forwarded, or the
   whole originating network may have sensitivity characteristics
   associated with it.  The security gateway MUST create and use
   appropriate SAs for AH, ESP, or both, to protect such traffic it
   forwards.

   Similarly such a gateway SHOULD accept and process inbound AH and/or
   ESP packets and forward appropriately, using explicit packet
   labeling, or relying on the sensitivity characteristics of the
   destination network.

9. Performance Issues

   The use of IPsec imposes computational performance costs on the hosts
   or security gateways that implement these protocols.  These costs are
   associated with the memory needed for IPsec code and data structures,
   and the computation of integrity check values, encryption and
   decryption, and added per-packet handling.  The per-packet
   computational costs will be manifested by increased latency and,
   possibly, reduced throughout.  Use of SA/key management protocols,
   especially ones that employ public key cryptography, also adds
   computational performance costs to use of IPsec.  These per-
   association computational costs will be manifested in terms of
   increased latency in association establishment.  For many hosts, it
   is anticipated that software-based cryptography will not appreciably
   reduce throughput, but hardware may be required for security gateways
   (since they represent aggregation points), and for some hosts.

   The use of IPsec also imposes bandwidth utilization costs on
   transmission, switching, and routing components of the Internet
   infrastructure, components not implementing IPsec.  This is due to
   the increase in the packet size resulting from the addition of AH
   and/or ESP headers, AH and ESP tunneling (which adds a second IP
   header), and the increased packet traffic associated with key
   management protocols.  It is anticipated that, in most instances,
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   this increased bandwidth demand will not noticeably affect the
   Internet infrastructure.  However, in some instances, the effects may
   be significant, e.g., transmission of ESP encrypted traffic over a
   dialup link that otherwise would have compressed the traffic.

   Note: The initial SA establishment overhead will be felt in the first
   packet.  This delay could impact the transport layer and application.
   For example, it could cause TCP to retransmit the SYN before the
   ISAKMP exchange is done.  The effect of the delay would be different
   on UDP than TCP because TCP shouldn’t transmit anything other than
   the SYN until the connection is set up whereas UDP will go ahead and
   transmit data beyond the first packet.

   Note: As discussed earlier, compression can still be employed at
   layers above IP.  There is an IETF working group (IP Payload
   Compression Protocol (ippcp)) working on "protocol specifications
   that make it possible to perform lossless compression on individual
   payloads before the payload is processed by a protocol that encrypts
   it. These specifications will allow for compression operations to be
   performed prior to the encryption of a payload by IPsec protocols."

10. Conformance Requirements

   All IPv4 systems that claim to implement IPsec MUST comply with all
   requirements of the Security Architecture document.  All IPv6 systems
   MUST comply with all requirements of the Security Architecture
   document.

11. Security Considerations

   The focus of this document is security; hence security considerations
   permeate this specification.

12. Differences from RFC 1825

   This architecture document differs substantially from RFC 1825 in
   detail and in organization, but the fundamental notions are
   unchanged.  This document provides considerable additional detail in
   terms of compliance specifications.  It introduces the SPD and SAD,
   and the notion of SA selectors.  It is aligned with the new versions
   of AH and ESP, which also differ from their predecessors.  Specific
   requirements for supported combinations of AH and ESP are newly
   added, as are details of PMTU management.
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Appendix A -- Glossary

   This section provides definitions for several key terms that are
   employed in this document.  Other documents provide additional
   definitions and background information relevant to this technology,
   e.g., [VK83, HA94].  Included in this glossary are generic security
   service and security mechanism terms, plus IPsec-specific terms.

     Access Control
        Access control is a security service that prevents unauthorized
        use of a resource, including the prevention of use of a resource
        in an unauthorized manner.  In the IPsec context, the resource
        to which access is being controlled is often:
                o for a host, computing cycles or data
                o for a security gateway, a network behind the gateway
        or
                  bandwidth on that network.

     Anti-replay
        [See "Integrity" below]

     Authentication
        This term is used informally to refer to the combination of two
        nominally distinct security services, data origin authentication
        and connectionless integrity.  See the definitions below for
        each of these services.

     Availability
        Availability, when viewed as a security service, addresses the
        security concerns engendered by attacks against networks that
        deny or degrade service.  For example, in the IPsec context, the
        use of anti-replay mechanisms in AH and ESP support
        availability.

     Confidentiality
        Confidentiality is the security service that protects data from
        unauthorized disclosure.  The primary confidentiality concern in
        most instances is unauthorized disclosure of application level
        data, but disclosure of the external characteristics of
        communication also can be a concern in some circumstances.
        Traffic flow confidentiality is the service that addresses this
        latter concern by concealing source and destination addresses,
        message length, or frequency of communication.  In the IPsec
        context, using ESP in tunnel mode, especially at a security
        gateway, can provide some level of traffic flow confidentiality.
        (See also traffic analysis, below.)
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     Encryption
        Encryption is a security mechanism used to transform data from
        an intelligible form (plaintext) into an unintelligible form
        (ciphertext), to provide confidentiality.  The inverse
        transformation process is designated "decryption".  Oftimes the
        term "encryption" is used to generically refer to both
        processes.

     Data Origin Authentication
        Data origin authentication is a security service that verifies
        the identity of the claimed source of data.  This service is
        usually bundled with connectionless integrity service.

     Integrity
        Integrity is a security service that ensures that modifications
        to data are detectable.  Integrity comes in various flavors to
        match application requirements.  IPsec supports two forms of
        integrity: connectionless and a form of partial sequence
        integrity.  Connectionless integrity is a service that detects
        modification of an individual IP datagram, without regard to the
        ordering of the datagram in a stream of traffic.  The form of
        partial sequence integrity offered in IPsec is referred to as
        anti-replay integrity, and it detects arrival of duplicate IP
        datagrams (within a constrained window).  This is in contrast to
        connection-oriented integrity, which imposes more stringent
        sequencing requirements on traffic, e.g., to be able to detect
        lost or re-ordered messages.  Although authentication and
        integrity services often are cited separately, in practice they
        are intimately connected and almost always offered in tandem.

     Security Association (SA)
        A simplex (uni-directional) logical connection, created for
        security purposes.  All traffic traversing an SA is provided the
        same security processing.  In IPsec, an SA is an internet layer
        abstraction implemented through the use of AH or ESP.

     Security Gateway
        A security gateway is an intermediate system that acts as the
        communications interface between two networks.  The set of hosts
        (and networks) on the external side of the security gateway is
        viewed as untrusted (or less trusted), while the networks and
        hosts and on the internal side are viewed as trusted (or more
        trusted).  The internal subnets and hosts served by a security
        gateway are presumed to be trusted by virtue of sharing a
        common, local, security administration.  (See "Trusted
        Subnetwork" below.) In the IPsec context, a security gateway is
        a point at which AH and/or ESP is implemented in order to serve
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        a set of internal hosts, providing security services for these
        hosts when they communicate with external hosts also employing
        IPsec (either directly or via another security gateway).

     SPI
        Acronym for "Security Parameters Index".  The combination of a
        destination address, a security protocol, and an SPI uniquely
        identifies a security association (SA, see above).  The SPI is
        carried in AH and ESP protocols to enable the receiving system
        to select the SA under which a received packet will be
        processed.  An SPI has only local significance, as defined by
        the creator of the SA (usually the receiver of the packet
        carrying the SPI); thus an SPI is generally viewed as an opaque
        bit string.  However, the creator of an SA may choose to
        interpret the bits in an SPI to facilitate local processing.

     Traffic Analysis
        The analysis of network traffic flow for the purpose of deducing
        information that is useful to an adversary.  Examples of such
        information are frequency of transmission, the identities of the
        conversing parties, sizes of packets, flow identifiers, etc.
        [Sch94]

     Trusted Subnetwork
        A subnetwork containing hosts and routers that trust each other
        not to engage in active or passive attacks.  There also is an
        assumption that the underlying communications channel (e.g., a
        LAN or CAN) isn’t being attacked by other means.
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Appendix B -- Analysis/Discussion of PMTU/DF/Fragmentation Issues

B.1 DF bit

   In cases where a system (host or gateway) adds an encapsulating
   header (e.g., ESP tunnel), should/must the DF bit in the original
   packet be copied to the encapsulating header?

   Fragmenting seems correct for some situations, e.g., it might be
   appropriate to fragment packets over a network with a very small MTU,
   e.g., a packet radio network, or a cellular phone hop to mobile node,
   rather than propagate back a very small PMTU for use over the rest of
   the path.  In other situations, it might be appropriate to set the DF
   bit in order to get feedback from later routers about PMTU
   constraints which require fragmentation.  The existence of both of
   these situations argues for enabling a system to decide whether or
   not to fragment over a particular network "link", i.e., for requiring
   an implementation to be able to copy the DF bit (and to process ICMP
   PMTU messages), but making it an option to be selected on a per
   interface basis.  In other words, an administrator should be able to
   configure the router’s treatment of the DF bit (set, clear, copy from
   encapsulated header) for each interface.

   Note: If a bump-in-the-stack implementation of IPsec attempts to
   apply different IPsec algorithms based on source/destination ports,
   it will be difficult to apply Path MTU adjustments.

B.2 Fragmentation

   If required, IP fragmentation occurs after IPsec processing within an
   IPsec implementation.  Thus, transport mode AH or ESP is applied only
   to whole IP datagrams (not to IP fragments).  An IP packet to which
   AH or ESP has been applied may itself be fragmented by routers en
   route, and such fragments MUST be reassembled prior to IPsec
   processing at a receiver.  In tunnel mode, AH or ESP is applied to an
   IP packet, the payload of which may be a fragmented IP packet.  For
   example, a security gateway, "bump-in-the-stack" (BITS), or "bump-
   in-the-wire" (BITW) IPsec implementation may apply tunnel mode AH to
   such fragments.  Note that BITS or BITW implementations are examples
   of where a host IPsec implementation might receive fragments to which
   tunnel mode is to be applied.  However, if transport mode is to be
   applied, then these implementations MUST reassemble the fragments
   prior to applying IPsec.
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   NOTE: IPsec always has to figure out what the encapsulating IP header
   fields are.  This is independent of where you insert IPsec and is
   intrinsic to the definition of IPsec.  Therefore any IPsec
   implementation that is not integrated into an IP implementation must
   include code to construct the necessary IP headers (e.g., IP2):

        o AH-tunnel --> IP2-AH-IP1-Transport-Data
        o ESP-tunnel -->  IP2-ESP_hdr-IP1-Transport-Data-ESP_trailer

   *********************************************************************

   Overall, the fragmentation/reassembly approach described above works
   for all cases examined.

                              AH Xport   AH Tunnel  ESP Xport  ESP Tunnel
 Implementation approach      IPv4 IPv6  IPv4 IPv6  IPv4 IPv6  IPv4 IPv6
 -----------------------      ---- ----  ---- ----  ---- ----  ---- ----
 Hosts (integr w/ IP stack)     Y    Y     Y    Y     Y    Y     Y    Y
 Hosts (betw/ IP and drivers)   Y    Y     Y    Y     Y    Y     Y    Y
 S. Gwy (integr w/ IP stack)               Y    Y                Y    Y
 Outboard crypto processor *

        * If the crypto processor system has its own IP address, then it
          is covered by the security gateway case.  This box receives
          the packet from the host and performs IPsec processing.  It
          has to be able to handle the same AH, ESP, and related
          IPv4/IPv6 tunnel processing that a security gateway would have
          to handle.  If it doesn’t have it’s own address, then it is
          similar to the bump-in-the stack implementation between IP and
          the network drivers.

   The following analysis assumes that:

        1. There is only one IPsec module in a given system’s stack.
           There isn’t an IPsec module A (adding ESP/encryption and
           thus) hiding the transport protocol, SRC port, and DEST port
           from IPsec module B.
        2. There are several places where IPsec could be implemented (as
           shown in the table above).
                a. Hosts with integration of IPsec into the native IP
                   implementation.  Implementer has access to the source
                   for the stack.
                b. Hosts with bump-in-the-stack implementations, where
                   IPsec is implemented between IP and the local network
                   drivers.  Source access for stack is not available;
                   but there are well-defined interfaces that allows the
                   IPsec code to be incorporated into the system.
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                c. Security gateways and outboard crypto processors with
                   integration of IPsec into the stack.
        3. Not all of the above approaches are feasible in all hosts.
           But it was assumed that for each approach, there are some
           hosts for whom the approach is feasible.

   For each of the above 3 categories, there are IPv4 and IPv6, AH
   transport and tunnel modes, and ESP transport and tunnel modes -- for
   a total of 24 cases (3 x 2 x 4).

   Some header fields and interface fields are listed here for ease of
   reference -- they’re not in the header order, but instead listed to
   allow comparison between the columns.  (* = not covered by AH
   authentication.  ESP authentication doesn’t cover any headers that
   precede it.)

                                             IP/Transport Interface
             IPv4            IPv6            (RFC 1122 -- Sec 3.4)
             ----            ----            ----------------------
             Version = 4     Version = 6
             Header Len
             *TOS            Class,Flow Lbl  TOS
             Packet Len      Payload Len     Len
             ID                              ID (optional)
             *Flags                          DF
             *Offset
             *TTL            *Hop Limit      TTL
             Protocol        Next Header
             *Checksum
             Src Address     Src Address     Src Address
             Dst Address     Dst Address     Dst Address
             Options?        Options?        Opt

             ? = AH covers Option-Type and Option-Length, but
                 might not cover Option-Data.

   The results for each of the 20 cases is shown below ("works" = will
   work if system fragments after outbound IPsec processing, reassembles
   before inbound IPsec processing).  Notes indicate implementation
   issues.

    a. Hosts (integrated into IP stack)
          o AH-transport  --> (IP1-AH-Transport-Data)
                    - IPv4 -- works
                    - IPv6 -- works
          o AH-tunnel --> (IP2-AH-IP1-Transport-Data)
                    - IPv4 -- works
                    - IPv6 -- works
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          o ESP-transport --> (IP1-ESP_hdr-Transport-Data-ESP_trailer)
                    - IPv4 -- works
                    - IPv6 -- works
          o ESP-tunnel -->  (IP2-ESP_hdr-IP1-Transport-Data-ESP_trailer)
                    - IPv4 -- works
                    - IPv6 -- works

    b. Hosts (Bump-in-the-stack) -- put IPsec between IP layer and
       network drivers.  In this case, the IPsec module would have to do
       something like one of the following for fragmentation and
       reassembly.
            - do the fragmentation/reassembly work itself and
              send/receive the packet directly to/from the network
              layer.  In AH or ESP transport mode, this is fine.  In AH
              or ESP tunnel mode where the tunnel end is at the ultimate
              destination, this is fine.  But in AH or ESP tunnel modes
              where the tunnel end is different from the ultimate
              destination and where the source host is multi-homed, this
              approach could result in sub-optimal routing because the
              IPsec module may be unable to obtain the information
              needed (LAN interface and next-hop gateway) to direct the
              packet to the appropriate network interface.  This is not
              a problem if the interface and next-hop gateway are the
              same for the ultimate destination and for the tunnel end.
              But if they are different, then IPsec would need to know
              the LAN interface and the next-hop gateway for the tunnel
              end.  (Note: The tunnel end (security gateway) is highly
              likely to be on the regular path to the ultimate
              destination.  But there could also be more than one path
              to the destination, e.g., the host could be at an
              organization with 2 firewalls.  And the path being used
              could involve the less commonly chosen firewall.)  OR
            - pass the IPsec’d packet back to the IP layer where an
              extra IP header would end up being pre-pended and the
              IPsec module would have to check and let IPsec’d fragments
              go by.
                                    OR
            - pass the packet contents to the IP layer in a form such
              that the IP layer recreates an appropriate IP header

       At the network layer, the IPsec module will have access to the
       following selectors from the packet -- SRC address, DST address,
       Next Protocol, and if there’s a transport layer header --> SRC
       port and DST port.  One cannot assume IPsec has access to the
       Name.  It is assumed that the available selector information is
       sufficient to figure out the relevant Security Policy entry and
       Security Association(s).

Kent & Atkinson             Standards Track                    [Page 51]



RFC 2401              Security Architecture for IP         November 1998

          o AH-transport  --> (IP1-AH-Transport-Data)
                    - IPv4 -- works
                    - IPv6 -- works
          o AH-tunnel --> (IP2-AH-IP1-Transport-Data)
                    - IPv4 -- works
                    - IPv6 -- works
          o ESP-transport --> (IP1-ESP_hdr-Transport-Data-ESP_trailer)
                    - IPv4 -- works
                    - IPv6 -- works
          o ESP-tunnel -->  (IP2-ESP_hdr-IP1-Transport-Data-ESP_trailer)
                    - IPv4 -- works
                    - IPv6 -- works

    c. Security gateways -- integrate IPsec into the IP stack

       NOTE: The IPsec module will have access to the following
       selectors from the packet -- SRC address, DST address, Next
       Protocol, and if there’s a transport layer header --> SRC port
       and DST port.  It won’t have access to the User ID (only Hosts
       have access to User ID information.)  Unlike some Bump-in-the-
       stack implementations, security gateways may be able to look up
       the Source Address in the DNS to provide a System Name, e.g., in
       situations involving use of dynamically assigned IP addresses in
       conjunction with dynamically updated DNS entries.  It also won’t
       have access to the transport layer information if there is an ESP
       header, or if it’s not the first fragment of a fragmented
       message.  It is assumed that the available selector information
       is sufficient to figure out the relevant Security Policy entry
       and Security Association(s).

          o AH-tunnel --> (IP2-AH-IP1-Transport-Data)
                    - IPv4 -- works
                    - IPv6 -- works
          o ESP-tunnel -->  (IP2-ESP_hdr-IP1-Transport-Data-ESP_trailer)
                    - IPv4 -- works
                    - IPv6 -- works

   **********************************************************************

B.3 Path MTU Discovery

   As mentioned earlier, "ICMP PMTU" refers to an ICMP message used for
   Path MTU Discovery.

   The legend for the diagrams below in B.3.1 and B.3.3 (but not B.3.2)
   is:

        ==== = security association (AH or ESP, transport or tunnel)
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        ---- = connectivity (or if so labelled, administrative boundary)
        .... = ICMP message (hereafter referred to as ICMP PMTU) for

                IPv4:
                - Type = 3 (Destination Unreachable)
                - Code = 4 (Fragmentation needed and DF set)
                - Next-Hop MTU in the low-order 16 bits of the second
                  word of the ICMP header (labelled unused in RFC 792),
                  with high-order 16 bits set to zero

                IPv6 (RFC 1885):
                - Type = 2 (Packet Too Big)
                - Code = 0 (Fragmentation needed and DF set)
                - Next-Hop MTU in the 32 bit MTU field of the ICMP6

        Hx   = host x
        Rx   = router x
        SGx  = security gateway x
        X*   = X supports IPsec

B.3.1 Identifying the Originating Host(s)

The amount of information returned with the ICMP message is limited
and this affects what selectors are available to identify security
associations, originating hosts, etc. for use in further propagating
the PMTU information.

In brief...  An ICMP message must contain the following information
from the "offending" packet:
        - IPv4 (RFC 792) --  IP header plus a minimum of 64 bits

Accordingly, in the IPv4 context, an ICMP PMTU may identify only the
first (outermost) security association.  This is because the ICMP
PMTU may contain only 64 bits of the "offending" packet beyond the IP
header, which would capture only the first SPI from AH or ESP.  In
the IPv6 context, an ICMP PMTU will probably provide all the SPIs and
the selectors in the IP header, but maybe not the SRC/DST ports (in
the transport header) or the encapsulated (TCP, UDP, etc.) protocol.
Moreover, if ESP is used, the transport ports and protocol selectors
may be encrypted.

Looking at the diagram below of a security gateway tunnel (as
mentioned elsewhere, security gateways do not use transport mode)...
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     H1   ===================           H3
       \  |                 |          /
   H0 -- SG1* ---- R1 ---- SG2* ---- R2 -- H5
       /  ^        |                   \
     H2   |........|                    H4

   Suppose that the security policy for SG1 is to use a single SA to SG2
   for all the traffic between hosts H0, H1, and H2 and hosts H3, H4,
   and H5.  And suppose H0 sends a data packet to H5 which causes R1 to
   send an ICMP PMTU message to SG1.  If the PMTU message has only the
   SPI, SG1 will be able to look up the SA and find the list of possible
   hosts (H0, H1, H2, wildcard); but SG1 will have no way to figure out
   that H0 sent the traffic that triggered the ICMP PMTU message.

      original        after IPsec     ICMP
      packet          processing      packet
      --------        -----------     ------
                                      IP-3 header (S = R1, D = SG1)
                                      ICMP header (includes PMTU)
                      IP-2 header     IP-2 header (S = SG1, D = SG2)
                      ESP header      minimum of 64 bits of ESP hdr (*)
      IP-1 header     IP-1 header
      TCP header      TCP header
      TCP data        TCP data
                      ESP trailer

      (*) The 64 bits will include enough of the ESP (or AH) header to
          include the SPI.
              - ESP -- SPI (32 bits), Seq number (32 bits)
              - AH -- Next header (8 bits), Payload Len (8 bits),
                Reserved (16 bits), SPI (32 bits)

   This limitation on the amount of information returned with an ICMP
   message creates a problem in identifying the originating hosts for
   the packet (so as to know where to further propagate the ICMP PMTU
   information).  If the ICMP message contains only 64 bits of the IPsec
   header (minimum for IPv4), then the IPsec selectors (e.g., Source and
   Destination addresses, Next Protocol, Source and Destination ports,
   etc.) will have been lost.  But the ICMP error message will still
   provide SG1 with the SPI, the PMTU information and the source and
   destination gateways for the relevant security association.

   The destination security gateway and SPI uniquely define a security
   association which in turn defines a set of possible originating
   hosts.  At this point, SG1 could:
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   a. send the PMTU information to all the possible originating hosts.
      This would not work well if the host list is a wild card or if
      many/most of the hosts weren’t sending to SG1; but it might work
      if the SPI/destination/etc mapped to just one or a small number of
      hosts.
   b. store the PMTU with the SPI/etc and wait until the next packet(s)
      arrive from the originating host(s) for the relevant security
      association.  If it/they are bigger than the PMTU, drop the
      packet(s), and compose ICMP PMTU message(s) with the new packet(s)
      and the updated PMTU, and send the originating host(s) the ICMP
      message(s) about the problem.  This involves a delay in notifying
      the originating host(s), but avoids the problems of (a).

   Since only the latter approach is feasible in all instances, a
   security gateway MUST provide such support, as an option.  However,
   if the ICMP message contains more information from the original
   packet, then there may be enough information to immediately determine
   to which host to propagate the ICMP/PMTU message and to provide that
   system with the 5 fields (source address, destination address, source
   port, destination port, and transport protocol) needed to determine
   where to store/update the PMTU.  Under such circumstances, a security
   gateway MUST generate an ICMP PMTU message immediately upon receipt
   of an ICMP PMTU from further down the path.  NOTE: The Next Protocol
   field may not be contained in the ICMP message and the use of ESP
   encryption may hide the selector fields that have been encrypted.

B.3.2 Calculation of PMTU

   The calculation of PMTU from an ICMP PMTU has to take into account
   the addition of any IPsec header by H1 -- AH and/or ESP transport, or
   ESP or AH tunnel.  Within a single host, multiple applications may
   share an SPI and nesting of security associations may occur.  (See
   Section 4.5 Basic Combinations of Security Associations for
   description of the combinations that MUST be supported).  The diagram
   below illustrates an example of security associations between a pair
   of hosts (as viewed from the perspective of one of the hosts.)  (ESPx
   or AHx = transport mode)

           Socket 1 -------------------------|
                                             |
           Socket 2 (ESPx/SPI-A) ---------- AHx (SPI-B) -- Internet

   In order to figure out the PMTU for each socket that maps to SPI-B,
   it will be necessary to have backpointers from SPI-B to each of the 2
   paths that lead to it -- Socket 1 and Socket 2/SPI-A.
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B.3.3 Granularity of Maintaining PMTU Data

   In hosts, the granularity with which PMTU ICMP processing can be done
   differs depending on the implementation situation.  Looking at a
   host, there are three situations that are of interest with respect to
   PMTU issues:

   a. Integration of IPsec into the native IP implementation
   b. Bump-in-the-stack implementations, where IPsec is implemented
      "underneath" an existing implementation of a TCP/IP protocol
      stack, between the native IP and the local network drivers
   c. No IPsec implementation -- This case is included because it is
      relevant in cases where a security gateway is sending PMTU
      information back to a host.

   Only in case (a) can the PMTU data be maintained at the same
   granularity as communication associations.  In the other cases, the
   IP layer will maintain PMTU data at the granularity of Source and
   Destination IP addresses (and optionally TOS/Class), as described in
   RFC 1191.  This is an important difference, because more than one
   communication association may map to the same source and destination
   IP addresses, and each communication association may have a different
   amount of IPsec header overhead (e.g., due to use of different
   transforms or different algorithms).  The examples below illustrate
   this.

   In cases (a) and (b)...  Suppose you have the following situation.
   H1 is sending to H2 and the packet to be sent from R1 to R2 exceeds
   the PMTU of the network hop between them.

                 ==================================
                 |                                |
                H1* --- R1 ----- R2 ---- R3 ---- H2*
                 ^       |
                 |.......|

   If R1 is configured to not fragment subscriber traffic, then R1 sends
   an ICMP PMTU message with the appropriate PMTU to H1.  H1’s
   processing would vary with the nature of the implementation.  In case
   (a) (native IP), the security services are bound to sockets or the
   equivalent.  Here the IP/IPsec implementation in H1 can store/update
   the PMTU for the associated socket.  In case (b), the IP layer in H1
   can store/update the PMTU but only at the granularity of Source and
   Destination addresses and possibly TOS/Class, as noted above.  So the
   result may be sub-optimal, since the PMTU for a given
   SRC/DST/TOS/Class will be the subtraction of the largest amount of
   IPsec header used for any communication association between a given
   source and destination.
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   In case (c), there has to be a security gateway to have any IPsec
   processing.  So suppose you have the following situation.  H1 is
   sending to H2 and the packet to be sent from SG1 to R exceeds the
   PMTU of the network hop between them.

                         ================
                         |              |
                H1 ---- SG1* --- R --- SG2* ---- H2
                 ^       |
                 |.......|

   As described above for case (b), the IP layer in H1 can store/update
   the PMTU but only at the granularity of Source and Destination
   addresses, and possibly TOS/Class.  So the result may be sub-optimal,
   since the PMTU for a given SRC/DST/TOS/Class will be the subtraction
   of the largest amount of IPsec header used for any communication
   association between a given source and destination.

B.3.4 Per Socket Maintenance of PMTU Data

   Implementation of the calculation of PMTU (Section B.3.2) and support
   for PMTUs at the granularity of individual "communication
   associations" (Section B.3.3) is a local matter.  However, a socket-
   based implementation of IPsec in a host SHOULD maintain the
   information on a per socket basis.  Bump in the stack systems MUST
   pass an ICMP PMTU to the host IP implementation, after adjusting it
   for any IPsec header overhead added by these systems.  The
   determination of the overhead SHOULD be determined by analysis of the
   SPI and any other selector information present in a returned ICMP
   PMTU message.

B.3.5 Delivery of PMTU Data to the Transport Layer

   The host mechanism for getting the updated PMTU to the transport
   layer is unchanged, as specified in RFC 1191 (Path MTU Discovery).

B.3.6 Aging of PMTU Data

   This topic is covered in Section 6.1.2.4.
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Appendix C -- Sequence Space Window Code Example

   This appendix contains a routine that implements a bitmask check for
   a 32 packet window.  It was provided by James Hughes
   (jim_hughes@stortek.com) and Harry Varnis (hgv@anubis.network.com)
   and is intended as an implementation example.  Note that this code
   both checks for a replay and updates the window.  Thus the algorithm,
   as shown, should only be called AFTER the packet has been
   authenticated.  Implementers might wish to consider splitting the
   code to do the check for replays before computing the ICV.  If the
   packet is not a replay, the code would then compute the ICV, (discard
   any bad packets), and if the packet is OK, update the window.

#include <stdio.h>
#include <stdlib.h>
typedef unsigned long u_long;

enum {
    ReplayWindowSize = 32
};

u_long bitmap = 0;                 /* session state - must be 32 bits */
u_long lastSeq = 0;                     /* session state */

/* Returns 0 if packet disallowed, 1 if packet permitted */
int ChkReplayWindow(u_long seq);

int ChkReplayWindow(u_long seq) {
    u_long diff;

    if (seq == 0) return 0;             /* first == 0 or wrapped */
    if (seq > lastSeq) {                /* new larger sequence number */
        diff = seq - lastSeq;
        if (diff < ReplayWindowSize) {  /* In window */
            bitmap <<= diff;
            bitmap |= 1;                /* set bit for this packet */
        } else bitmap = 1;          /* This packet has a "way larger" */
        lastSeq = seq;
        return 1;                       /* larger is good */
    }
    diff = lastSeq - seq;
    if (diff >= ReplayWindowSize) return 0; /* too old or wrapped */
    if (bitmap & ((u_long)1 << diff)) return 0; /* already seen */
    bitmap |= ((u_long)1 << diff);              /* mark as seen */
    return 1;                           /* out of order but good */
}

char string_buffer[512];
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#define STRING_BUFFER_SIZE sizeof(string_buffer)

int main() {
    int result;
    u_long last, current, bits;

    printf("Input initial state (bits in hex, last msgnum):\n");
    if (!fgets(string_buffer, STRING_BUFFER_SIZE, stdin)) exit(0);
    sscanf(string_buffer, "%lx %lu", &bits, &last);
    if (last != 0)
    bits |= 1;
    bitmap = bits;
    lastSeq = last;
    printf("bits:%08lx last:%lu\n", bitmap, lastSeq);
    printf("Input value to test (current):\n");

    while (1) {
        if (!fgets(string_buffer, STRING_BUFFER_SIZE, stdin)) break;
        sscanf(string_buffer, "%lu", &current);
        result = ChkReplayWindow(current);
        printf("%-3s", result ? "OK" : "BAD");
        printf(" bits:%08lx last:%lu\n", bitmap, lastSeq);
    }
    return 0;
}
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Appendix D -- Categorization of ICMP messages

The tables below characterize ICMP messages as being either host
generated, router generated, both, unassigned/unknown.  The first set
are IPv4.  The second set are IPv6.

                                IPv4

Type    Name/Codes                                             Reference
========================================================================
HOST GENERATED:
  3     Destination Unreachable
         2  Protocol Unreachable                               [RFC792]
         3  Port Unreachable                                   [RFC792]
         8  Source Host Isolated                               [RFC792]
        14  Host Precedence Violation                          [RFC1812]
 10     Router Selection                                       [RFC1256]

Type    Name/Codes                                             Reference
========================================================================
ROUTER GENERATED:
  3     Destination Unreachable
         0  Net Unreachable                                    [RFC792]
         4  Fragmentation Needed, Don’t Fragment was Set       [RFC792]
         5  Source Route Failed                                [RFC792]
         6  Destination Network Unknown                        [RFC792]
         7  Destination Host Unknown                           [RFC792]
         9  Comm. w/Dest. Net. is Administratively Prohibited  [RFC792]
        11  Destination Network Unreachable for Type of Service[RFC792]
  5     Redirect
         0  Redirect Datagram for the Network (or subnet)      [RFC792]
         2  Redirect Datagram for the Type of Service & Network[RFC792]
  9     Router Advertisement                                   [RFC1256]
 18     Address Mask Reply                                     [RFC950]
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                                IPv4
Type    Name/Codes                                             Reference
========================================================================
BOTH ROUTER AND HOST GENERATED:
  0     Echo Reply                                             [RFC792]
  3     Destination Unreachable
         1  Host Unreachable                                   [RFC792]
        10  Comm. w/Dest. Host is Administratively Prohibited  [RFC792]
        12  Destination Host Unreachable for Type of Service   [RFC792]
        13  Communication Administratively Prohibited          [RFC1812]
        15  Precedence cutoff in effect                        [RFC1812]
  4     Source Quench                                          [RFC792]
  5     Redirect
         1  Redirect Datagram for the Host                     [RFC792]
         3  Redirect Datagram for the Type of Service and Host [RFC792]
  6     Alternate Host Address                                 [JBP]
  8     Echo                                                   [RFC792]
 11     Time Exceeded                                          [RFC792]
 12     Parameter Problem                              [RFC792,RFC1108]
 13     Timestamp                                              [RFC792]
 14     Timestamp Reply                                        [RFC792]
 15     Information Request                                    [RFC792]
 16     Information Reply                                      [RFC792]
 17     Address Mask Request                                   [RFC950]
 30     Traceroute                                             [RFC1393]
 31     Datagram Conversion Error                              [RFC1475]
 32     Mobile Host Redirect                                   [Johnson]
 39     SKIP                                                   [Markson]
 40     Photuris                                               [Simpson]

Type    Name/Codes                                             Reference
========================================================================
UNASSIGNED TYPE OR UNKNOWN GENERATOR:
  1     Unassigned                                             [JBP]
  2     Unassigned                                             [JBP]
  7     Unassigned                                             [JBP]
 19     Reserved (for Security)                                [Solo]
 20-29  Reserved (for Robustness Experiment)                   [ZSu]
 33     IPv6 Where-Are-You                                     [Simpson]
 34     IPv6 I-Am-Here                                         [Simpson]
 35     Mobile Registration Request                            [Simpson]
 36     Mobile Registration Reply                              [Simpson]
 37     Domain Name Request                                    [Simpson]
 38     Domain Name Reply                                      [Simpson]
 41-255 Reserved                                               [JBP]
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                                IPv6

Type    Name/Codes                                             Reference
========================================================================
HOST GENERATED:
  1     Destination Unreachable                                [RFC 1885]
         4  Port Unreachable

Type    Name/Codes                                             Reference
========================================================================
ROUTER GENERATED:
  1     Destination Unreachable                                [RFC1885]
         0  No Route to Destination
         1  Comm. w/Destination is Administratively Prohibited
         2  Not a Neighbor
         3  Address Unreachable
  2     Packet Too Big                                         [RFC1885]
         0
  3     Time Exceeded                                          [RFC1885]
         0  Hop Limit Exceeded in Transit
         1  Fragment reassembly time exceeded

Type    Name/Codes                                             Reference
========================================================================
BOTH ROUTER AND HOST GENERATED:
  4     Parameter Problem                                      [RFC1885]
         0  Erroneous Header Field Encountered
         1  Unrecognized Next Header Type Encountered
         2  Unrecognized IPv6 Option Encountered
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Disclaimer

   The views and specification expressed in this document are those of
   the authors and are not necessarily those of their employers.  The
   authors and their employers specifically disclaim responsibility for
   any problems arising from correct or incorrect implementation or use
   of this design.
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   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
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   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
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