DECLARATION

I, Alexa Morris, based on my personal knowledge and information, hereby declare as follows:

1. I am Managing Director of the IETF Administration LLC and have held that position since the LLC was formed in August 2018. Prior to that, starting on January 1, 2008, I was the Executive Director of the Internet Engineering Task Force, which was an activity of the Internet Society. Since the business of IETF did not change in any materially relevant manner with the formation of the LLC, I will collectively refer to both the activity and the LLC as IETF.

2. One of my responsibilities with IETF has been to act as the custodian of Internet-Drafts and records relating to Internet-Drafts. I am familiar with the record keeping practices relating to Internet-Drafts, including the creation and maintenance of such records.

3. I hereby declare that all statements made herein are of my own knowledge and information contained in the business records of IETF and are true, and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements may be punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code.

4. If depositions regarding the information in this declaration are required, the deposition should be taken by phone or videoconference or, if it must be in person, should be in California.

5. Since 1998, it has been the regular practice of the IETF to publish Internet-Drafts and make them available to the public on its website at www.ietf.org (the IETF website). The IETF maintains copies of Internet-Drafts in the ordinary course of its regularly conducted activities. 6. Any Internet-Draft published on the IETF website was reasonably accessible to the public and was disseminated or otherwise available to the extent that persons interested and ordinarily skilled in the subject matter or art exercising reasonable diligence could have located it. In particular, the Internet-Drafts were indexed and searchable on the IETF website.

7. Internet-Drafts are posted to an IETF online directory. When an Internet-Draft is published, an announcement of its publication that describes the Internet-Draft is disseminated. Typically, that dated announcement is made within 24 hours of the publication of the Internet-Draft. The announcement is kept in the IETF email archive and the date is affixed automatically.

8. The records of posting the Internet-Drafts in the IETF online repository are kept in the course of the IETF's regularly conducted activity and ordinary course of business. The records are made pursuant to established procedures and are relied upon by the IETF in the performance of its functions.

9. It is the regular practice of the IETF to make and keep the records in the online repository.

10. Exhibit 1 is a true and correct copy of an announcement of the publication of draft-xli-behave-ivi-00.txt, titled "Prefix-specific and Stateless Address Mapping (IVI) for IPv4/IPv6 Coexistence and Transition." I have determined that an announcement of the publication of this Internet-Draft was made on July 6, 2008. Therefore, based on the normal practice of the IETF, that Internet-Draft was reasonably available to the public within 24 hours of that announcement. At that time, the Internet-Draft would have been disseminated or otherwise available to the extent that persons interested and ordinarily skilled in the subject matter or art, exercising reasonable diligence, could have located it.

2

Exhibit 2 is a true and correct copy of the slide presentation titled, "Prefix-specific 11. and Stateless Address Mapping (IVI) for IPv4/IPv6 Coexistence and Transition draft-xli-behaveivi-00." The IETF records for which I am responsible, and which I rely upon to be accurate, indicate that this presentation was made at an IETF meeting on July 29, 2008. Therefore, based on the normal practice of the IETF, that Internet-Draft was reasonably available to the public within 24 hours of that announcement. At that time, the Internet-Draft would have been disseminated or otherwise available to the extent that persons interested and ordinarily skilled in the subject matter or art, exercising reasonable diligence, could have located it.

Pursuant to Section 1746 of Title 28 of United States Code, I declare under penalty of perjury under the laws of the United States of America that the foregoing is true and correct and that the foregoing is based upon personal knowledge and information and is believed to be true.

10/23/23 Date:

By: <u>Alexa Morris</u> Alexa Morris

4880-9037-7097

EXHIBIT 1

Network Working Group X. Li Internet-Draft M. Chen Intended status: Standards Track C. Bao Expires: January 7, 2009 H. Zhang J. Wu CERNET Center/ Tsinghua University July 6, 2008 Prefix-specific and Stateless Address Mapping (IVI) for IPv4/IPv6 Coexistence and Transition draft-xli-behave-ivi-00.txt Status of this Memo By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other

documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on January 7, 2009.

Li, et al. Expires January 7, 2009 [Page 1]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

Abstract

This document presents the concept and practice of the prefix-

specific and stateless address mapping mechanism (IVI)
for IPv4/IPv6

coexistence and transition. In this scheme, subsets of the IPv4

and these IPv6 addresses can therefore communicate with the global IPv6 networks directly and can communicate with the global IPv4 networks via stateless (or almost stateless) gateways. The IVI scheme supports the end-to-end address transparency, incremental deployment and performance optimization in multi-homed environment. This document is a comprehensive report on the IVI design and its deployment in large scale public networks. Based on the IVI scenario, the corresponding address allocation and assignment policies are also proposed.

addresses are embedded in prefix-specific IPv6 addresses

Li, et al. Expires January 7, 2009 [Page 2] Prefix-specific Address Mapping (IVI) Internet-Draft July 2008 Table of Contents 1. Introduction 4 2. Terms and Abbreviations 6 3. The Overview of the IVI Mechanism 7 Address 3.1. Mapping 7 Routing and 3.2. . . 9 3.3. **IVI** Communication Scenarios 10 4. Design Considerations 14 4.1. Address Network-layer Header 4.2. Translation 14 4.3. Transport-layer Header Translation 15 4.4. Fragmentation and MTU Handling 15

4.5. ICMP 4.6. Application Layer 4.7. IPv6 Source Address 4.8. IPv4 over IPv6 5. DNS Configuration and DNS Configuration for the IVI6(i) 5.1. Addresses 17 5.2. DNS Mapping for the IVIG46(i) Addresses 17 6. Multiplexing of the Global IPv4 Addresses 18 6.1. Temporal Port 6.2. 6.3. Spatial 6.4. Multiplexing using IPv4 NAT-PT 19 7. IVI Multicast 8. IVI Implementation and Preliminary Testing Results 22 9. Features of 23 IVI 10. Address Policy and IVI Address Evolution 25 10.1. IPv6 Address Assignment Policy 25 10.2. IPv4 Address Allocation 10.3. Evolution of the IVI Addresses and Services 25 11. Security 12. IANA 28 13. Principal

14. . . 30 15. Acknowledgments 31 16. Appendix A. The IVI gateway configuration 17. Appendix B. The traceroute 18. . . 36 18.1. Normative 18.2. Informative Authors' Addresses 39 Intellectual Property and Copyright Statements 41

Li, et al. Expires January 7, 2009 [Page 3]

Internet-Draft Prefix-specific Address Mapping (IVI)
July 2008

1. Introduction

This document presents the concept and practice of the prefix-

specific and stateless address mapping mechanism (IVI)
for IPv4/IPv6

coexistence and transition.

The experiences for the IPv6 deployment in the past 10 vears strongly indicate that for a successful transition. the IPv6 hosts need to communicate with the global IPv4 networks [JJI07]. However, the current transition methods do not fully support this requirement [RFC4213]. For example, dual-stack hosts can communicate with both the IPv4 and IPv6 hosts, but the IPv4 address depletion problem makes the dual-stack approach inapplicable [COUNT]. The tunneled architectures can link the IPv6 islands cross IPv4 networks, but they cannot help the communication between two address families [RFC3056] [RFC5214] [RFC4380]. The translation architectures can relav the communications for the hosts located in IPv4 and IPv6 networks, but the current implementation of this kind of architecture is not scalable and it cannot maintain the end-to-end address transparency [RFC2766] [RFC3142] [RFC4966] [RFC2775]. However, since IPv4 and IPv6 are different protocols with different addressing structure, the translation mechanism is still necessarv for the communication between the two address families. There are several ways to implement the translation. One is the stateless IP/ ICMP translation algorithm (SIIT), which provides a mechanism for the translation between IPv4 and IPv6 packet headers (including ICMP headers) without requiring any per-connection state. But, SIIT does

not specify the address assignment and routing scheme [RFC2766]. For example, when SIIT is used for the IPv4 mapped IPv6 addresses [::FFFF:ipv4-addr/96] and IPv4 compatible IPv6 addresses [::ipv4address/96]), these addresses violate the aggregation nature of the IPv6 routing [RFC4291]. The other translation mechanism is NAT-PT, which has serious technical and operational difficulties and IETF has reclassified it from proposed standard to historic status. But in the same document, it suggested that a revised, possibly restricted version of NAT-PT can be a suitable solution for the communication between IPv4 and IPv6 hosts [RFC4966]. Recently, several mechanisms are proposed in this direction, for example NAT64 translates the IPv4 server address by adding or removing a /96 prefix, and translates the IPv6 client address by installing mappings in the normal NAT manner [I-D.bagnulo-behave-nat64]. In this document, we follow the basic specification of SIIT, but we define the address assignment and routing scheme (IVI). Our IVI mechanism is related to the NAT-PT and NAT64, but differs from them significantly. First, it is stateless (or almost stateless) in both the IPv4-to-IPv6 mapping direction, as well as in the IPv6-to-IPv4

Expires January 7, 2009

Li, et al. [Page 4] Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

mapping direction. Secondly, it supports address transparency. Thirdly, it supports both client-server applications and the peer-topeer applications cross IPv4 and IPv6 address families without using NAT-traversal techniques. Finally, it can satisfy most of the basic and advanced requirements for the IPv4 to IPv4 transition as specified by the Internet Drafts [I-D.v6ops-nat64-pbstatement-req]. Li, et al. Expires January 7, 2009 [Page 5]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

2. Terms and Abbreviations

The following terms and abbreviations are used in this document:

IVI: IV means 4 and VI means 6 in Roman representation, so IVI means mapping and translation between IPv4 and IPv6.

ISP(i): A specific Internet service provider "i".

IPG4: An address set containing all IPv4 addresses, the addresses in

this set are mainly used by IPv4 hosts at the current stage.

IPS4(i): A subset of IPG4 allocated to ISP(i).

IVI4(i): A subset of IPS4(i), the addresses in this set will be mapped to IPv6 via IVI rule and physically used by IPv6 hosts of ISP(i). IPG6: An address set containing all IPv6 addresses. IPS6(i): A subset of IPG6 allocated to ISP(i). IVIG46(i): A subset of IPS6(i), an image of IPG4 in IPv6 address family via IVI mapping rule. IVI6(i): A subset of IVIG46(i), an image of IVI4(i) in IPv6 address family via IVI mapping rule. IVI gateway: The mapping and translation gateway between IPv4 and IPv6 based on IVI scheme. IVI DNS: Providing IVI Domain Name Service (DNS). The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in [RFC2119].

Li, et al. Expires January 7, 2009 [Page 6]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

3. The Overview of the IVI Mechanism

The IVI is a prefix-specific and stateless address mapping scheme

which can be carried out by individual ISPs.

IVI mapping and translation mechanism is implemented in an IVI

gateway which connects to both IPv4 and IPv6 networks. The SIIT

stateless translation is implemented in the IVI gateway [RFC2765].

A unique, prefix-specific and stateless mapping scheme is defined

between IPv4 addresses and subsets of IPv6 addresses, so each

provider-independent IPv6 address block (usually a /32) will have a

small portion of IPv6 addresses, which is the image of the totality

of the global IPv4 addresses.

Each provider can borrow a portion of its IPv4 addresses and maps

them into IPv6 based on the above mapping rule. These special IPv6

addresses will be physically used by IPv6 hosts. The original IPv4

form of the borrowed addresses is the image of these special IPv6

addresses.

The packets generated from the global IPv4 addresses and sent to the

special IPv6 addresses are routed to the IPv4 interface of the IVI gateway via the IPv4 routing protocol and the packets generated from the special IPv6 addresses and sent to the global IPv4 addresses are routed to the IPv6 interface of the IVI gateway via the IPv6 routing protocol. The processes in both directions are symmetric. In addition, the special IPv6 addresses can communicate with the global IPv6 networks.

The IVI scheme related issues, for example the IVI DNS support, the

multiplexing of the public IPv4 addresses, the IVI multicast support,

etc. can be solved without involving any major change in the current

Internet protocol.

3.1. Address Mapping

The IVI address mapping is defined based on individual ISP's prefix

as shown in the following figure.

Li, et al. [Page 7] Expires January 7, 2009

Internet-Draft Prefix-specific Address Mapping (IVI)

July 2008

Figure 1

where bit 0 to bit 31 are the prefix of ISP(i)'s /32 (e.q. IPS6=2001:DB8::/32), bit 32 to bit 39 are all one's as the identifier of IVI, bit 40 to bit 71 are embedded global IPv4 space (IPG4) presented in hexadecimal format. (e.g. 2001:DB8:ff00::/40). Because this mapping is 1-to-1 defined by the IVI mapping rule, it is stateless and it has feature of end-to-end address transparency. (1) The ISP(i) uses a subset of ISP4(i) defined as IVI4(i), and maps it into IPv6 as IVI6(i). The IVI6(i) is physically used by IPv6 hosts inside ISP(i)'s IPv6 network and the IVI4(i) cannot be used by IPv4 hosts. Therefore, IVI6(i) is the special IPv6 address block which can communicate with both address families.

(2) Based on the above mapping rule, the ISP(i) uses a subset of

ISP6(i) defined as IVIG46(i), and maps it into IPv4 as IPG4. The

IVIG46(i) is virtually used by global IPv4 hosts and it cannot be

used by IPv6 hosts, except the portion of IVI6(i).

The mapping of the different address sets and the relations are shown

in the following figure.

Li, et al. [Page 8] Expires January 7, 2009

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

IVI Address Mapping Relation

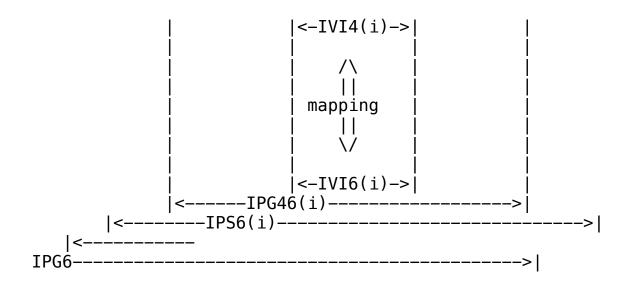


Figure 2

where IVI4(i) and IVI6(i) are representing the same entities in IPv4

and IPv6 address families, respectively. Similarly, IPG4 and

IVIG46(i) are representing the same entities in IPv4 and IPv6 address

families, respectively. In addition, IVI4(i) is a subset of IPG4 and

IVI6(i) is a subset of IVIG46(i).

3.2. Routing and Forwarding

Based on the IVI address mapping rule, the routing is straightforward, as shown in the following figure.

IVI Routing

/____ \ /____ -\ (Global) ----192.168.1.2 -----2001:DB8::2---- (Global) (IPv4)--|R1|-----|IVI gateway|-----| R2|---(IPv6) (network) ---- 192.168.1.1-----2001:DB8::1

---- (network) \----/

Figure 3

where

(1) Router R1 has IPv4 route of IVI4(i)/k (k is the prefix length of

Li, et al. Expires January 7, 2009 [Page 9]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

IVI4(i)) with next-hop equals to 192.168.1.1 and this route is

distributed to global IPv4 networks with proper aggregation.

(2) Router R2 has IPv6 route of IVIG46(i)/40 with nexthop equals to

2001:DB8::1 and this route is distributed to global IPv6 networks

with proper aggregation.

(3) IVI gateway has IPv6 route of IVI6(i)/(40+k) with next hop equals

to 2001:DB8::2. IVI gateway also has IPv4 default route 0.0.0.0/0

with next hop equals to 192.168.1.2 .

Note that the routes described above can be learned/ inserted by

dynamic routing protocols in the IVI gateway neighboring (IGP) or

peering (BGP) with R1 and R2.

The address reachability matrix of the IPv4, IVI and IPv6 is shown in the following figure.

IVI reachability Matrix

	IPG4	IVI	IPG6
IPG4	0K	0K	N0
IVI IPG6	OK NO	0K 0K	OK OK

Figure 4

Since both IVI4(i) and IVI6(i) are aggregated to IPS4(i) and IPS6(i)

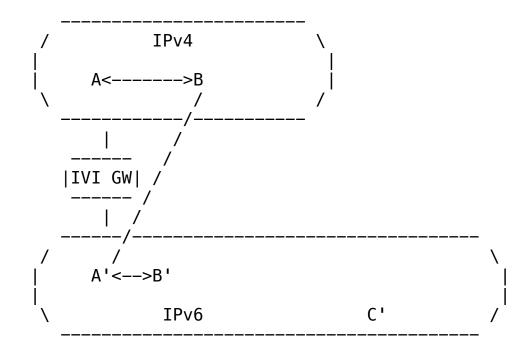
in ISP(i)'s border routers respectively, there will be no affect to

the global IPv4 and IPv6 routing tables [RFC4632].

If IVI4(i) and IVI6(i) has 1-to-1 mapping relationship, then IVI is

stateless and it can support multi-homing.

Since IVI can be implemented independently in each ISP's network, it


can be incrementally deployed.

3.3. IVI Communication Scenarios

Scenario 1:

Assume that there are IPv4 address A and ISP(1) IVImapped IPv6 address A', an arbitrary IPv4 address B and ISP(1) IVImapped IPv6 address B', as well as an arbitrary IPv6 address C'. If ISP(1) Li, et al. Expires January 7, 2009 [Page 10] Internet-Draft Prefix-specific Address Mapping (IVI) July 2008 deploys IVI, then A' is a physical IPv6 host and B is a physical IPv4 host. A' can communicate with B via the IVI gateway. Note that in this scenario A' is actually communicating with B', an image of B, and B is actually communicating with A, an image of A'. Since A' is an IPv6 address inside ISP6(1), it can also communicate with arbitrary IPv6 host C'. This can form an early stage of IPv4/IPv6 coexistence and transition.

IVI Communication Scenario 1

Figure 5

Scenario 2:

Assume that there are IPv4 address A, ISP(1) IVI-mapped IPv6 address A' and ISP(2) IVI-mapped IPv6 address A''. Similarly, assume that there are IPv4 address B, ISP(1) IVI-mapped IPv6 address B' and ISP(2) IVI-mapped IPv6 address B''. If both ISP(1) and ISP(2) deploy IVI, then A' and B'' are physical IPv6 hosts. In addition, if ISP(1) and ISP(2) do not know the IVI deployment on the other end, then A' can still communicate with B'' through A and B via two IVI gateways. Note that in this scenario A' is actually communicating with B', an ISP(1)'s version image of B, and B'' is actually communicating with A'', an ISP(2)'s version image of A. Since there are two IVI gateways involved, the routing is not optimal.

Li, et al. [Page 11] Expires January 7, 2009

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

IVI Communication Scenario 2

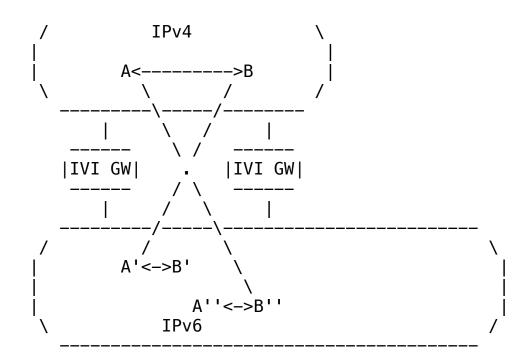
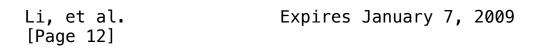


Figure 6

Scenario 3:

address A'. Similarly, assume that there are IPv4 address B and

ISP(2) IVI-mapped IPv6 address B''. If both ISP(1) and ISP(2) deploy


IVI, then A' and B'' are physical IPv6 hosts. In addition, if ISP(1)

and ISP(2) by contrast know the IVI deployment on the other end, then

A' can communicate with B'' directly. Since it is the communication

in IPv6, the routing is optimal. This can form a later stage of the

transition.

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

IVI Communication Scenario 3

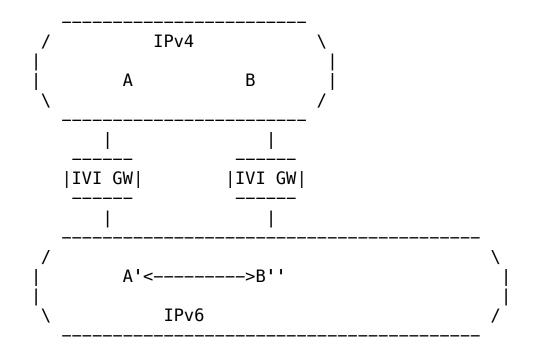


Figure 7

Li, et al. Expires January 7, 2009 [Page 13]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

4. Design Considerations

The components of the IVI scheme include: address mapping, network-

layer header translation, transport-layer header translation,

fragmentation/MTU handling, ICMP handling, application
layer gateway,

IPv6 source address selection and IPv4 over IPv6 support.

4.1. Address Mapping

The address mapping rule is defined in Section 3.1. In addition, depending on the implementation scope of the IVI gateway, IVIG46(i) block can also be defined as 2001:DB8:FFFF::/48, 2001:DB8:ABCD:FF00::/56 or 2001:DB8:ABCD:FFFF::/64, etc. A special case is to define IVIG46(i)=2001:DB8:XXXX:XXXX:XXXX:XXXX::/96, then the mapping rule is similar to the method of translating the IPv4 server address proposed in [I-D.bagnulo-behave-nat64]. Network-layer Header Translation 4.2. IPv4 [RFC791] [RFC791] and IPv6 [RFC2460] are different protocols with different network layer header format, the translation of the IPv4 and IPv6 headers must be performed [MVB98] [RFC2765] as shown in the following figures. IPv4 to IPv6 Header translation based on IVI scheme

 IPv4 Field	Translated to IPv6
Version (0x4) IHL Type of Service Total Length -IHL * 4	Version (0x6) discarded discarded Payload Length = Total Length
Identification Flags Offset	discarded discarded discarded

Time to Live	Hop Limit
Protocol	Next Header
Header Checksum	discarded
Source Address	IVI address mapping
Destination Address	IVI address mapping
Options	discarded

Figure 8

Expires January 7, 2009

Li, et al. [Page 14]

Internet-Draft Prefix-specific Address Mapping (IVI)
July 2008

IPv6 to IPv4 Header translation based on IVI scheme

	IPv6 Field	Translated to IPv4 Header
20	Version (0x6) Traffic Class Flow Label Payload Length	Version (0x4) discarded discarded Total Length = Payload Length +
	Next Header Hop Limit Source Address Destination Address - -	Protocol TTL IVI address mapping IVI address mapping IHL = 5 Header Checksum recalculated

Figure 9

4.3. Transport-layer Header Translation

Since the TCP and UDP headers [RFC793] [RFC768] consist of check sums

which include the IP header, the recalculation and updating of the

transport-layer headers must be performed [RFC2765].

4.4. Fragmentation and MTU Handling

When the packet is translated by the IVI gateway, due to the

different sizes of the IPv4 and IPv6 headers, the IVI6 packets will

be at least 20 bytes larger than the IVI4 packets, which may exceed

the MTU of the next link in the IPv6 network. Therefore, the MTU

handling and translation between IPv6 fragmentation headers and

fragmentation field in the IPv4 headers are necessary, which is

performed in the IVI gateway according to SIIT [RFC2765].

4.5. ICMP Handling

For ICMP message translation between IPv4 and IPv6, IVI follows the

ICMP/ICMPv6 message correspondence as defined in SIIT [RFC2765].

Note that the ICMP message may be generated by an intermediate router

whose IPv6 address does not belong to IVIG46(i). Since ICMP

translation is important to the path MTU discovery, the inverse

mapping for unmapped addresses is defined in this

document. In the current prototype, a pseudo IPv4 address is generated in such a way that the first 16 bits are the IPv4 address of the IVI gateway, and the last 16 bits are the AS number of the current domain. This prevents translated ICMP messages from being discarded due to unknown Li, et al. Expires January 7, 2009 [Page 15] Internet-Draft Prefix-specific Address Mapping (IVI) July 2008 or private IP source. A small IPv4 address block should be reserved to identify the non-IVI mapped IPv6 addresses. 4.6. Application Layer Gateway Due to the features of 1-to-1 address mapping and stateless, IVI can support most of the existing applications, such as HTTP, SSH, Telnet and Microsoft Remote Desktop Protocol. However, some applications are designed such that IP addresses are used to identify applicationlayer entities (e.g. FTP). In these cases, application layer gateway (ALG) is unavoidable, but it can be integrated into the IVI gateway. A list of applications which support the IVI scheme will be given in a later version of this document. 4.7. IPv6 Source Address Selection

Since each IPv6 host may have multiple addresses, it is important for the host to use an IVI6(i) address to reach the global IPv4 networks. The short-term work around is to use IVI6(i) as the default IPv6 address of the host. The long-term solution requires that the application be able to select the source addresses for different services. 4.8. IPv4 over IPv6 Support

The IVI scheme can support the IPv4 over IPv6 service (NAT646), i.e.

a stub IPv4 network can be connected to an IVI gateway to reach the

IPv6 network and via another IVI gateway to reach the global IPv4

network [RFC4925]

A more interesting scenario is to integrate the functions of the

first IVI gateway into the end-system. In this case, the application

softwares are IPv4-based and there is no need to have ALG support in

the IVI gateway when it is communicating with IPv4 hosts.

Internet-Draft Prefix-specific Address Mapping (IVI)
July 2008

5. DNS Configuration and Mapping

The DNS [RFC1035] service is important for the IVI scheme.

5.1. DNS Configuration for the IVI6(i) Addresses

For providing authoritative DNS service for IVI4(i) and IVI6(i), each

host name will both have an A record and an AAAA record pointing to

IVI4(i) and IVI6(i), respectively. Note that the same name always

points to a unique host, which is an IVI6(i) host and it has IVI4(i)

representation via the IVI gateway.

5.2. DNS Mapping for the IVIG46(i) Addresses

For resolving the IVI IPv6-mapped global IPv4 space (IVIG46(i)), each

ISP must provide customized IVI DNS service for the IVI6(i) hosts.

The IVI DNS server is in dual stack environment. When the IVI6(i)

host queries an AAAA record for an IPv4 only domain name, the IVI DNS

server will query the A record and map it to IVIG46(i) with ISP's

IPv6 prefix and return an AAAA record to the IVI6(i) host.

Li, et al. Expires January 7, 2009 [Page 17]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

6. Multiplexing of the Global IPv4 Addresses

Since public-IPv4 address is a scarce resource, the effective use of

the IPv4 address is important for the IVI scheme. The multiplexing

techniques are temporal multiplexing, port multiplexing,

spatial

multiplexing and multiplexing using IPv4 NAT-PT
techniques.

6.1. Temporal Multiplexing

The IVI6 can be temporally multiplexed inside the ISP(i)'s /32. This

is to say that the ISP can dynamically assign IVI6(i) to an end

system when it requests the IPv4 communication service and release

the IVI6(i) when the communication is finished. For temporal

multiplexing, the features of stateless and end-to-end address

transparency are maintained.

6.2. Port Multiplexing

To further increase the utilization ratio of the public IPv4 addresses, the port multiplexing inside the ISP(i)'s /32 can be deployed [RFC2766] [RFC4966]. This is to say that a single IPv4 address (IVI4(i)) can be used for multiple IVI6(i) addresses. The mapping scheme is to use the least significant bits in the IVI6(i) to define the multiple mapping and combine the transportlayer port

number to perform uniquely the mapping from IVI4(i) to IVI6(i).

IVI Address Mapping for Port Multiplexing

Ratio

IVI6(i) range

1-to-1 2001:DB8:ffxx:xxxx:xx00:: -2001:DB8:ffxx:xxxx:xx00:: 1-to-2^1 2001:DB8:ffxx:xxxx:xx00:: -2001:DB8:ffxx:xxxx:xx00::1

.

1-to-2^4 2001:DB8:ffxx:xxxx:xx00:: -2001:DB8:ffxx:xxxx:xx00::15

Figure 10

Based on this method, the mapping gain can be adjusted incrementally depending on the requirements. For example, zero bit means 1-to-1 mapping, and it is stateless. One bit means 1-to-1 mapping, and it has two states. Four bits means 1-to-16 mapping, etc. In the case of one-to-many mapping, when two IVI6(i)s have the same port number, the IVI gateway will map one of the port number to an unused port number and maintain the mapping table (IVI4(i) plus port number). Since the one-to-many mapping loses the feature of being stateless Li, et al. Expires January 7, 2009 [Page 18] Internet-Draft Prefix-specific Address Mapping (IVI) July 2008 and may loses the end-to-end address transparency, the proper use of the one-to-many mapping is the balancing of tradeoffs [RFC4966]

The tradeoffs are: (1) the number of the port number (2¹⁶): (2) the gain of the IPv4 address utilization; (3) half association (3-tuple: source IP address, source port, transport protocol) or full association (5-tuple: source IP address, source port, destination IP address, destination port, transport protocol); (4) the number of states in the IVI gateway; (5) the average concurrent port used in an IPv6 host and; (6) the collision ratio of the port number. 6.3. Spatial Multiplexing The spatial multiplexing means that for different operation modes of server and client, the different port multiplexing ratios can be applied. There are basically three cases. (1) Server: we suggest having 1-to-1 mapping between IVI4(i) and IVI6(i), because it has the advantages of end-to-end address transparency, being stateless, having multi-homing support and providing services via well-known ports. (2) Client with self-initiated connection: we suggest having 1-to-2^N mapping between IVI4(i) and IVI6(i) (N is a positive integer greater than 1), i.e. one IVI4(i) can support several IVI6(i) users to access the IPv4 network. By adjusting N, The number of states can be In this case, the port number is randomly controlled. denerated by the client operating system. The IVI gateway maintains the port mapping table to avoid collision. There is no need to

modify the client operating system and/or client application. (3) Client with peer initiated connection: we suggest having 1-to-2^M mapping between IVI4(i) and IVI6(i) (M is a positive integer greater than 1 and may be smaller than N), i.e. one IVI4(i) can support several IVI6(i) users as the peer-to-peer hosts for the IPv4 network. By adjusting M, The number of states can be controlled. In this case, we can define "pseudo-well-known port number", which is unique for IVI4(i) and known to the peers. However, modification of the client operating system and/or client application may be necessary. By combining address and pseudo-well-known port number, the feature of end-to-end address transparency can still be maintained. 6.4. Multiplexing using IPv4 NAT-PT If the private IPv4 address (e.g. 10.0.0.0/8) is used as the IPv4 address under the IVI scheme, combining conventional NAT-PT and NATtraversing techniques, the public IPv4 addresses can also be multiplexed. The advantage of this method is that IPv4 NAT-PT Expires January 7, 2009 Li, et al. [Page 19]

Internet-Draft Prefix-specific Address Mapping (IVI)
July 2008

equipments are widely available and can be deployed immediately.

Moreover, the mapped prefix-specific IPv6 addresses (IVI6(i)) are no

longer behind the NAT box in IPv6 and can be accessed by any $\ensuremath{\mathsf{IPv6}}$

hosts.

Li, et al. Expires January 7, 2009 [Page 20]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

7. IVI Multicast Support

The IVI scheme can support IPv4/IPv6 communication of the protocolindependent specific-source sparse-mode multicast (PIM SSM) [RFC3171] [RFC3569] [RFC4607]. (1) The IVI group address mapping rule: There will be 2^24 group addresses for IPv4 SSM. The corresponding IPv6 SSM group addresses can be defined as shown in the following figure. IVI Multicast Group Address Mapping IPv4 Group Address IPv6 Group Address 232.0.0.0/8 ff3e:0:0:0:0:0:f000:0000/96 232.255.255/8 ff3e:0:0:0:0:0:f0ff:ffff/96 (2) The IVI multicast source address selection: The source address in

IPv6 has to be IVI6(i) in order to perform reverse path forwarding

(RPF) as required by PIM-SM.

(3) The multicast protocol: The inter operation of PIM-SM for address

families IPv4 and IPv6 can either be implemented via the application

layer gateway or via the static join based on IGMPv3 and $\mathsf{MLDv2}$ in

IPv4 and IPv6, respectively.

The Any Source Multicast (ASM) cannot be supported in the cross

address-family environment, since IPv6 does not support the MSDP

[RFC4611], and IPv4 does not support the embedded RP [RFC3956].

Li, et al. [Page 21] Expires January 7, 2009

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008 8. IVI Implementation and Preliminary Testing Results

The IVI scheme presented in this document is implemented in the Linux

OS and the source code can be downloaded [LINUX]. The example of the

configuration is shown in Appendix A.

The IVI gateway based on the Linux implementation has been deployed

between CERNET (IPv4 and partially dual-stack) [CERNET] and CNGI-

CERNET2 (pure IPv6) [CERNET2] since March 2006. The pure IPv6 web

servers using IPv6 addresses (IVI) behand IVI gateway can be accessed

by the IPv4 hosts [IVI4], and also by the global IPv6 hosts [IVI6].

In addition, two traceroute results are presented in Appendix B to

show the address mapping of the IVI scheme.

Li, et al. Expires January 7, 2009 [Page 22]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

9. Features of IVI

The basic features of the IVI scheme are:

(1) Special IPv6 addresses can communicate with the global IPv6

network directly and can communicate with the global IPv4 network via

IVI gateways.

(2) When the mapping is 1-to-1, the IVI gateway is stateless and can

support multi-homing. When mapping is $1-to-2^N$ (N!=0), the IVI

gateway is stateful, but the number of state can be controlled.

(3) When the mapping is 1-to-1, the IVI scheme has the advantages of

end-to-end address transparency. When mapping is $1-to-2^{M}$, by

introducing pseudo-well-known ports, the feature of endto-end

address transparency can also be maintained.

(4) The IVI addresses are globally routable.

(5) The IVI scheme is incrementally deployable.

(6) Based on the multiplexing techniques, the global IPv4 addresses

can be effectively used.

The IVI scheme can satisfy most of the basic and advanced

requirements for the IPv4 to IPv4 transition as specified by the

Internet Drafts [I-D.v6ops-nat64-pb-statement-req].

For the basic requirements (MUST):

(1) No need to change the end system (IPv4 and IPv6).

(2) Support v4-initiated and v6-initiated short-lived local handle.

(3) Support interaction with dual-stack hosts.

(4) The standard IPv4 NAT can easily be integrated into the system.

(5) Do not violate standard DNS semantics.

(6) No affect to IPv6 routing.

(7) Support TCP, UDP, ICMP.

(8) Can handle fragmentation.

For the advanced requirements (SHOULD):

Li, et al. Expires January 7, 2009 [Page 23]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

(1) Support multicast (SSM).

(2) Support operational flexibility.

(3) Support central Management.

Other requirements specified by the IETF RFC or the IETF drafts will

be studied in a later version of this document.

Li, et al. Expires January 7, 2009 [Page 24]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

10. Address Policy and IVI Address Evolution

Based on the IVI scheme, we propose to modify IPv4 address-allocation

and IPv6 address-assignment policies [RFC1744] [RFC2008] for IPv4/

IPv6 coexistence and transition as follows.

10.1. IPv6 Address Assignment Policy

(1) Reserve 2001:DB8:ff00::/40 for each 2001:DB8::/32 (2001:DB8::/32

is the documentation address, which represents all /32s [RFC4291]).

(2) Encourage ISPs to deploy their IPv6 networks and to install their

IVI gateways.

(3) Encourage ISPs to use a subset (i.e. IVI4(i)) of their own IPv4 address blocks and map it into IPv6 via the IVI scheme (i.e. IVI6(i)) for their initial deployment of IPv6. For severs using the 1-to-1 mapping, and for clients using the $1-to-2^N$ In this mapping. way, the scarce IPv4 addresses can be effectively used. This special IPv6 block can communicate with the global IPv6 networks directly and communicate with the global IPv4 networks via IVI gateways. (4) Encourage ISPs to increase the size of IVI4(i). When IVI4(i)=IPS4(i), the IPv4 to IPv6 transition for ISP(i) will be accomplished. 10.2. IPv4 Address Allocation Policv (1) The remaining IPv4 address should be dedicated for the IVI transition use, i.e. using these blocks for the IVI6(i) deployment. The users using IVI6(i) can access the IPv6 networks directly and the IPv4 networks via the IVI gateways. (2) Based on multiplexing techniques, the global IPv4 addresses can be used effectively. For example, with a reasonable port multiplexing ratio (say 16), one /8 can support 268M hosts. If 10 /8s can be allocated for the IVI use, it will be 2.6 billion addresses, possibly enough even for the unwired population in the The 43.0.0.0/8 could be a good candidate for the world. initial trial [APNIC].

10.3. Evolution of the IVI Addresses and Services

The IVI scheme is an effective method for transparent IPv4/IPv6 coexistence and smooth IPv4/IPv6 transition. Unlike the existing transition techniques which treat the IPv6 addresses equally [JSG2008], the IVI scheme suggests dividing the current IPv6 addresses into IVI6 addresses and non-IVI6 addresses. The IVI6

Li, et al. Expires January 7, 2009 [Page 25]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

addresses, due to their nature as images of IVI4, can communicate with the global IPv4 networks via IVI gateways and they can also communicate with the global IPv6 networks directly. Therefore, the ISPs should use the IVI6 addresses for the initial deployment of their IPv6 infrastructure and this should be the IPv4/ IPv6 coexistence stage. When IVI4(i)=IPS4(i) for most of ISP(i), the rest of the IPv6 addresses (non IVI6(i)) can be used for the further development of the global Internet, as shown in the following figure. IPv4/IPv6 Address Coexistence and Evolution

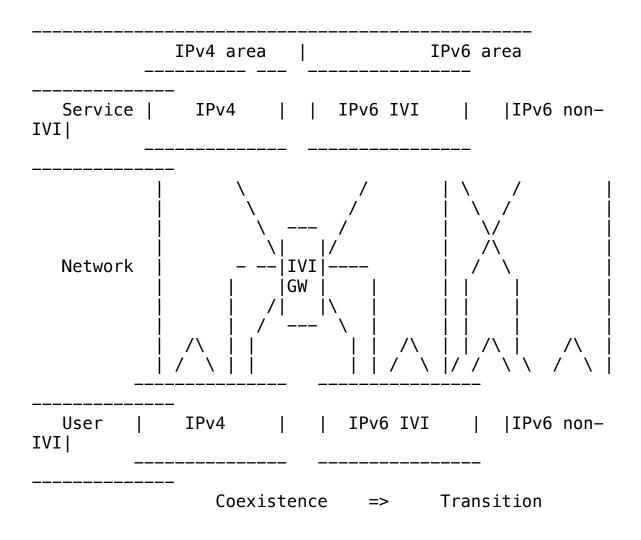


Figure 12

Expires January 7, 2009 Li, et al.

[Page 26]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

11. Security Considerations

This document presents the prefix-specific and stateless address mapping scheme (IVI) for the IPv4/IPv6 coexistence and transition. The IPv4 security and IPv6 security issues should be addressed by related documents of each address family and are not included in this document.

However, the specific security issues for the IVI gateway

implementation should be studied and addressed during the development

of the IVI mechanisms.

Li, et al. Expires January 7, 2009 [Page 27]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

12. IANA Considerations

The address allocation and assignment policies discussed in this

document may have impact to IANA operation.

Li, et al. [Page 28] Expires January 7, 2009

Internet-Draft Prefix-specific Address Mapping (IVI)

July 2008

13. Principal Authors

Xing Li

Maoke Chen

Congxiao Bao

Hong Zhang

Jianping Wu

Li, et al. Expires January 7, 2009 [Page 29]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

14. Contributors

The authors would like to acknowledge the following contributors in

the different phases of the IVI development: Ang Li, Yuncheng Zhu,

Junxiu Lu and Yu Zhai.

The authors would like to acknowledge the following contributors who

provided helpful inputs concerning the IVI concept: Bill Manning,

David Ward, Lixia Zhang, Jun Murai and Fred Baker.

Li, et al. Expires January 7, 2009 [Page 30]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

15. Acknowledgments

The authors thank to the funding supports of the CERNET, CNGI-CERNET2, CNGI Research and Development, China "863" and China "973" projects.

```
Li, et al.
                        Expires January 7, 2009
[Page 31]
Internet-Draft Prefix-specific Address Mapping (IVI)
July 2008
    Appendix A. The IVI gateway configuration example
16.
   IVI Configuration Example
  #!/bin/bash
  # open forwarding
  echo 1 > /proc/sys/net/ipv6/conf/all/forwarding
  echo 1 > /proc/sys/net/ipv4/conf/all/forwarding
  # config route for IVI6 = 2001:da8:ffca:2661:cc00::/70,
  #
                      IVI4 = 202.38.97.204/30
  # configure IPv6 route
   route add -A inet6 2001:da8:ffca:2661:cc00::/70 \
   gw 2001:da8:aaae::206 dev eth0
  # config mapping for source-PF = 2001:da8::/32
  # config mapping for destination-PF = 2001:da8::/32
  # for each mapping, a unique pseudo-address (10.0.0.x/8)
  # should be configured.
  # ip addr add 10.0.0.1/8 dev eth0
  # IPv4-to-IPv6 mapping, multiple mappings can be done
via multiple
  # commands.
  # mroute IVI4-network IVI4-mask pseudo-address interface
\
  # source-PF destination-PF
  /root/mroute 202.38.97.204 255.255.255.252 10.0.0.1 \
  eth0 2001:da8:: 2001:da8::
  # IPv6-to-IPv4 mapping
```

mroute6 destination-PF destination-PF-pref-len
/root/mroute6 2001:da8:ff00:: 40

Figure 13

Li, et al. Expires January 7, 2009 [Page 32]

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

17. Appendix B. The traceroute results

ivitraceroute

ivitraceroute 202.38.108.2

202.112.0.65 6 ms 2 ms 1 ms
 202.112.53.73 4 ms 6 ms 12 ms
 202.112.53.178 1 ms 1 ms 1 ms
 202.112.61.242 1 ms 1 ms 1 ms
 202.38.17.186 1 ms 1 ms 1 ms
 202.38 AS4538
 202.38 AS4538

8 202.38.17.186 2 ms 2 ms 2 ms 2 ms 202.38 AS4538
9 202.38.17.186 4 ms 4 ms 3 ms 202.38 AS4538
10 202.38.108.2 2 ms 3 ms 3 ms

Figure 14

Note that the non-IVI IPv6 addresses are mapped to 202.38.17.186,

which is defined in this document (the first two sections are the

 $\rm IPv4$ prefix of /16 of the IVI gateway interface and the last two

sections are the autonomous system number 4538).

Li, et al. [Page 33] Expires January 7, 2009

Internet-Draft Prefix-specific Address Mapping (IVI)
July 2008

ivitraceroute6

ivitraceroute6 www.mit.edu src ivi4=202.38.97.205 src ivi6=2001:da8:ffca:2661:cd00:: dst host=www.mit.edu dst_ip4=18.7.22.83 dst_ivig=2001:da8:ff12:716:5300:: traceroute to 2001:da8:ff12:716:5300:: (2001:da8:ff12:716:5300::), 30 hops max, 40 byte packets to not ivi 2001:da8:ff0a:0:100:: 1 0.304 ms 0.262 ms 0.190 ms 10.0.0.1 2 2001:da8:ffca:7023:fe00:: 0.589 ms * * 202.112.35.254 3 2001:da8:ffca:7035:4900:: 1.660 ms 1.538 ms 1.905 ms 202.112.53.73 4 2001:da8:ffca:703d:9e00:: 0.371 ms 0.530 ms 0.459 ms 202.112.61.158 5 2001:da8:ffca:7035:1200:: 0.776 ms 0.704 ms 0.690 ms 202.112.53.18 6 2001:da8:ffcb:b5c2:7d00:: 89.382 ms 89.076 ms 89.240 ms 203.181.194.125 7 2001:da8:ffc0:cb74:9100:: 204.623 ms 204.685 ms 204.494 ms 192.203.116.145 8 2001:da8:ffcf:e7f0:8300:: 249.842 ms 249.945 ms 250.329 ms 207.231.240.131 9 2001:da8:ff40:391c:2d00:: 249.891 ms 249.936 ms 250.090 ms 64.57.28.45 10 2001:da8:ff40:391c:2a00:: 259.030 ms 259.110 ms 259.086 ms 64.57.28.42 11 2001:da8:ff40:391c:700:: 264.247 ms 264.399 ms 264.364 ms 64.57.28.7 12 2001:da8:ff40:391c:a00:: 271.014 ms 269.572 ms

269.692 ms 64.57.28.10 13 2001:da8:ffc0:559:dd00:: 274.300 ms 274.483 ms 274.316 ms 192.5.89.221 14 2001:da8:ffc0:559:ed00:: 274.534 ms 274.367 ms 274.517 ms 192.5.89.237 15 * * * 16 2001:da8:ff12:a800:1900:: 276.032 ms 275.876 ms 276.090 ms 18.168.0.25 17 2001:da8:ff12:716:5300:: 276.285 ms 276.370 ms 276.214 ms 18.7.22.83

Figure 15

Li, et al. [Page 34] Expires January 7, 2009

Internet-Draft Prefix-specific Address Mapping (IVI)
July 2008

Note that all of the IPv4 addresses can be mapped to prefix-specific IPv6 addresses (for example 18.7.22.83 is mapped to 2001:da8:ff12: 716:5300::).

Li, et al. [Page 35] Expires January 7, 2009

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008 18. References

18.1. Normative References [RFC1035] Mockapetris, P., "Domain names implementation and specification", RFC 1035, November 1987. [RFC2008] Rekhter, Y. and T. Li, "Implications of Various Address Allocation Policies for Internet Routing", RFC 2008. October 1996. [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", RFC 2119, March 1997. [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998. [RFC2765] Nordmark, E., "Stateless IP/ICMP Translation Algorithm (SIIT)", RFC 2765, February 2000. Tsirtsis, G. and P. Srisuresh, "Network [RFC2766] Address Translation – Protocol Translation (NAT-PT)", RFC 2766, Feb. 2000. [RFC3056] Carpenter, B. and K. Moore, "Connection of ipv6 domains via ipv4 clouds", RFC 3056, February 2001. [RFC3171] Albanna, Z., Almeroth, K., Meyer, D., and M. Schipper, "IANA Guidelines for IPv4 Multicast Address Assignments", RFC 3171, August 2001.

[RFC3956] Savola, P. and B. Haberman, "Embedding the Rendezvous Point (RP) Address in an IPv6 Multicast Address". RFC 3956, November 2004. [RFC4213] Nordmark, E. and R. Gilligan, "Basic Transition Mechanisms for IPv6 Hosts and Routers", RFC 4213, October 2005. Hinden, R. and S. Deering, "IP Version 6 [RFC4291] Addressing Architecture", RFC 4291, Feb. 2006. [RFC4380] Huitema, C., "Teredo: Tunneling ipv6 over udp through network address translations (nats)", RFC 4380, Feb. 2006. [RFC4607] Holbrook , H. and B. Cain , "Source-Specific Multicast for IP", RFC 4607, August 2006. McBride, M., Meylor, J., and D. Meyer, [RFC4611] "Multicast Source Li, et al. Expires January 7, 2009 [Page 36] Internet-Draft Prefix-specific Address Mapping (IVI) July 2008 Discovery Protocol (MSDP) Deployment Scenarios", RFC 4611, August 2006. [RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing

(CIDR): The Internet Address Assignment and Aggregation Plan", RFC 4632, August 2006. [RFC5214] Templin, F., Gleeson, T., and D. Thaler, "Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)", RFC 5214, March 2008. [RFC768] Postel , J., "User Datagram Protocol", RFC 768, August 1981. Postel, J., "Internet Protocol", RFC 791, [RFC791] September 1981. Postel, J., "Transmission Control Protocol", [RFC793] RFC 793, Semptember 1981. 18.2. Informative References

program/policy/ito-large-ipv4-trial.pdf .

[CERNET] "CERNET Homepage: http://www.edu.cn/english_1369/index.shtml".

[CERNET2] "CNGI-CERNET2 Homepage: http://www.cernet2.edu.cn/index_en.htm".

[COUNT] "IPv4 address count down: http:// penrose.uk6x.com/".

[I-D.bagnulo-behave-nat64] Bagnulo, M., Matthews, P., and I. van Beijnum, "NAT64/ DNS64: Network Address and Protocol Translation from IPv6 Clients to IPv4 Servers",

draft-bagnulo-behave-nat64-00 (work in progress), June 2008. [I-D.v6ops-nat64-pb-statement-reg] Bagnulo, M., Baker, F., and I. van Beijnum, "IPv4/IPv6 Coexistence and Transition: Requirements for solutions", draft-ietf-v6ops-nat64-pb-statement-req-00 (work in progress), May 2008. "Test homepage for the IVI4(i): http:// [IVI4] 202.38.114.1/". Li, et al. Expires January 7, 2009 [Page 37] Prefix-specific Address Mapping (IVI) Internet-Draft July 2008 [IVI6] "Test homepage for the IVI6(i): http://[2001:250:ffca:2672:0100::0]/". [JJI07] Joseph, D., Chuang, J., and I. Stocia, "Modeling the Adoption of new Network Architectures", EECS Department, University of California, Berkeley Tech. Rep. UCB/ EECS-2007-41, April 2007. [JSG2008] "A Report of Japaness Study Group on Internet's Smooth Transition to IPv6: http://www.soumu.go.jp/joho tsusin/eng/pdf/ 080617_1.pdf", June 2008.

[LINUX] "Source Code of the IVI implementation for Linux: http://linux.ivi2.org/impl/". [MVB98] Fiuczynski, M., Lam, V., and B. Bershad , "The design and implementation of an ipv6/ipv4 network address and protocol translator", Proceedings of the **USENIX** Annual Technical Conference (NO 98), June 1998. [RFC1744] Huston, G., "Observations on the Management of the Internet Address Space", RFC 1744, December 1994. Carpenter, B., "Internet Transparency", RFC [RFC2775] 2775, Feb. 2000. [RFC3142] Hagino, J. and K. Yamamoto, "An IPv6-to-IPv4 Transport Relay Translator", RFC 3142, June 2001. Bhattacharyya, S., "An Overview of Source-[RFC3569] Specific Multicast (SSM)", RFC 3569, July 2003. Li, X., Dawkins, S., Ward, D., and A. Durand, [RFC4925] "Softwire Problem Statement", RFC 4925, July 2007. Aoun, C. and E. Davies, "Reasons to Move the [RFC4966] Network Address Translator – Protocol Translator (NAT-PT) to Historic Status", RFC 4966, July 2007.

Li, et al. Expires January 7, 2009 [Page 38] Internet-Draft Prefix-specific Address Mapping (IVI) July 2008 Authors' Addresses Xing Li CERNET Center/Tsinghua University Room 225, Main Building, Tsinghua University Beijing 100084 CN Phone: +86 62785983 Email: xing@cernet.edu.cn Maoke Chen CERNET Center/Tsinghua University Room 225, Main Building, Tsinghua University Beijing 100084 CN Phone: +86 62785983 Email: mk@cernet.edu.cn Congxiao Bao CERNET Center/Tsinghua University Room 225, Main Building, Tsinghua University Beijing 100084 CN Phone: +86 62785983

Email: congxiao@cernet.edu.cn

Hong Zhang CERNET Center/Tsinghua University Room 225, Main Building, Tsinghua University Beijing 100084 CN

Phone: +86 62785983 Email: neilzh@gmail.com

Li, et al. [Page 39] Expires January 7, 2009

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008

Jianping Wu CERNET Center/Tsinghua University Room 225, Main Building, Tsinghua University Beijing 100084 CN

Phone: +86 62785983
Email: jianping@cernet.edu.cn

Li, et al. [Page 40] Expires January 7, 2009

Internet-Draft Prefix-specific Address Mapping (IVI) July 2008 Full Copyright Statement

Copyright (C) The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions

contained in BCP 78, and except as set forth therein, the authors

retain all their rights.

This document and the information contained herein are provided on an

"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/ SHE REPRESENTS

OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND

THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF

THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED

WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr. The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at

ietf-ipr@ietf.org.

Li, et al. [Page 41] Expires January 7, 2009

EXHIBIT 2

Prefix-specific and Stateless Address Mapping (IVI) for IPv4/IPv6 Coexistence and Transition <u>draft-xli-behave-ivi-00</u>

> Xing Li, Maoke Chen, Congxiao Bao, Hong Zhang and Jianping Wu

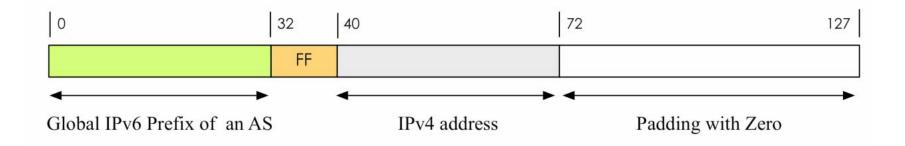
IETF-72, Dublin, behave, 29 July 2008

Outline

- Introduction
- IVI scheme
- Design considerations
- Testing result
- Transition
- Address Policy
- Conclusions

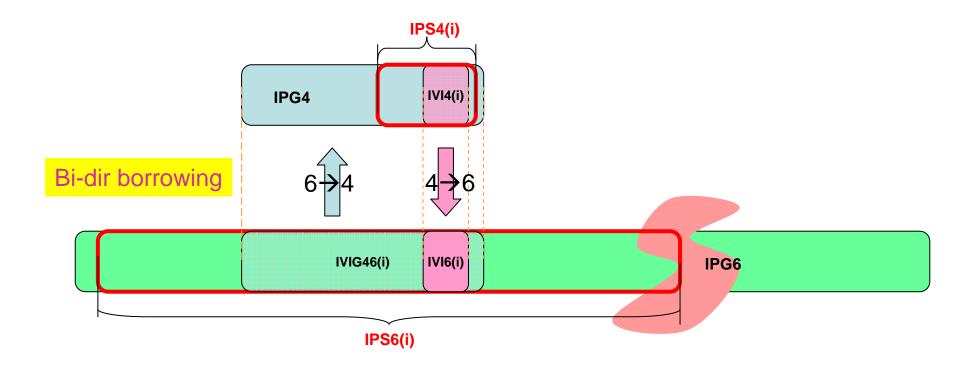
Introduction

- The experiences for the IPv6 deployment in the past 10 years strongly indicate that the IPv6 hosts need to communicate with the global IPv4 networks.
- In this document, we follow the basic specification of SIIT, but we define the address assignment and routing scheme (IVI).
 - It is stateless (or almost stateless) in both the IPv4to-IPv6 mapping direction, as well as in the IPv6-to-IPv4 mapping direction
 - It supports address transparency.
 - It supports both IPv6 initiated communication and the IPv4 initiated communication without using NATtraversal techniques.

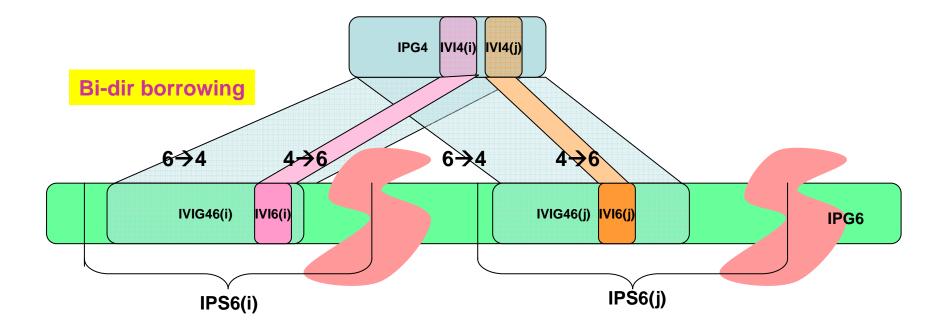

IVI Scheme

- The IVI is a prefix-specific and explicit bidirectional address mapping scheme.
 - Embed global IPv4 addresses into a subset of each ISP's IPv6 address block
 - Based on this mapping rule, each ISP can borrow a portion of its IPv4 addresses and use it in IPv6.
- The SIIT stateless translation is implemented in the IVI gateway.
- The IPv4 multiplexing techniques can be used.
- Ref:
 - <u>http://www.ietf.org/internet-drafts/draft-xli-behave-ivi-00.txt</u>

Terms and Abbreviations of IVI


- General
 - IVI.
 - ISP(i)
- IPv4
 - IPG4: An address set containing all IPv4 addresses, the addresses in this set are mainly used by IPv4 hosts at the current stage.
 - **IPS4(i):** A subset of IPG4 allocated to ISP(i).
 - IVI4(i): A subset of IPS4(i), the addresses in this set will be mapped to IPv6 via IVI rule and physically used by IPv6 hosts of ISP(i).
- IPv6
 - **IPG6:** An address set containing all IPv6 addresses.
 - **IPS6(i):** A subset of IPG6 allocated to ISP(i).
 - IVIG46(i): A subset of IPS6(i), an image of IPG4 in IPv6 address family via IVI mapping rule.
 - IVI6(i): A subset of IVIG46(i), an image of IVI4(i) in IPv6 address family via IVI mapping rule.
- Components
 - IVI gateway
 - IVI DNS

Address Mapping (1)



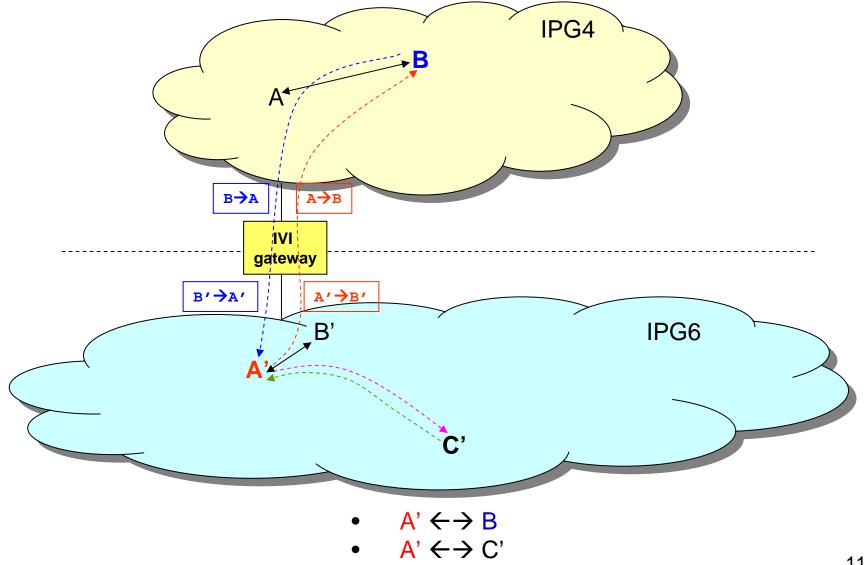
Mapping Rule: IPv4 addresses are embedded from bit 40 to bit 72 of the IPv6 addresses of a specific /32.
Example: ISP's IPv6 /32 (ISP6) 2001:250::/32 image of global IPv4 (IVIG46): 2001:250:ff00::/40 borrowed IPv4 address (IVI4): 202.38.108.0/24 mapped IVI IPv6 address (IVI6): 2001:250:ffca:266c::/64

Address Mapping (2)

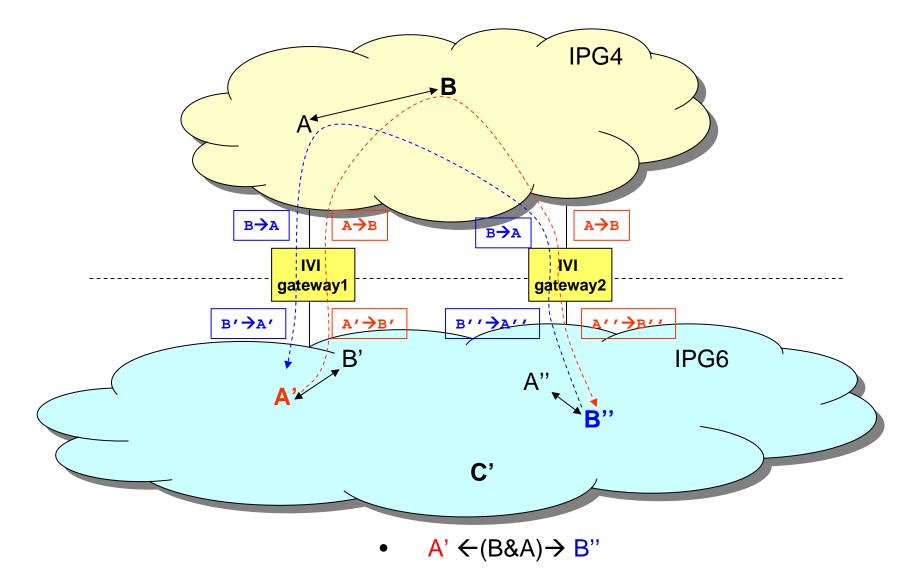
Address Mapping (3)

Routing and Forwarding

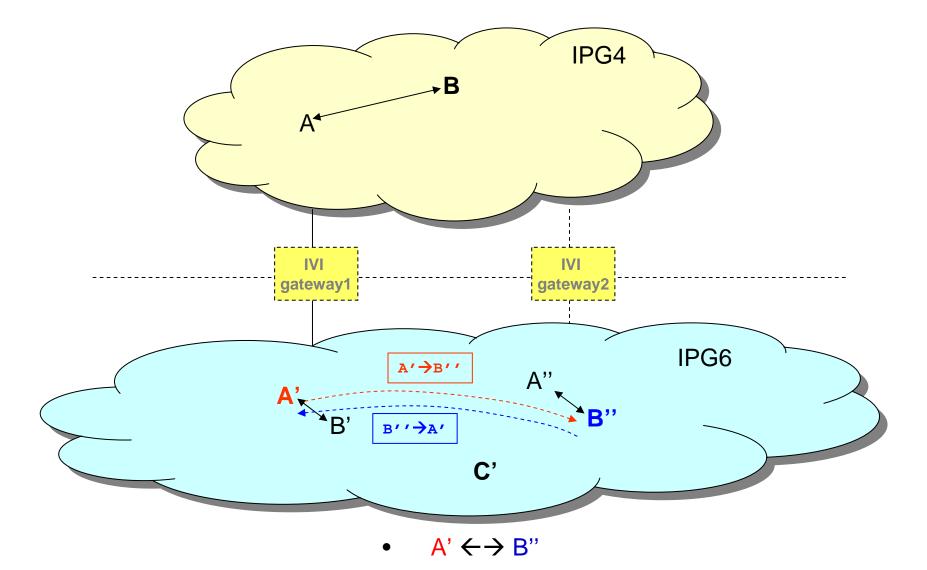
Routing and mapping configuration example



mroute IVI4-network IVI4-mask pseudo-address interface source-PF destination-PF mroute6 destination-PF destination-PF-pref-len


IVI Reachability Matrix

	IPG4	IVI	IPG6
IPG4	ОК	ОК	NO
IVI	ОК	ОК	ОК
IPG6	NO	OK	ОК


IVI Communication Scenarios (1)

IVI Communication Scenarios (2)

IVI Communication Scenarios (3)

Design Considerations

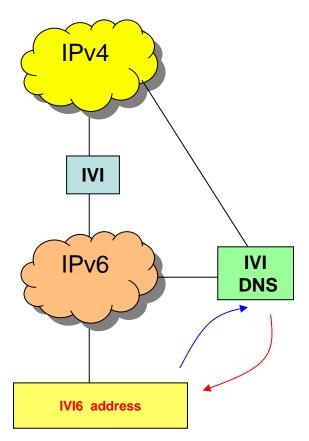
- Address Mapping (general)
- Network-layer Header Translation (SIIT)
- Transport-layer Header Translation (SIIT)
- Fragmentation and MTU Handling (SIIT)
- ICMP Handling (SIIT + extension)
- Application Layer Gateway (SIIT)
- IPv6 Source Address Selection
- IPv4 over IPv6 Support
- IVI DNS
- Multiplexing of the Global IPv4 Addresses
- Multicast support

Address Mapping (general)

- IVI general address mapping
 - 2001:DB8:FF00::/40
 - 2001:DB8:FFFF::/48,
 - 2001:DB8:ABCD:FF00::/56
 - 2001:DB8:ABCD:FFFF::/64
 -
 - 2001:DB8:XXXX:XXXX:XXXX:/96

ICMP + Extension

- The ICMP message may be generated by an intermediate router whose IPv6 address does not belong to IVIG46(i). Since ICMP translation is important to the path MTU discovery, the inverse mapping for unmapped addresses is defined in this document.
- In the current prototype, a pseudo IPv4 address is generated
 - First 16 bits are the IPv4 address of the IVI gateway
 - The last 16 bits are the AS number of the current domain. This prevents translated ICMP messages from being discarded due to unknown or private IP source.
- A small IPv4 address block should be reserved to identify the non-IVI mapped IPv6 addresses.
 - Similar to 4-byte AS AS23456


IPv6 Source Address Selection

- Since each IPv6 host may have multiple addresses, it is important for the host to use an IVI6(i) address to reach the global IPv4 networks.
 - The short-term work around is to use IVI6(i) as the default IPv6 address of the host.
 - The long-term solution requires that the application be able to select the source addresses for different services.
- IVI6 address configuration
 - DHCPv6 is required

IPv4 over IPv6 Support

- The IVI scheme can support the IPv4 over IPv6 service (NAT6-4-6), i.e. a stub IPv4 network can be connected to an IVI gateway to reach the IPv6 network and via another IVI gateway to reach the global IPv4 network
- A more interesting scenario is to integrate the functions of the first IVI gateway into the end-system. In this case, the application software are IPv4-based and there is no need to have ALG support in the IVI gateway when it is communicating with IPv4 hosts.

DNS Configuration and Mapping

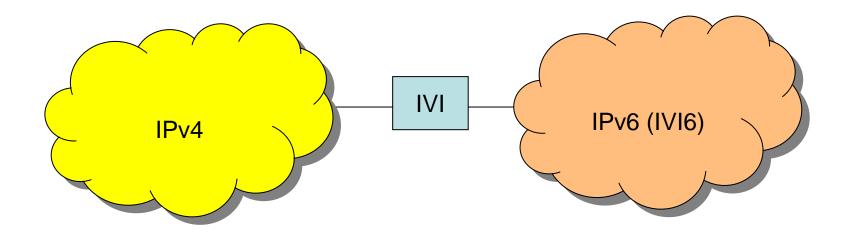
- For providing primary DNS service for IVI4(i) and IVI6(i), each host will have both A and AAAA records
- Authoritative DNS server
 - Example
 - <u>www.ivi2.org</u> A 202.38.108.2
 - www.ivi2.org AAAA 2001:250:ffca:266c:200::
- For resolving IVIG46(i) for IVI6(i), use IVI DNS to do the dynamic mapping based on the IVI rule.
- Caching DNS server
 - Example
 - <u>www.mit.edu</u> A
- 18.7.22.83
- <u>www.mit.edu</u> AAAA 2001:250:ff12:0716:5300::
- Implementation scope
 - Host
 - DNS server provided via DHCPv6
 - ISP

Multiplexing of the Global IPv4 Addresses

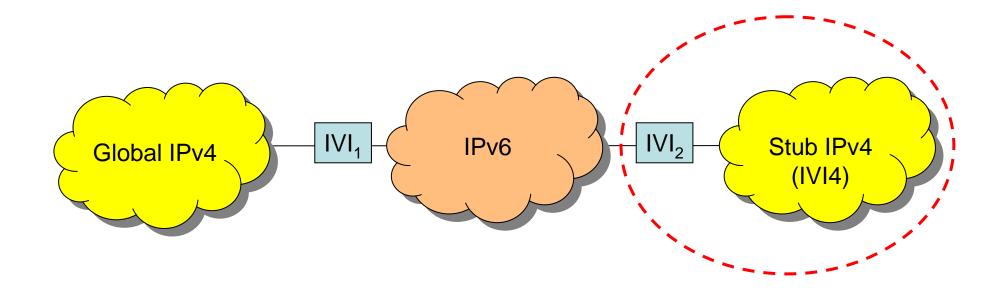
- Temporal Multiplexing
 - Dynamic assignment of IVI6(i)
- Port Multiplexing
 - Combine address with the port number
- Spatial Multiplexing
 - Server 1:1 mapping
 - Home server 1:M mapping (via IPv4 initiated communication)
 - Client 1:N mapping (via IPv6 initiated communication)
- Multiplexing using IPv4 NAT-PT
 - Cascade IPv4 NAT-PT and IVI (1:1 mapping)

Port multiplexing – IPv6 initiated

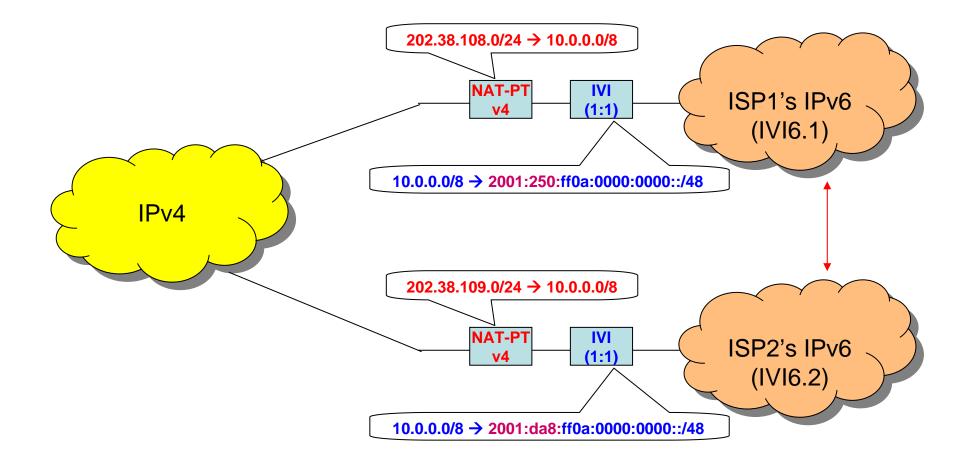
- Example:
 - 202.38.108.5#100 ← →
- 2001:250:ffca:266c:0500::81#100
- $-202.38.108.5\#101 \leftrightarrow 2001:250:ffca:266c:0500::82\#100$
- $-202.38.108.5\#102 \leftrightarrow 2001:250:ffca:266c:0500::83\#100$
- $-202.38.108.5\#103 \leftrightarrow 2001:250:ffca:266c:0500::84\#100$
- In the case of port collision, map to an unused port.

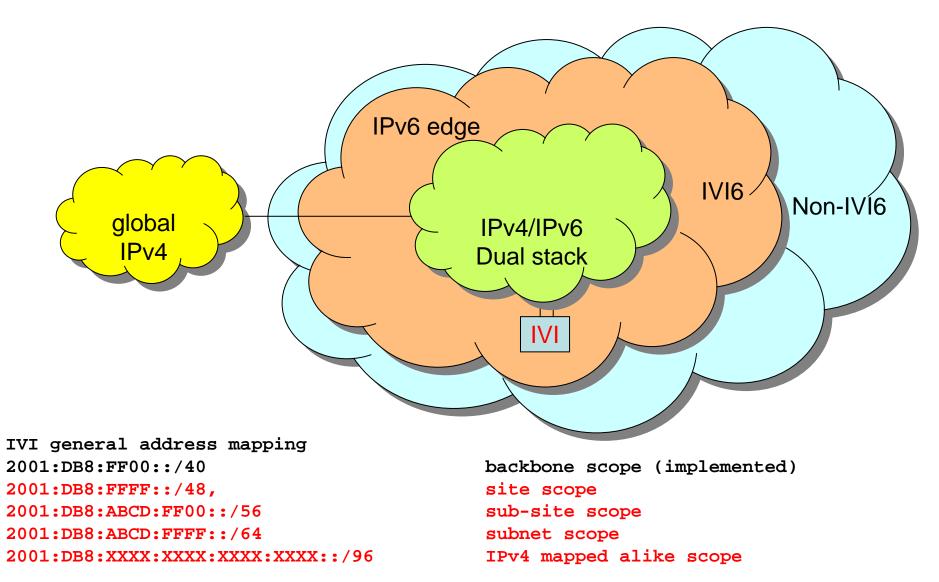

Port multiplexing – IPv4 initiated

- The remote IPv4 host can reach different IVI6s via different port number (pseudo-well-known port number)
 - 202.38.108.2#81 --> IVI61=2001:250:ffca:266c:0200::81#81
 - 202.38.108.2#82 --> IVI61=2001:250:ffca:266c:0200::82#82
 - 202.38.108.2#83 --> IVI61=2001:250:ffca:266c:0200::83#83
 - 202.38.108.2#84 --> IVI61=2001:250:ffca:266c:0200::84#84
- This can be provided via SRV DNS record.


Multicast support

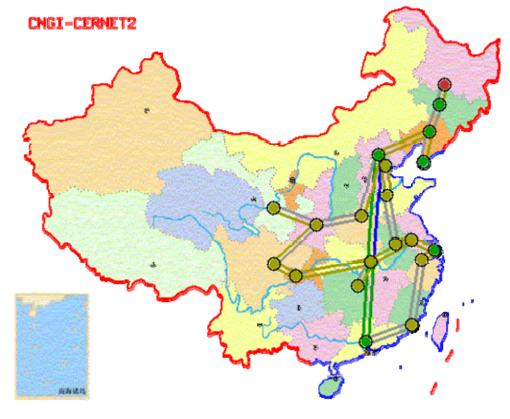
- SSM is supported for the IVI
 - no MSDP in IPv6
 - no embedded RP in IPv4
 - It is also possible to build a gateway for ASM
- Group address mapping rule (there will be 2²⁴ group ID available)
 - 232.0.0.0/8 → ff3e:0:0:0:0:0:f000:0000/96
 - 232.255.255.255/8 → ff3e:0:0:0:0:0:f0ff:ffff/96
- For the cross address family SSM
 - the source address in IPv6 has to be IVI6 for the RPF scheme
- The inter operation of PIM-SM in IPv4 and IPv6
 - Application layer gateway
 - Static join using IGMPv3 and MLDv2


IVI Deployment Scenarios (1)


IVI Deployment Scenarios (2)

IVI Deployment Scenarios (3)

IVI Deployment Scenarios (4)


Implementation and Preliminary Testing Results

• The IVI scheme presented in this document is implemented in the Linux OS

- The source code can be downloaded [http://202.38.114.1/impl/].

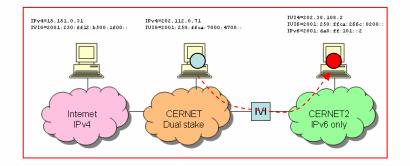
- CERNET (IPv4 and partially dual-stack) and CNGI-CERNET2 (pure IPv6) since March 2006 (basic implementation).
 - IVI6 server for global IPv4
 - <u>http://202.38.114.1/</u>
 - IVI6 server for global IPv6
 - http://[2001:250:ffca:2672:0100::0]/
 - IVI server for stub IPv4
 - <u>http://202.38.114.129/</u>

IVI Hosts Installation in CNGI-CERNET2

link (D) 0 1-15 16-56 51-78 71-108

20090701-104055

From IVI6 host traceroute6 IVIG46


Image: Section of the sectin of the section of the section of the section of the	Elevilla Firefox 文件 (P) 編辑 (E) 査看 (V) 历史 (S) 书签 (B) 工具 (T) 帮助 (H)		
<pre>traceroute to 2001:250:ff12:b500:1f00:: (2001:250:ff12:b500:1f00::), 30 hops max, 40 byte packets to not_ivi 1 2001:250:cf00:26:10:: 0.902 ms 0.884 ms 0.849 ms 2001:250:cf6a:266c:100:: 202.38.108.1 2 2001:250:c000:20::1 1.668 ms 1.766 ms 1.917 ms 2001:250:c000:20::1 not_ivi 3 2001:250:c000:21:: 2.915 ms 3.042 ms 3.095 ms 2001:250:c000:20::1 not_ivi 5 2001:250:ff0a:0:100:: 4.302 ms 4.283 ms 4.284 ms 2001:250:ff0a:0:100:: 10.0.0.1 6 2001:250:ffca:703d:4100:: 6.878 ms 7.676 ms 7.658 ms 2001:250:ff0a:0:100:: 202.112.61.65 7 * 2001:250:ffca:703d:4100:: 5.879 ms * 202.112.61.65 8 2001:250:ffca:7035:b100:: 11.638 ms 11.434 ms 11.356 ms 2001:250:ffca:7035:b100:: 202.112.53.177 9 2001:250:ffca:7035:b100:: 5.725 ms 4.358 ms 5.162 ms 2001:250:ffca:7035:b100:: 202.112.53.18 11 2001:250:ffca:7035:b100:: 92.976 ms 91.484 ms 91.458 ms 2001:250:ffca:7035:b100:: 102.112.53.18 11 2001:250:ffcd:b5c2:7400:: 209.784 ms 208.310 ms 224.348 ms 2001:250:ffcd:b5c2:7400:: 202.112.61.158 12 2001:250:ffcd:b5c2:7400:: 209.784 ms 208.310 ms 224.348 ms 2001:250:ffcd:b5c2:7400:: 203.181.194.125 12 2001:250:ffcd:b5c2:7400:: 206.548 ms 206.639 ms 206.649 ms 2001:250:ffcd:b5c2:7400:: 207.231.240.131 14 2001:250:ffcd:391c:2400:: 240.147 ms 239.321 ms 238.206 ms 2001:250:ffcd:391c:2400:: 64.57.28.42 15 2001:250:ffd0:391c:700:: 263.894 ms 261.707 ms 2001:250:ffd0:391c:2400:: 64.57.28.42 16 2001:250:ffd0:391c:700:: 288.019 ms 276.508 ms 2001:250:ffd0:391c:2400:: 64.57.28.42 16 2001:250:ffd0:391c:700:: 288.019 ms 280.744 ms 282.437 ms 2001:250:ffd0:391c:2400:: 64.57.28.42 16 2001:250:ffd0:391c:700:: 288.019 ms 280.744 ms 282.437 ms 2001:250:ffd0:391c:2400:: 64.57.28.42 16 2001:250:ffd0:391c:700:: 288.019 ms 280.744 ms 282.437 ms 2001:250:ffd0:391c:2400:: 64.57.28.42 17 2001:250:ffd0:391c:700:: 288.019 ms 280.744 ms 282.437 ms 2001:250:ffd0:391c:3400:: 64.57.28.42 18 2001:250:ffd0:391c:700:: 288.019 ms 280.744 ms 282.437 ms 2001:250:ffd0:391c:300:: 64.57.28.10 18 2001:250:ffd0:359:edd00:: 287.016 ms 285.654 ms 288.670 ms 2001:250:ffd0:391c:300:: 6</pre>		- Google	Q.)
<pre>1 2001:250:ffca:266c:100:: 0.902 ms 0.884 ms 0.849 ms 2001:250:ffca:266c:100:: 202.38.108.1 2 2001:250:c000:63::1 1.210 ms 1.302 ms 1.378 ms 2001:250:c000:63::1 not_ivi 3 2001:250:c000:2::2 2.915 ms 3.042 ms 3.095 ms 2001:250:c000:2::2 not_ivi 4 2001:250:cf00:2::2 2.915 ms 3.042 ms 3.095 ms 2001:250:c000:2::2 not_ivi 5 2001:250:ffca:01:00:: 4.302 ms 4.283 ms 4.284 ms 2001:250:ffca:01:00:: 10.0.0.1 6 2001:250:ffca:703d:4100:: 6.878 ms 7.676 ms 7.658 ms 2001:250:ffca:703d:4100:: 202.112.61.65 7 * 2001:250:ffca:7035:b100:: 11.638 ms 11.434 ms 11.356 ms 2001:250:ffca:7035:b100:: 202.112.53.177 9 2001:250:ffca:7035:b100:: 5.074 ms 5.532 ms 5.399 ms 2001:250:ffca:7035:b100:: 202.112.53.18 11 2001:250:ffca:7035:b100:: 205.7fd ms 91.484 ms 91.458 ms 2001:250:ffca:7035:b100:: 203.181.194.125 12 2001:250:ffcb:b5c2:7d00:: 92.976 ms 91.484 ms 91.458 ms 2001:250:ffcb:b5c2:7d00:: 203.181.194.125 12 2001:250:ffcd:60:b74:9100:: 209.784 ms 208.310 ms 224.348 ms 2001:250:ffcb:cb74:9100:: 102.03.181.194.125 12 2001:250:ffcd:60:cb74:9100:: 209.784 ms 208.310 ms 224.348 ms 2001:250:ffcb:cb74:9100:: 102.03.181.194.125 13 2001:250:ffcd:391c:2d00:: 263.962 ms 263.894 ms 261.707 ms 2001:250:ffcd:391c:2d00:: 64.57.28.42 15 2001:250:ffd0:391c:2d00:: 263.962 ms 263.894 ms 261.707 ms 2001:250:ffd0:391c:2d00:: 64.57.28.12 16 2001:250:ffd0:391c:2d00:: 263.962 ms 263.894 ms 282.437 ms 2001:250:ffd0:391c:2d00:: 64.57.28.12 17 2001:250:ffd0:391c:2d00:: 287.016 ms 282.437 ms 22001:250:ffd0:391c:2d00:: 64.57.28.10 18 2001:250:ffd0:391c:2d00:: 287.016 ms 285.654 ms 286.070 ms 2001:250:ffd0:391c:2d00:: 64.57.28.10 18 2001:250:ffc0:559:ed00:: 287.016 ms 285.654 ms 286.070 ms 2001:250:ffd0:391c:2d00:: 192.589.221 19 2001:250:ffc0:559:ed00:: 287.016 ms 285.654 ms 286.070 ms 2001:250:ffc0:559:ed00:: 192.589.237 2001:250:ffc0:559:ed00:: 286.132 ms 285.651 ms 280.742 ms 2001:250:ffc0:559:ed00:: 192.589.237 2001:250:ffc0:559:ed00:: 286.551 ms 286.070 ms 2001:250:ffc0:559:ed00:: 192.589.237 2001:250:ffc0:559:ed00:: 286.551 ms 286.501 ms 280.1250:ffc0:</pre>	Host N in in pure IPv6 environment		
Internet CERNET IPv4 VI CERNET2 IPv6 only	1 2001:250:ffca:266c:100:: 0.902 ms 0.884 ms 0.849 ms 2001:250:ffca:266c:100:: 2 2001:250:c000:63::1 1.210 ms 1.302 ms 1.378 ms 2001:250:c000:63::1 not_ivi 3 2001:250:c000:2::2 2.915 ms 3.042 ms 3.095 ms 2001:250:c000:2::2 not_ivi 5 2001:250:ffca:0:100:: 4.302 ms 4.283 ms 4.284 ms 2001:250:ffca:0:100:: 10.0. 6 2001:250:ffca:703d:4100:: 6.878 ms 7.676 ms 7.658 ms 2001:250:ffca:703d:4100 7 * 2001:250:ffca:703d:f100:: 5.879 ms * * 202.112.61.65 8 2001:250:ffca:703d:9e00:: 5.074 ms 5.532 ms 5.399 ms 2001:250:ffca:703d:9e00 10 2001:250:ffcb:b5c2:7000:: 92.976 ms 91.484 ms 91.458 ms 2001:250:ffcb:b5c2: 12 2001:250:ffcb:cb74:9100:: 209.784 ms 208.310 ms 224.348 ms 2001:250:ffcb:cb5c2: 12 2001:250:ffcd:91c:2000:: 263.962 ms 263.894 ms 201:250:ffcd:703 15 2001:250:ff40:391c:2000:: 280.819 ms 275.508 ms 2001:250:ff40:391 17 2001:250:ff40:391c:2000:: 280.819 ms 280.744 ms 282.437 ms 2001:250:ff40:391 18 2001:250:ffc0:559:d000:: 286.132 ms 285.501 ms 288.742 ms 2001:250:ffc0:559 19 2001:250:ffc0:559:d000:: 286.132 ms 285.501 ms 288.742 ms 2001:250:ffc0:559 288.081 ms 2001:250:ffc0:559:d000:: 286.132 ms 285.501 ms 288.742 ms 2001:250:ffc0:559 288.081 ms 2001:250:ffc1:230 10 Meteoriate free free free free free free free fr	202. 38. 108. 1 0. 1 0:: 202. 112. 61. 65 0:: 202. 112. 61. 65 0:: 202. 112. 61. 158 00:: 202. 112. 61. 158 00:: 202. 112. 53. 18 7d00:: 203. 181. 194. 125 0: 202. 112. 53. 18 7d00:: 203. 181. 194. 125 0: 4900:: 192. 203. 116. 145 7f0:8300:: 207. 231. 240. 131 0: 2400:: 64. 57. 28. 45 0: 2200:: 64. 57. 28. 42 .c: 700:: 64. 57. 28. 7 .c: a00:: 64. 57. 28. 10 0: d400:: 192. 5. 89. 221 0: ed00:: 192. 5. 89. 237 28f: 6e00:: 207. 210. 143. 110 300: 1900:: 18. 168. 0. 25	

From IPv4 host traceroute IVI4

<mark>ジェozilla Firefox</mark> 文件 (P) 编辑 (E) 査看 (V)	历史 (S) 书签 (B) 工具 (T) 帮助 (H)	
🗢 • 🔶 • 💽 💿 🏠	http://202.112.0.71:8033/cgi-bin/nph-ivi4	- Google
Host C in the IPv4 e	nvironment	

Т	* 202.112.0.0;	ΣТ	ms	T		0.0.	0.0		0.0		ASU					
2	* 202.112.53.	73 1	1 ms	1 г	ns		0.0.	0.0		0.0		ASO				
3	202.112.53.178	B 0	ms	0 ms	s 0	ms		202.1	.12.5	3.17	78	20	2.112		AS1374	46
4	202.112.61.243	29	ms	1 ms	5 1	ms		202.1	.12.6	1.24	42	20	2.112		AS158	58
5	202.38.17.186	1 г	ns 1	ms	1 I	ns	:	202.38	3.17.	186		202.	38	AS4	538	
6	202.38.17.186	1 г	ns 1	ms	1 I	ns		202.38	3.17.	186		202.	38	AS4	538	
7	202.38.17.186	2 т	ns 2	ms	2 1	ns		202.38	3.17.	186		202.	38	AS4	538	
8	202.38.17.186	2 т	ns 2	ms	2 1	ns		202.38	3.17.	186		202.	38	AS4	538	
9	202.38.17.186	2 г	ns 2	ms	2 1	ns		202.38	3.17.	186		202.	38	AS4	538	
10	0 202.38.108.2	2 т	ns 3	ms	4 1	ns		202.38	3.108	. 2		202.3	8	AS27	650	

C 7-ivi

🛃 开始

🥴 Mozilla Firefox

🐻 Microsoft PowerP.

84**X 🕴 🖝 🔇 🔊 🔀 🔂 🔂 22:14**

Features of IVI

- 1. No need to change the end system (IPv4 and IPv6).
- 2. Support v4-initiated and v6-initiated communications.
- 3. Support interaction with dual-stack hosts.
- 4. The standard IPv4 NAT can easily be integrated into the system.
- 5. Do not violate standard DNS semantics.
- 6. No affect to both IPv4 and IPv6 routing.
- 7. Support TCP, UDP, ICMP
- 8. Can handle fragmentation.
- 9. Support incremental deployment
- 10. Support multicast (SSM)

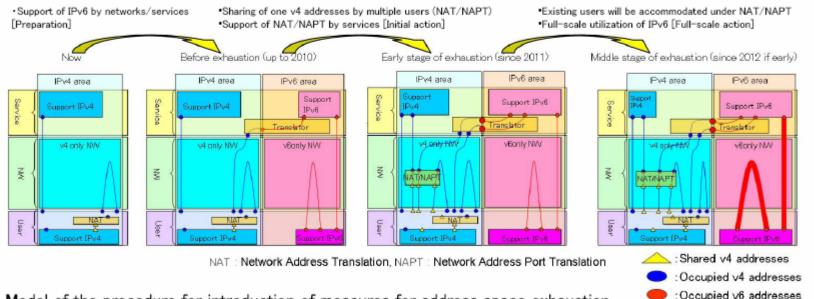
Address Policy and IVI Address Evolution

- IPv6 Address Assignment Policy
- IPv4 Address Allocation Policy
- Evolution of the IVI Addresses and Services

IPv6 Address Assignment Policy

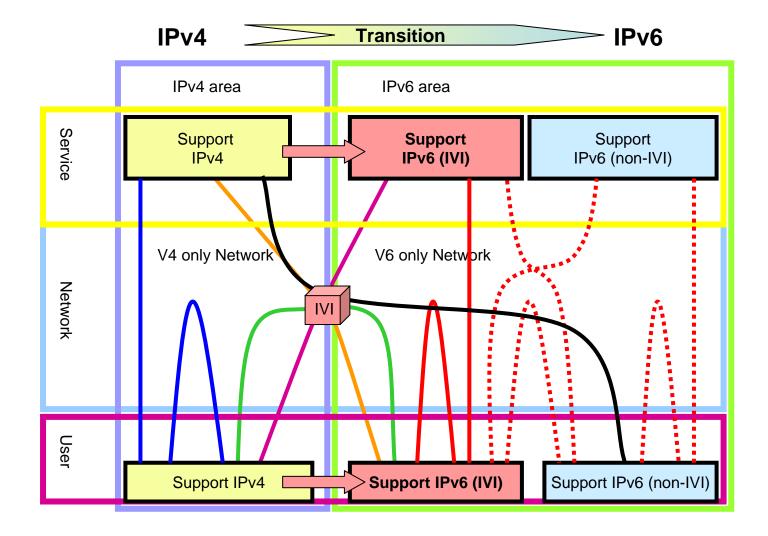
- Encourage ISPs to deploy their IPv6 networks and to install their IVI gateways.
 - Reserve 2001:DB8:ff00::/40 for each 2001:DB8::/32
 - Encourage ISPs to use a subset (i.e. IVI4(i)) of their own IPv4 address blocks and map it into IPv6 via the IVI scheme (i.e. IVI6(i)) for their initial deployment of IPv6.
 - For severs using the 1-to-1 mapping, and for clients using the 1-to-2^N mapping.
 - In this way, the scarce IPv4 addresses can be effectively used.
 - This IVI6 can communicate with the global IPv6 networks directly and communicate with the global IPv4 networks via IVI gateways.
- Encourage ISPs to increase the size of IVI4(i). When IVI4(i)=IPS4(i), the IPv4 to IPv6 transition for ISP(i) will be accomplished.

IPv4 Address Allocation Policy


- The remaining IPv4 address should be dedicated for the IVI transition use, i.e. using these blocks for the IVI6(i) deployment.
 - The users using IVI6(i) can access the IPv6 networks directly and the IPv4 networks via the IVI gateways.
- Based on multiplexing techniques, the global IPv4 addresses can be used effectively.
 - For example, with a reasonable port multiplexing ratio (say 16), one /8 can support 268M hosts. If 10 /8s can be allocated for the IVI use, it will be 2.6 billion addresses, possibly enough even for the unwired population in the world.
- The 43.0.0/8 could be a good candidate for the initial trial

Blue line: v4 Red line: v6

Measures for address space exhaustion


- For continuous development of the Internet since 2011, the combination of the transition to a new address system (IPv6) and sharing of one address by multiple users (using NAT/NAPT) must be performed from three viewpoints of *feasibility within a time limit, continuity* of service on the Internet, and continuance of effect,
- 2. It is appropriate to **introduce the measures in three stages**: before exhaustion, early, and middle stages of exhaustion.

Model of the procedure for introduction of measures for address space exhaustion

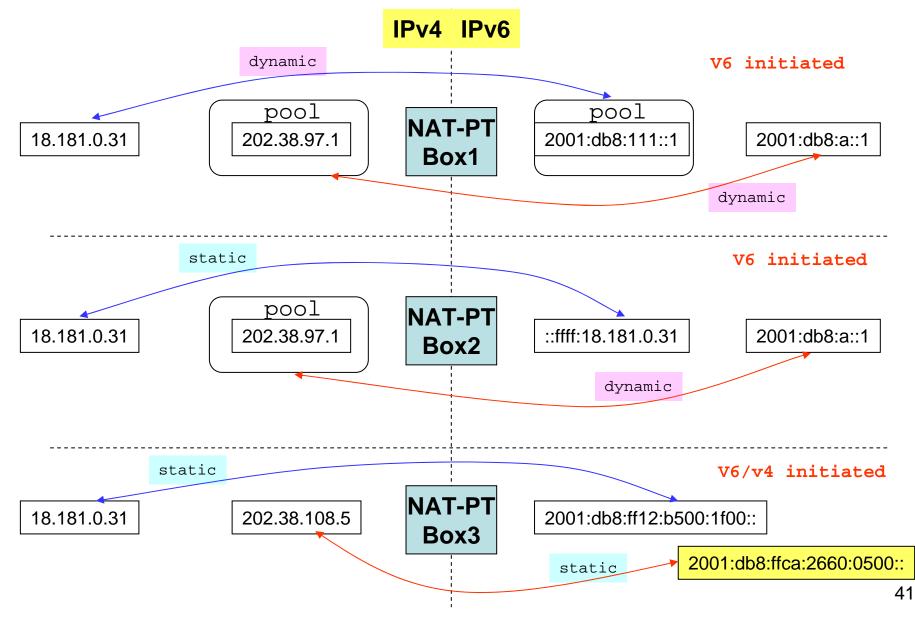
From the June 2008 Report of the Japanese Study Group on Internet's Smooth Transition to IPv6 6

Evolution of the IVI Addresses and Services

Remarks for the transition (1)

- The existing IPv4 users may not have motivation to transit to IPv6.
- Provide IVI6(i) for new Internet users, so they can have IPv4 connectivity and new IPv6 services. Then the existing IPv4 users may want to use IVI6(i). Therefore, more and more IPv4 addresses are borrowed by IPv6 networks as IVI6(i).
- When the number of services and users which support IPv6 (via IVI) reaches a critical mass, non-IVI IPv6 addresses can be used.

Remarks for the transition (2)


	Utilization of NAT/NAPT (Sharing of IPv4 addresses)	Reallocation of the assigned IPv4 addresses	Transition to IPv6	IVI	
Feasibility within a time limit	~	Doubtful	Extremely difficult	\checkmark	
Service continuity	Limited	✓	✓	~	
Permanent effect	Doubtful	NG	✓	\checkmark	

Modified based on the June 2008 Report of the Japanese Study Group on Internet's Smooth Transition to IPv6

Discussion

- Why select a subset of the IPv6 addresses, rather than allow the whole IPv6 addresses to access the IPv4
- Mathematics of mapping
 - Because of the different size of the two address families, there must exist constrains.
- A subset is enough for the initial deployment
 - The IVI6 subnet is much, much larger than the global IPv4 whenIPv4 multiplexing techniques are used), even only a small portion of the public IPv4 addresses are borrowed by IVI.
 - Every IPv6 host can communicate with the global IPv4, not every IPv6 address (IPv4 class E address cannot communicate with class A, B, C).
- The standard NAT-PT methods also require the reservation of a similar size of the public IPv4 addresses in the pool.
 - These methods are maintaining a pool of public IPv4 addresses in NAT-PT box
- This subset supports the v6 and v4 initiated communications.
 - P2P
 - Pseudo-well-know-port, DNS SRV record

Comparisons (1:1 mapping example)

Conclusions

- The IVI is a prefix-specific and explicit bidirectional address mapping scheme.
- Both IPv6 initiated and IPv4 initiated communications can be supported.
- No affect to both IPv4 and IPv6 routing. It is scalable and reliable.
- The deployment can be done incrementally and independently.
- Depending on the mapping rule, the gateway can be in any part inside the ISP's network.
- The IVI comes the closest to the end-to-end address transparency model.
- The IVI scheme encourages the transition.