

PROCEEDINGS OF THE ELEVENTH Internet Engineering Task Force October 17-19, 1988 in Ann Arbor, MI

l

I

l

I

L

L

L

L

L

Ĺ

COMPILED BY

PHILL GROSS Karen Bowers

JANUARY 1989

Corporation for National Research Initiatives 1895 Preston White Drive Suite 100 Reston, VA 22091

Acknowledgements

The 17-19 October 1988, IETF meeting was hosted at the Universtity of Michigan in Ann Arbor by Elise Gerich and Hans-Werner Braun of Merit, Inc. I wish to express very sincere appreciation to Elise Gerich (Merit), who handled all local arrangements. Her efficient planning beforehand and tireless help during the meeting made the meeting a pleasure to chair. She also held an informative and entertaining tour of the NSFnet Operations Center.

I'd also like to thank Gladys Reichlen and Allison Mankin of MITRE, who helped plan and run the meeting from the MITRE end.

TABLE OF CONTENTS

- 1. CHAIRMAN'S MESSAGE
- 2. OVERVIEW AND STATUS OF IETF WORKING GROUPS
- 3. IETF ATTENDEES
- 4. FINAL AGENDA
- 5. WORKING GROUP REPORTS/SLIDES ANN ARBOR, MI 17-19 OCTOBER 1988
- NETWORK STATUS BRIEFINGS AND TECHNICAL 6. PRESENTATIONS
 - NSFNET REPORT PART I (HANS-WERNER BRAUN) NSFNET REPORT PART II (J.E. DRESCHER)

 - ARPANET/DDN REPORT (MARIANNE LEPP)
 - DDN REPORT: TRANSITION OF DDN MAILBRIDGES FROM LSI-11 TO BUTTERFLY GATEWAYS (MICHAEL BRESCIA)
 - INTEROP 88 NETWORK REPORT (PHILIP ALMQUIST)
 - INTERNET PROTOCOLS FOR AMATEUR RADIO (PHIL KARN)
 - HIGH PERFORMANCE TCP OVER AN ETHERNET (VAN JACOBSON)
 - CONGESTION CONTROL OBSERVATIONS USING NETMAN (ALLISON MANKIN) WHAT IS USENET? WHAT IS NNTP? (GENE SPAFFORD) THE NIC DOMAIN CHART (MARK LOTTOR)

 - ON SOME T1 SATELLITE LINK PERFORMANCE (JOHN LEKASHMAN)
- 7. ADDITIONAL WORKING GROUP UPDATES
 - INTERCONNECTIVITY (GUY ALMES) NASA AMES MEETING **27** SEPTEMBER 1988
 - PDN ROUTING (CARL-H. ROKITANSKY) USNA, ANNAPOLIS MEETING 15-17 JUNE 1988
- 8. PAPERS DISTRIBUTED AT IETF
 - NSFNET CONNECTIVITY AND CONFIGURATION (SUSAN HARES)
 - MANAGEMENT AND OPERATION OF THE NSFNET BACKBONE NETWORK PROJECT (MERIT)
 - CALIFORNIA INTERNET FEDERATION

1. CHAIRMAN'S MESSAGE

•

PHILL GROSS

Chairman's Message

The IETF is growing. There are currently 16 active Working Groups in the IETF and the quarterly meetings are typically attended by 100-150 people. Chairing a group of this size, with this level of activity, is no longer a simple matter. The administrative details and logistics involved in planning meetings and producing the Proceedings had begun to detract from the more important mission of identifying key Internet problem areas and then organizing Working Groups to solve them.

I am pleased that, beginning with the January 18-20 IETF meeting, Karen Bowers (NRI, Senior Systems Analyst) will be working with me on many of these IETF matters. Karen will take almost complete responsibility for the Proceedings and many of the meeting planning activities. As a result, by next month we should be able to announce the dates and locations of the next 5 IETF meetings. She will also be working closely with me to facilitate the progress of the WGs. For example, we are considering a quarterly IETF electronic newsletter to announce WG meetings, documents, and status. This should help all those interested in IETF activities to be more aware of the activities of the various WGs. It may also help WGs maintain momentum between IETF plenary meetings.

A condensed status of the currently active IETF Working Groups is provided in the attached chart. Chapter 2 expands this information with an overview of each working group and a summary of progress to date.

For more detailed information (e.g., to obtain a description of the WGs; to obtain copies of the draft documents or WG reports; or to obtain information on meeting dates and locations), contact either the Chairs/Points-of-Contact directly (listed below) or send a request to bowers@sccgate.scc.com. We are now in the process of updating and reorganizing the IETF directory at SRI-NIC to make all this information more easily accessible online.

Phill Gross (interim address: gross@sccgate.scc.com) Corporation for National Research Initiatives (NRI) 1895 Preston White Drive, Suite 100 Reston, VA 22091 703-620-8990

SUMMARY OF IETF WORKING GROUP STATUS

(JANUARY 1989)

-

WORKING GROUPS	RFC or Draft?	Мет Ост 88?	Current Report?		CHAIR OR POC (Address)
AUTHENTICATION	YES	YES	YES	No	JEFF SCHILLER (MIT)
CMIP-OVER-TCP (CMOT)	Yes	Yes	Yes	Yes	JIS@ATHENA.MIT.EDU Lee LaBarre (MITRE)
Host Requirements	Yes	Yes	Yes	Yes	CEL@MITRE-BEDFORD.ARPA Bob Braden (ISI)
INTERCONNECTIVITY	No	Yes	Yes	Yes	BRADEN@ISI.EDU Guy Almes (Rice) Almes@rice.edu
INTERNET MIB	Yes	Yes	Yes	Yes	CRAIG PARTRIDGE (BBN)
NSFNET/REG MONITORING	No	Yes	Yes	YES	CRAIG@NNSC.NSF.NET Susan Hares (Merit)
OPEN SPF-BASED IGP	YES	Yes	Yes	No	SKH@MERIT.EDU Mike Petry (UMD)
Open Systems Routing	Yes	No	Yes	No	<pre>PETRY@TRANTOR.UMD.EDU MARIANNE LEPP (BBN)</pre>
OSI INTEROPERABILITY	YES	NA	NA	Yes	MLEPP@BBN.COM Ross Callon (DEC)
PDN ROUTING GROUP	No	Yes	Yes	No	CALLON@ERLANG.DEC.COM C-H Rokitansky
Performance and CC	No	Yes	Yes	Yes	ROKI@ISI.EDU Allison Mankin (MITRE)
PT-PT PROTOCOL	Yes	Yes	Yes	Yes	MANKIN@GATEWAY.MITRE.ORG Drew Perkins (CMU)
ST AND CO-IP	Yes	Yes	Yes	Yes	DDP#@ANDREW.CMU.EDU Claudio Topolcic (BBN)
TELNET LINEMODE	YES	Yes	Yes	YES	TOPOLCIC@BBN.COM Dave Borman (Cray)
User Services (New)	NA	NA	NA	Yes	DAB@CRAY.COM Karen Bowers (NRI) Bowers@sccgate.scc.com

2. OVERVIEW AND STATUS OF IETF WORKING GROUPS

-

This section provides the following basic information for all currently active IETF Working Groups (listed below):

Statement of charter and goals
 Progress to date
 Estimate of timeframe for completion
 Dates of last and next meeting
 Name of WG mailing lists

6) Names of key players

Working Groups	Chair or Reporter (address)
Authentication	Jeff Schiller (MIT)
CMIP-over-TCP (CMOT)	jis@athena.mit.edu Lee LaBarre (MITRE)
Host Requirements	cel@mitre-bedford.arpa Bob Braden (ISI)
Interconnectivity	braden@isi.edu Guy Almes (Rice)
Internet MIB	almes@rice.edu Craig Partridge (BBN)
NSFnet/Reg Monitoring	craig@nnsc.nsf.net Susan Hares (Merit)
Open SPF-based IGP	skh@merit.edu Mike Petry (UMD)
Open Systems Routing	petry@trantor.umd.edu Marianne Lepp (BBN)
OSI Interoperability	mlepp@bbn.com Ross Callon (DEC)
PDN Routing Group	callon@erlang.dec.com C-H Rokitansky
Performance and CC	roki@isi.edu Allison Mankin (MITRE)
Pt-Pt Protocol	mankin@gateway.mitre.org Drew Perkins (CMU)
ST and CO-IP	ddp#@andrew.cmu.edu Claudio Topolcic (BBN)
TELNET Linemode	topolcic@bbn.com Dave Borman (Cray) dab@cray.com
User Services (New)	Karen Bowers (NRI) bowers@sccgate.scc.com

Authentication Working Group

Jeff Schiller (MIT) jis@athena.mit.edu

1) Brief statement of charter and goals

There are currently four main deliverables:

- A) RFC specifying an authentication format which supports multiple authentication systems. [This document may wind up being specific to SNMP per discussions at the last working group meeting].
- B) Document discussing the cost/benefit tradeoffs of various generic approaches to solving the authentication problem in the Internet context.
- C) Document to act as a protocol designers guide to authentication.
- D) RFC proposing A Key Distribution System (emphasis on "A" as opposed to "THE"). MIT's Kerberos seems the most likely candidate here.
- 2) Progress to date

As of this time there is an IDEA paper that is a description of the kerberos protocol. Jennifer Steiner at MIT is currently working on an RFC format document to submit that will describe the kerberos protocol in detail sufficient to code to.

3) Estimate of timeframe for completion

Hard to state clearly as the charter of the group (not to mention the membership) is still subject to change. However I would expect that the Kerberos RFC should be in draft format if not by January 17th, then before the IETF meeting following. We would like to also have a document defining authentication extensions to SNMP in draft format before the IETF meeting following the January meeting.

4) Dates of last and next meeting

Last Meeting: IETF meeting at Merit Next Meeting: April 1989 IETF meeting (tentative)

5) Name of WG mailing lists

awg@bitsy.mit.edu

6) Names of key players

Jon Rochlis, Jeff Schiller and Jennifer Steiner

CMIP-over-TCP (CMOT) Working Group

Lee LaBarre (MITRE)

labarre@gateway.mitre.org

- 1) Charter: As described in RFC1052
 - o Develop a long term approach to management of the Internet based on the OSI Network Management Framework and the Common Management Information Protocol (CMIP).
 - o Provide input to the OSI standards process based on experience in the Internet, and thereby influence the final form of OSI International Standards on network management, in particular CMIS/P.
 - o Approach
 - a) Develop prototype implementors agreements on CMIP over TCP.
 - b) Develop prototype implementations based on the CMOT agreements and IETF SMI and MIB agreements.
 - c) Experiment with CMOT and extensions to the SMI and MIB.
 - d) Develop final implementors agreements for CMOT.
 - e) Promote development of products based on CMOT.
 - f) provide input to the OSI Network Management standards process in time to effect the International Standards.
- 2) Expected duration of group:

The groups work should be completed by June 1989.

3) List of Members:

Member corporations are listed here.

Advanced Computing Environments	Communications Machinery Corp.
Convergent Technologies	Digital Equipment Corp.
Epilogue Technology Corp.	Excelan
Hewlett Packard Corp.	MITRE Corp.
SUN Microsystems	Sytek
3COM Corp.	Ungermann-Bass
Unisys Corp.	The Wollongong Group
Unisys Corp.	The Wollongong Group

CMOT

4) Mailing List:

netman@gateway.mitre.org

5) Last meeting:

December 1988, Santa Clara, CA

- 7) Achieved goals: from (1)
 - a) Overview document (IDEA0012) Thin Presentation layer (IDEA0017) Prototype Implementors Agreements (IDEA0025)
 - b) Nine vendor prototype implementations demonstrated at INTEROP 88 in Santa Clara, CA.
 - c) Experimentation occurred during development of the INTEROP demo, and is continuing.

ч,

ι.

2

- d) Draft implementors agreements are written for the DIS CMIP over TCP. Proposals for extending the SMI and MIB are in progress.
- e) Thirteen corporations participated in the INTEROP 88 demo. Nearly all the vendors in that group have indicated that they expect to field products during 1989 based on CMOT implementors agreements.
- f) Several Working Group members are participating in the OSI network management standards organizations and carrying the CMOT experience into that forum.

HOST REQUIREMENTS WORKING GROUP

Bob Braden (ISI)

braden@isi.edu

CHARTER AND GOALS:

The primary task of the Host Requirements Working Group (HRWG) is to prepare an RFC entitled "Requirements for Internet Hosts". This RFC will contain a comprehensive specification of the networking software requirements for an Internet host, to complement the Gateway Requirements RFC-1009.

As a secondary task, the WG has provided a forum for discussing particular solutions to pressing host problems, and has resulted in several RFC's by WG members.

The Host Requirements RFC covers the following topics:

- o Link Layer (only amendments to RFC-1009 discussion)
- o IP Layer (IP and ICMP)
- o Transport Layer (TCP and UDP)
- o Application Layer (SMTP, FTP, TFTP, and Telnet)
- o Support Programs (DNS, Booting, Network Management)

For each protocol, it amends and expands on the specification RFC(s). In those areas in which the referenced specifications contain ambiguous or incomplete information, the RFC contains further clarification, discussion, and guidance. The intent is to define the current architecture as completely and carefully as possible, not to invent new architecture.

PROGRESS TO DATE:

The draft document is nearly complete, after 5 meetings in 10 months. The 6th and last meeting is scheduled for the Austin IETF meeting in January 1989. The draft is now 175 pages.

ESTIMATE OF PUBLICATION DATE:

February 1, 1989.

MEETING DATES:

Last: Oct. 17-18, 1988 at Ann Arbor IETF meeting.

Next: Jan. 18-19, 1989 at Austin IETF meeting.

HRWG

MAILING LIST:

To FTP the document, do anonymous FTP to host venera.isi.edu and fetch pathname:

pub/ietf-hosts.rfc.txt

This file is ~400KB. Change bars (and other symbols) mark all the content changes since the Ann Arbor meeting. Another file is available at the same host that contains only the text marked with change bars:

<u>.</u>....

2.5

11

цŚ.

ж¥,

< ...

pub/ietf-hosts.rfc.chg

KEY PLAYERS:

Major contributions to the writing, revision, and editing have come from 25 people representing 20 organizations. At least 8 vendors have been represented.

SPINOFFS:

In writing this document, we came across a number of unresolved problems and undocumented areas. As a subsidiary task, the HRWG members have been inspired to prepare a number of RFC's on these topics. The RFC's for which we take credit are:

- RFC-1063 ICMP MTU Discovery
- RFC-1071 Internet Checksum Calculation
- RFC-1073 Telnet Window Size Option
- (draft) Telnet Terminal Type Extension RFC
- (draft) Gateway Discovery RFC
- (draft) TCP RST Extension RFC

Interconnectivity Working Group

Guy Almes (Rice)

almes@rice.edu

1) Statement of the charter and goal of the group

Within six quarters, specify, design, and demonstrate an initial production-quality implementation of inter-autonomous-system routing adequate to address the inadequate support for the NSFnet Model in current Inter-AS Routing.

Inadequate support for the NSFnet Model in current Inter-AS Routing:

Interconnectivity of the Internet no longer conforms to the stub model assumed by the designers of EGP. We currently suffer from (a) dangerous ad hoc interconnections due to the bold and (b) less interconnectivity due to the conservative. Further, we do not expect a new generation of inter-autonomous-system routing protocols to be designed, much less implemented, for several years. While the existing Open Inter-AS Working Group is needed to design a really new generation of protocols, and while the Short-Term Routing Working Group has made valuable contributions, we need a methodical approach to Inter-AS routing that can be applied in the context of the current Inter-agency Research Internet with its multiple national backbones, its evolving mid-level networks, and its exploding campus networks. This three-level NSFnet Model, while much more general than the older Stub Model, is much less general than the situation being addressed by the Open Inter-AS Working Group.

One possible technical approach is to appropriate and adapt the work of the EGP-3 Working Group. If no substantial improvement over the currently available tools can be produced within a short time frame, then it would be preferred to simply document what we've learned and await the product of the Open Inter-AS Working Group.

The costs of the current interconnectivity approach are large. They result in either having very labor intensive routing configurations or in less than adequate interconnectivity and the resulting long paths and lack of robustness.

2) Expected duration of the group: Six to eight guarters at the very most.

- IWG
- 3) List of members: Initially, I am inviting: Guy Almes of Rice University/Sesquinet (almes@rice.edu), chair Mike Brescia of BBN/ARPAnet (brescia@alexander.bbn.com) Joe Choy of UCAR/USAN (choy@windom.ucar.edu) Phill Gross of MITRE/IETF (gross@gateway.mitre.org), ex officio Milo Medin of NASA/NSI (medin@nsipo.nasa.gov) Jacob Rekhter of IBM/NSFnet (yakov@ibm.com) Two of us (GA and JC) are active in NSFnet-related mid-level networks. Apart from PG, the others are active in different national backbones (ARPAnet, NSI, and NSFnet respectively). We need one more person from a mid-level and perhaps someone from ESnet. We are, as noted earlier, open to suggestions, but would like to keep the WG down to about eight members.

. :

: 2

3

7.77

. . .

: 12

4) Give Mailing lists for the group:

iwg@rice.edu

5) When was your last meeting?

Last meeting at the Oct IETF, Next meeting will be at the Jan IETF. MANAGEMENT INFORMATION BASE (MIB) WORKING GROUP

Craig Partridge (BBN)

craig@nnsc.nsf.net

 Brief statement of charter and goals (ie, ~3-5 sentences with quantifiable goal like 'RFC specifying new Point-Point protocol')

As defined in RFC 1052, the original purpose was to devise an Internet MIB and Structure of the Managment Information (SMI). When we finished, the WG stayed around as a forum where revisions of the MIB and SMI may be considered and approved.

2) Progress to date

MIB (version 1) came out in the summer of 1988. RFCs 1065/1066.

MIB (version 2) is planned for summer of 1989. Some proposals for changes in hand. First draft of new RFC expected in February.

After MIB-2 the crystal ball gets hazy. The key unresolved questions are how long does the MIB have to work for both CMIP and SNMP (to forestall parties fighting for position, I've said very loudly that MIB-2 will but the question is open after MIB-2 is done).

3) Estimate of timeframe for completion

As long as we need to keep tinkering with the MIB.

4) Dates of last and next meeting

Last meeting: October IETF Next meeting: January 17th (IETF)

5) Name of WG mailing lists (if any; include address)

mib-wg@nnsc.nsf.net is for the "core" members gwmon@sh.cs.net is for general discussion of network management issues

6) Names of key players

Karl Auerbach, Epilogue Technology K. Ramesh Babu, Excelan Lawrence Besaw, Hewlett-Packard Terry Bradley, Wellfleet Communications Jeffrey D. Case, University of Tennessee at Knoxville [OPEN-INOC WG] James R. Davin, MIT (formerly Proteon) Mark S. Fedor, NYSERNet Phill Gross, NRI Bent Torp Jensen, Convergent Technology Lee Labarre, The MITRE Corporation [NETMAN WG] Dan Lynch, Advanced Computing Environments Keith McCloghrie, The Wollongong Group Dave Mackie, 3Com/Bridge Craig Partridge, BBN Jim Robertson, 3Com/Bridge Marshall T. Rose, The Wollongong Group Greg Satz, cisco Martin Lee Schoffstall, Rensselaer Polytechnic Institute Lou Steinberg, IBM Dean Throop, Data General Unni Warrier, Unisys

No.

77 S

MIB

Joint Monitoring Access for Adjacent Networks focusing on the NSFNET Community Working Group. (A suggestion for an abbreviation is NSFNET Jo-MAAN, pronounced Joe - Man).

Sue Hares (Merit) skh@merit.edu

Charter or Mission of NSFNET Jo-MAAN Working Group:

This Joint Monitoring Access for Adjacent Networks focusing the NSFNET Community Working group will:

- o discuss how to identify problems in the next hop network
- create a list of existing tools which can solve these problems
- o Create a list of routing topology maps of regionals

We are focusing on the NSFNET community - the NSFNET backbone, the regional networks attached to the NSFNET backbone, campus networks, and peer networks for the NSFNET which includes the ARPANET and the MILNET.

Who should attend:

Technical representatives from mid-level or peer networks. In the future we may want to extend this to technical representatives from campus networks. However, in interest of getting a lot of work done quickly I would like to limit the initial working group.

Time duration for working group:

```
6-9 months (August 31, 1989)
```

Dates of Meetings:

1st - October 18th, 1988 at October IETF Meeting

2nd - January 18-20, 1989 at January IETF Meeting

3rd - March, at Routing Workshop help by NSFNET

JOMAAN

Mail group for working group:

njm@merit.edu

send requests to join to njm-request@merit.edu

Key players:

Susan Hares and Hans-Werner Braun. The idea came from David Wasley. However, all the regional technical representatives also play a key role. · · ·

13

•

÷

- ---

. 1. .

:

т. 7 12 2 4. **ча**

Harrison (

Open SPF-based IGP (OSPFIGP) Working Group

Mike Petry (U. Maryland) and John Moy (Proteon)

Charter: Design and developement of a multi-vendor SPF-based Internet Gateway Protocol. The protocol should draw on existing SPF routing technology, notably the work done by BBN and DEC.

> Features of the protocol should include: stability in a large, heterogeneous AS; TOS support; the ability to pass external routing information transparently; explicit support for IP subnetting; authentication of participating routers.

> The reasons for choosing an SPF base are 1) So the internet community can gain experience with a routing algorithm other than the current Ford-based algorithms and 2) To ease ISO transition, since the current ANSI proposal is SPF based.

The group should take the protocol through implementation and performance evaluation.

Goals: meeting June 88 (1st draft of specification) next meeting (trial implementations, spec revision) next 2 meetings (performance evaluation, spec revision?) Then we disband.

Membership: Open

Mailing list: oigp@trantor.umd.edu (open)

Last meeting: October IETF meeting Next meeting: February (by video teleconference)

Progress: March 88 - IDEA005 published (protocol requirements) May 88 - IDEA020 published (comparison to DEC IS-IS) June 88 - First third of spec released for public review Open Routing Working Group

Marianne Lepp (BBN), co-chair mlepp@bbn.com Robert Hinden (BBN), co-chair hinden@bbn.com

1) Charter and Goals of the Working Group

The charter of the working group is to design a policy-based routing protocol to run between autonomous systems to replace EGP and hand-configured tables. The protocol should deal gracefully with a large, heterogenous Internet with constraints determined administratively.

Document	Schedule
Requirements	completed IDEA 007
Draft archticture	March, 1989
Draft specification	December, 1989

The group's final goal is an RFC draft specification.

2) Progress to Date

o. Requirements paper complete.

- o. Several draft architectures are under consideration.
- o. There is a consensus on the basic points of the architecture -hierarchical, source routing, route set-up, link-state, and other points.
- 3) Estimate of Timeframe for Completion

One year to complete charter of writing a draft specification.

4) Dates of Last and Next Meetings

Last meeting: Nov. 9,10 in Westboro, MA Next meeting: Feb. on the West Coast.

5) Name of Working Group Mailing Lists

Private mailing list: open-rout-wg@bbn.com Public mailing list: open-rout-interest@bbn.com

ORWG

6) Names of Key Players and Liasons with Other Working Groups/Task Forces

Membership of the group (by invitation):

Robert Hinden hinden@bbn.com rcallon%erlang.dec.com@decwrl.dec.com Ross Callon Sergio Heker heker@jvnca.csc.org Noel Chiappa jnc@xx.lcs.mit.edu Mike Little little@MACOM4.ARPA Marianne Lepp mlepp@bbn.com Mike Petry petry@TRANTOR.UMD.EDU Zaw-Sing Su zsu@tsca.istc.sri.com Lixia Zhang lixia@xx.lcs.mit.edu Paul Tsuchiya tsuchiya@gateway.mitre.org Pat Clark paclark%ford-cos1@ford-wdl1.arpa Tassos Nakassis nakassis@icst-ecf.arpa

- -

.

÷ --

ş 12

े । इ.स.

Other relevant WG, TF

Auto-nets Routing subcomittee of the FRICC

ORWG

OSI Internet Interoperability Working Group

Ross Callon (DEC), Robert Hagens (U Wisc.)

This WG is reforming after a period of inactivity. The next meeting will be held at the January IETF meeting in Texas. A mailing list will be created at Wisconsin. It is the intent of the WG chairs to solicit participation from key OSI players, like NIST, ANSI X3S3.3, the Government OSI User's Group (ie, the originator's of GOSIP). The goal of the group are listed below.

1. Main Goal:

Help facilitate the incorporation of the OSI protocol suite into the Internet, to operate in parallel with the TCP/IP protocol suite. Facilitate the co-existence of the TCP/IP and OSI protocol suites.

2. Very Short Term Subgoals:

This section describes subgoals which are essential to initial deployment of OSI protocols in the Internet. We intend to work on these goals immediately, and finish initial action relatively quickly (hopefully within a couple of IETF meetings, and soon enough to influence initial OSI software releases).

2.1 Addressing

Specify an addressing format (from those available from the OSI NSAP addressing structure) for use in the Internet.

2.2 EON

Provide documentation of the EON experimental effort.

2.3 Berkeley Release 4.4

Review the OSI protocol mechanisms proposed for the upcoming Berkeley release 4.4. Coordinate efforts with Berkeley folks.

2.4 GOSIP

Review GOSIP. Open liaison with Government OSI Users Group (GOSIUG) for feedback of issues and concerns that we may discover.

2.5 Getting Gateways Into the Internet

Review short term issues involved in adding OSI gateways to the Internet. Preferably, this should allow OSI and/or dual gateways to be present by the time that Berkeley release 4.4 comes out.

OSI

Note, short term gateway sub-issues may include:

- Wonder whether funding is present to cause OSI gateways to happen
- Do we run dual gateways only and/or start with OSI over IP and/or vice versa. Does this depend on level of funding available?
- Determine what form of routing may be used in the short term (both within a domain, and between domains). Will this be fixed tables at first? (with migration to ANSI routing?)
- Recommend short term domain structure.
- Determine congestion control to be used in first release. Should this include use of the congestion experienced bit and related TP4 congestion algorithm?

- 4

13

12

<u>कृत्व</u>

. .

. .

3. Possible Short to Medium term sub-goals:

This section describes subgoals with are important to the success of OSI in the DoD Internet, but which are not essential to be completed before initial deployment of OSI protocols in the Internet. This is a tentative list, and is expected to be updated as we go along.

3.1 OSI Software Releases

Continue to work with Berkeley and CMU/MACH on future releases of OSI software.

3.2 Requirements for OSI Gateways / End Systems

Produce documentation on the requirements for OSI gateways and requirements for OSI end-systems, similar to the specs that have been produced for DoD protocol suites.

3.3 Dual Internets versus Encapsulation

Discuss relative strengths of dual internets versus encapsulation. Discuss possible problems with dual gateways (such as interaction between different congestion control schemes, and performance implications of running multiple routing schemes). Produce guidelines for a dual gateway.

OSI

3.4 Routing

Work on testing and deployment of the ANSI routing spec for OSI intra-domain routing in the Internet. We do not want to wait for a DP or a DIS. If we find bugs in the routing spec, then they become exponentially harder to fix as the standards process reaches further milestones.

Think about how a new inter-domain routing protocol may be used in the Internet.

3.5 Liaison

Continue liaison with GOSIP Users Group, as necessary.

Cooperate with ANSI and the NBS Implementors forums. Hopefully much or all of this can be done by phone, email, and overlap in corporate attendance, without the need for working group members to go out of their way to attend ANSI or NBS meetings.

3.6 Performance

Discuss performance of OSI. Determine which are implementation versus architectural factors in performance. Is the OSI releases in the kernel or user processes, what are layer interactions like, etc.

3.7 Directory Services

Outline the form of a possible Directory / Domain Naming service for the Internet. Should directory services for DoD and OSI suites be integrated? Are existing schemes suitable and available (e.g., current Internet directories, DEC DNA architecture).

4. NOT ISSUES FOR THIS GROUP:

IETF to ANSI liaison. There are a number of efforts in IETF that ANSI may be interested in for consideration in their future work. To a large extent, appropriate individuals in ANSI are already receiving IETF documentation and making use of this in their standards efforts. It is unlikely that we would be needed as a conduit for carrying documents, and we do not intend to be advocates to ANSI for IETF positions in general. Individual working group members may be advocates for some positions as they see fit.

OSI

PDNWG

Internet/Public Data Network Routing Group ("PDN Routing Group")

C-H Rokitanski, roki@isi.edu

1) Statement of the charter and goals of the group

The DoD INTERNET TCP/IP protocol suite has developed into de facto industry standard for heterogenous packet switching computer networks. In the US the ARPANET/MILNET connects several hundreds of INTERNET networks, however the situation is completely different in Europe: The only network which could be used as a backbone to allow interoperation between the many local area networks in Europe now subscribing to the DoD INTERNET TCP/IP protocol suite would be the System of Public Data Networks (PDN). However no algorithms are provided so far to dynamically route INTERNET datagrams through X.25 public data networks. Therefore the goal of the Internet/Public Data Network routing Group is to develop and to define the required routing and gateway algorithms for an improved worldwide routing of INTERNET datagrams through the System of Public Data Networks (PDN). Especially the following issues have been specified:

- Define the Cluster-Addressing Scheme and its application to public data networks as an INTERNET standard
- Specify gateway algorithms and protocols to be used by VAN-gateways
- Develop an X.121 Address Server/Resolution Protocol
- Develop (or support other working groups in developing) routing algorithms based on routing metrics other than hop-count: costs, delay, throughput, TOS, etc.
- Provide interoperability with ISO/OSI networks via the PDN
- Specification of protocols required for an European INTERNET/Public Data Network Information and Operation Center (cooperation with US-INTERNET NICs and NOCs)
- ISO-Migration of the INTERNET/PDN Cluster
- 2) Progress to date

See separate report of October meeting at the IETF. Mail to roki@isi.edu or gross@sccgate.scc.com for a copy.

PDNWG

3) Duration of the group
The PDN Routing Group should have a continuing nature, since
Short-Term Issues (3 to 6 months)
Medium-Term Issues (6 months to 2 years) and
Long-Term Issues (2 to 5 years)
were specified. (See last question below)
4) Dates of last and next meetings:

Last meeting - October IETF meeting
Next meeting - April IETF meeting

5) Mailing lists

No mailing lists are installed so far. Bill Melohn has offered to support such lists on SUN.COM.

1.4.

. .

1

\$~-

4.1

2

ter in

£.,.

÷

6) Key players:

Mike Brescia, BBNCC, brescia@park-street.bbn.com Thomas E. Brunner, SRI International, brunner@span.istc.sri.com Ross Callon, BBNCC, rcallon@park-street.bbn.com Noel Chiappa, MIT, jnc@xx.lcs.mit.edu Bill Melohn, Sun Microsystems, melohn@sun.com Carl-H. Rokitansky, DFVLR, roki@a.isi.edu

To keep the group a workable size it should probably not exceed 10 members.

Performance and Congestion Control Working Groups

Allison Mankin (MITRE)

mankin@gateway.mitre.org

1) Brief statement of charter and goals

Charter is to collect and develop short-term techniques of improving Internet performance, methods which like TCP ''Slow-start'' are retrofittable, inexpensive to implement, and contribute to globally better use of network resources. After a preliminary draft of a paper covering all Internet performance enhancement methods, it was decided to divide the material. Three RFCs are planned, whose tentative titles are:

> Specification of Slow-start TCP Gateway-Based Congestion Control Proposal to Eliminate Source Quench

2) Progress to date

Produced a preliminary draft of guidelines for performance enhancement of IP, TCP, and a number of applications. Reviewed the draft at Annapolis meeting, decided at Ann Arbor meeting that the paper should be divided into the three listed above. This decision was encouraged by a suggestion from the Host Requirements WG that the documentation of TCP congestion control be separated and speeded up.

3) Estimate of timeframe for completion

Twelve months or more.

4) Dates of last and next meeting

Last meeting: Ann Arbor, October 16 Next meeting: Austin, January 18

5) Name of WG mailing lists

ietf-perf@gateway.mitre.org
ietf-perf-request@gateway.mitre.org

PERF

6) Names of key players (also include liaisons with other WGs or TFs)

Our attendance averages 20, though many attendees are observers. The following are the members who have contributed writing or editing so far (this list is as accurate as possible given the chair's case of the flu while listing it): - -

24

۰....

. .

Art Berggreen	ACC
Dave Borman	Cray
Van Jacobson	LBL
John Lekashman	NASA/NAS
Allison Mankin	MITRE
Craig Partridge	BBN
K.K. Ramakrishnan	DEC
Bruce Schofield	DCEC

We are cooperating with the Host Requirements and Connection-Oriented IP WGs (the liaison people include John Lekashman for the former and Claudio Topolcic for the latter). We should have some liaison with the End to End Task Force, but we don't.

PERF

Point-to-Point Protocol Working Group

Drew Perkins (CMU) and Russ Hobby (UC Davis)

1) Statement of charter and goals:

The goal of the Point-to-Point Protocol Working Group is to publish an RFC defining a standard protocol for the encapsulation of IP Datagrams over point-to-point links including asynchronous and synchronous serial lines. The protocol will include encapsulation schemes as well as an extensible option negotiation protocol allowing negotiation of IP addresses, data compression, etc.

2) Progress to date:

The first step towards this goal was to document the requirements for such a protocol. A draft RFC discussing these requirements was sent to the IETF mailing list in October and will hopefully be published as an RFC soon. The purpose of this document is to make sure that everyone in the working group is aware of all the various issues. The second step is the definition of the standard protocol. A first draft defining the basic encapsulation scheme has been mailed to the PPP mailing list for review.

3) Estimate of timeframe for completion

The current estimate for completion is approximately April (or the next IETF meeting after the January meeting).

4) Dates of last and next meeting

The last meeting was at the October IETF, the next will be at the January IETF.

5) Name of WG mailing lists (if any)

ietf-ppp@ucdavis.edu
ietf-ppp-interest@ucdavis.edu
ietf-ppp-request@ucdavis.edu

6) Names of key players

Drew D. Perkins, ddp@andrew.cmu.edu Philip Prindeville, philipp@oliver.cs.mcgill.ca Russ Hobby, rdhobby@ucdavis.edu ST. and Connection-Oriented IP Working Group

Claudio Topolcic (BBN)

1) Statement of charter and goals

Produce a specification for the ST protocol that can be implemented by people outside the current small group of interested people and will support research in connection-oriented internet level protocols. Produce a gateway implementation of this protocol and at least one or two host implementations. Perform relevant experiments and gain experinece. Produce a specification for a next generation connection like protocol if the results of the preceeding experiments warrant it.

2) Progress to date

We have a preliminary draft of the ST specification, and we are talking it over and working toward a better draft. We have host implementations based on an older version of ST. We are almost done building a gateway implementation based on an older version of ST. We have a plan for how to look into producing a follow-on protocol. We have an outline of a "requirements document" which is the first step in this plan. We have not published any papers.

3) Estimate of timeframe for completion

The gateway implementation based on the older version of ST should be available in about 2 months. The ST specification should be available in 2 or 3 months. The host and gateway implementations based on the new ST specification should be available within six months of the specification, or about 8 or 9 months from now. The requirements document should be done within 3 months or so. The specification for the follow on protocol should be done in about a year.

4) Dates of last and next meeting

The last meeting was on Oct 17 1988 at Ann Arbor Michigan. The next meeting will be on January 17 1989 at Austin Texas.

5) Name of WG mailing lists

Mailing list is "cip@bbn.com".

6) Names of key players

Claudio Topolcic, BBN, chairman, Ross Callon, DEC, Steve Casner, ISI, Phil Park, BBN, Guru Parulkar, Washington University, KK Ramakrishnan, DEC.

 \mathbf{ST}

TELNET

TELNET Linemode Working Group

David Borman (Cray)

dab@cray.com

1) Statement of charter and goals

The TELNET Linemode working group is writing an RFC to describe a standard method of doing line mode TELNET (pushing the character processing to the front end when ever possible, and only sending completed lines across the network)

2) Progress to date

A draft RFC (IDEA16) has been produced. See below for timeframe to completion.

3) Estimate of timeframe for completion

The draft document (IDEA16) has been re-worked to be very close to what the final RFC will look like. The next meeting should be the last meeting needed to reach closure.

4) Dates of last and next meeting

Last meeting - Ann Arbor IETF Next meeting - this next IETF

5) Name of WG mailing lists

linemode@uc.msc.umn.edu linemode-request@uc.msc.umn.edu - To be added or deleted

6) Names of key players (also include liaisons with other WGs or TFs)

We have met twice. Below are all the people who have attended meetings, and which meetings they attended.

1	2	David Borman
1	2	Mike Karels
1		Bruce J Schofield
		Louis A. Mamakos
1		Stuart Levy
		Coleman Blake
1		David Wasley
		Allan Fischer
1		Philip Prindeville
		Joyce Reynolds
	2	Bill Westfield
	2	Allen Cole

User Services Working Group

Karen Bowers (NRI)

bowers@sccgate.scc.com

This is a new working group. The first meeting will be held at the January IETF meeting in Texas. The draft charter and proposed goals are listed below. This will be finetuned at the initial meeting. A mailing list has not yet been established. For more information, send email to Karen Bowers (bowers@sccgate.scc.com).

The information below is organized as:

- 1) draft Charter with Key Objectives,
- 2) Selection Criteria for determining what issues/actions should be undertaken first
- 3) Issues/Actions for Consideration

CHARTER (draft): to provide a liaison among existing and newly forming network informations centers, network managers and the broad network user community.

Objectives: to consolidate and enhance the tools of existing user assistance and information services and make these pooled resources universally available to novice and experienced users alike.

to develop new and innovative network information/directory assistance techniques/methods in terms of general user support services (not technology-specific applications).

SELECTION CRITERIA (for projects/requirements to be addressed by the User Services Working Group):

1. Project/selected action must lend itself to accomplishment within a reasonable timeframe (say 1-3 years).

2. Must culminate in a measurable/quantifiable end result (production oriented; e.g. RFC, network users directory, etc.)

3. Must address user assistance needs and not technology specific requirements (e.g. routing)

4. Products/tools resulting from these efforts must not only address user information requirements but must be designed to be both maintainable and easily "updateable".

ISSUES/ACTIONS FOR CONSIDERATION (to be further expanded):

- A national directory (or directories) of existing networks and associated points of contact to include:

1. short/concise description of each network, net #, and net maps,

 POCs for various actions: permission to connect, network engineering, network ops, 800#s, support services (such as assistance with routing/performance problems), etc.
 a standardized format describing how to connect: permission requirements, network specific procedures, guidance on physical (circuit/equipment) interface requirements and software (protocol)

requirements, and Internate requirements and software (protocol) requirements, and Internet specific procedures (initial configuration requirements: net # assigned, name server, subnets, hand con configure routing tables...) ____

----3

÷Ś

1.3

۳.

÷

- How to set up and establish national procedures for net connections (=RFC).
- How to best answer new user problems
- A national (an international) network user directory (as a phone book)
- A guide to user training resources

USWG

3. IETF ATTENDEES

-

-

IETF ATTENDEES

The following is a list of people who attended all or part of the October 1988 IETF meeting. All organization affiliations are listed as submitted, and for brevity have not been expanded (Example: DCA vice Defense Communications Agency).

-

٠

Name	Organization	Email Address
Almes, Guy	Rice University	almes@iapetus.rice.edu
Almquist, Philip	Stanford/self	almquist@Jessica.Stanford.EDU
Aronson, Cathy	Merit	CJA@merit.edu
Atlas, Stephen	BBN	Satlas@BBN.COM
Beeman, Roger	NWnet(Boeing)	beeman@boeing.com
Berggreen, Art	ACC	art@acc.arpa
Blunk, Larry	UMich	ljb@merit.edu
Boivie, Rick	IBM	rboivie@ibm.com
Borman, Dave	Cray Research	dab@cray.com
Bosack, Len	cisco Systems	Bosack@mathom.cisco.com
Braden, Bob	USC-ISI	braden@isi.edu
Bradley, Terry	Wellfleet Comm	(617) 275-2400
Bratton, Eric	UMich	ericb@caen.engin.umich.edu
Braun, Hans-Werner	UMich	hwb@mcr.umich.edu
Brescia, Mike	BBN	BRESCIA@BBN.COM
Brim, Scott	Cornell	SWB@DEVVAX.TN.CORNELL.EDU
Broersma, Ron	NOSC	ron@nosc.mil
Burruss, John	Wellfleet Comm	(617) 275-2400
Callon, Ross	DEC	callon%erlang.dec.com
•		@decwrl.dec.com
Carpenter, Geoff	IBM Research	GCC%YKTVMX@CUNYVM.CUNY.EDU
Casner, Steve	USC/ISI	CASNER@ISI.EDU
Chiappa, J. Noel	MIT/Proteon	JNC@xx.lcs.mit.edu
Chinoy, Bilaz	Merit	bnc@merit.edu
Choy, Joe	NCAR	choy@ncar.ucar.edu
Chung, Anthony	Sytek	(415) 966-7430
Cohrs, Dave	U. of Wisconsin	dave@cs.wisc.edu
Cole, Allen	Univ. of Utah	cole@cc.UTAH.EDU
Collins, Mike	LLNL	collins@NMFECC.ARPA
Draughon, Phil	Northwestern	jpd@accuvax.nwu.edu
Drescher, J. E.	IBM Corporation	
Fedor, Mark	NYSERNET	Fedor@nisc.nyser.net
Finkelson, Dale	Midnet	dmf@westie.unl.edu
Frank, Randy	U Mich	frank@caen.engin.umich.edu
Geretz, Lionel	ACC	lionel@acc.arpa
Gerich, Elise	NSFNET/Merit	epg@merit.edu
Gerlach, Chuck	AT&T	cag@iwlcs.att.com
Gilligan, Bob	Sun	Gilligan@Sch.COM
Gross, Phill Gross, Martin	NRI	gross@sccgate.scc.com
Gross, Martin Hain, Tony	DCA	MARTIN@PROTOLABA.DCA.MIL
Hares, Susan		Hain@NMFECC.ARPA
114103, 30341	MERIT/NSFNET	skh@merit.edu

Hastings, Gene -Hobby, Russ Hunter, Steven Jacobsen, Ole Jacobson, Van Jordt, Dan Karels, Mike Karn, Phil Katz, Dave Knopper, Mark Krol, Ed LaBarre, Lee Lakey, Jerry LaQuey, Tracy Lazear, Walt LeKashman, John Lepp, Marianne Lottor, Mark Love, Paul Lowe, Ken Lynn, Charles Malkin, Gary Mamakos, Louis Mankin, Allison Marshall,George Mathis, Matt McCloghrie, Keith Medin, Milo Melohn, Bill Merritt, Don Mockapetris, Paul Morris, Don Moy, John Mundy, Russ Natalie, Ron Nguyen, Carolyn Nitzan, Rebecca Norton, Bill Opalka, Zbigniew Park, Phillipe Parker, Paul Partridge, Craig Parulkar, Guru Perkins, Drew Petry, Mike Prindeville, Philip Ramakrishnan, K. Reichlen, Gladys Rekhter, Jacob Reschly, Robert Reynolds, Joyce Rochlis, Jon Rokitansky, Carl Schiller, Jeff

PSC UC DAVIS LLNL ACE LBL U of Washington UCBerkeley Bellcore Merit Merit U. of Illinois MITRE Merit UTexas-Austin MITRE NASA BBN SRI SDSC U of Washington **BBN** Proteon Univ. of Md MITRE Corp. Ungerman-Bass PSC Wollongong NASA/NSI Sun Micro BRL ISI NCAR Proteon DDN(DCS B602) Rutgers AT&T ESNET, DOE LLNL Merit BBN **BBN** CMU **BBN STC** Washington Univ. CMU Univ. of Md McGill Univ. DEC MITRE IBM BRL USC/ISI MIT Fern U.Hagen MIT

hastings@morgul.psc.edu RDHOBBY@UCDAVIS.EDU Hunter@NMFECC.Arpa ole@csli.Stanford.edu Van@LBL-CSAM.arpa danj@blake.acs.washington.edu karels@acbarpa.Berkeley.edu Karn@thumper.bellcore.com Dave Katz@um.cc.umich.edu MKnopper@Merit.edu Krol@uxg.cso.uiuc.edu cel@mitre bedford.arpa JLL@merit.edu tracy@emx.utexas.edu lazear@gateway.mitre.org lekash@orville.nas.nasa.gov mlepp@bbn.com MKL@SRI-NIC.ARPA LOVEEP@SDS.SDSC.EDU KEN@BLAKE.ACS.WASHINGTON.EDU CLYN@BBN.Com GMALKIN@PROTEON.COM lovie@trantor.umd.edu mankin@gateway.mitre.org mathis@faraday.ece.CMU.edu kzm@twg.com medin@nsipo.nasa.gov Melohn@Sun.COM merritt@BRL.MIL PUM@isi.edu morris@ncar.ucar.edu jmoy@proteon.com mundy@beast.ddn.mil Ron@Rutgers.Edu mhn@caelum.att.com NITZAN@NMFECC.ARPA wbn@merit.edu Zopalka@BBN.COM PPARK@BBN.COM PAUL.PARKER@CS.CMU.EDU craig@nnsc.nsf.net guru@flora.wastl.edu ddp@andrew.cmu.edu petry@tranton???? philipp@cs.mcgill.ca rama%erlang.dec@decwrl.dec.com reichlen@gateway.mitre.org yakov@IBM.COM reschly@brl.mil jKREY@ISI.EDU jon@athena.mit.edu roki@DHAFEU52.Bitnet jis@bitsy.mit.edu

فيعررو

с á

• · · · · · · · · ·

يند ب

20

Ι

Schofield, Bruce Sheridan, Jim Spafford, Gene St. Johns, Mike Stahl, Mary Stine, Bob Stone, Geof Thixton, Cal Ticknor, Paul Topolcic, Claudio Veach, Ross Vielmetti, Edward Waldbusser, Steve Ward, Carol Warrier, Unni Westfield, Bill Wilder, Rick Wolff, Steve Yu, Jessica

DCEC IBM Purdue CS/SERC DDN SRI(NIC) SPARTA Ntwk Sys Corp. NeXT NASA BBN UIUC UMich CMU Westnet Unisys cisco Systems MITRE NSF Merit

SCHOFIELD@EDN-UNIX.ARPA jShERIDA@IBM.COM spaf@cs.purdue.edu StJohns@beast.ddn.mil STAHL@SRI-NIC.ARPA

geof@nsco.network.com Cal_Thixton@NeXT.COM ticknor@prandtl.nas.nasa.gov topolcic@bbn.com RRV@UXC.CSO.UIUC.EDU emv@umix.cc.umich.edu waldbusser@andrew.cmu.edu cward@spot.colorado.edu unni@cs.ucla.edu BillW@cisco.com rick@gateway.mitre.org steve@note.nsf.gov jyy@merit.edu

. •

4. FINAL AGENDA

. -

Final Agenda, 17-19 October 88 IETF

This was the final agenda for the October 17-19 IETF meeting at the University of Michigan in Ann Arbor. The meeting was hosted by Hans-Werner Braun and Elise Gerich of Merit.

MONDAY, OCTOBER 17

- 9:00 am Opening Plenary, Introductions and Local Arrangements
- 9:30 am Working Group Morning Sessions

o Host Requirements, Members Only (Braden, ISI)
o ST and Connection-Oriented IP (Topolcic, BBN)
o CMIP-Over-TCP Net Management (Lee LaBarre, MITRE)
o Interconnectivity and EGP3 (Almes, Rice)
o Open SPF IGP (Petry, UMD and Moy, Proteon)

12:00 pm Lunch

- 1:30 pm Working Group Afternoon Sessions
 - o Host Requirements, Open (Braden, ISI)
 - o ST and Connection-Oriented IP (Topolcic, BBN)
 - o CMIP-Over-TCP Net Management (Lee LaBarre, MITRE)
 - o Interconnectivity and EGP3 (Almes, Rice)
 - o Management Information Base (Partridge, BBN)
- 5:00 pm Recess
- 7:30 pm o Working Group for Joint Monitoring Access for Adjacent Networks focusing on the NSFNET Community (Hares, Merit)
- TUESDAY, OCTOBER 18
- 9:00 am Opening Plenary
- 9:15 am Morning Working Group Sessions
 - o Host Requirements, Members Only (Braden, ISI)
 - o TELNET Linemode (Dave Borman, Cray)
 - o Authentication (Schiller, MIT)
 - o Performance and Congestion Control (Mankin, MITRE)
 - o Point-Point Protocol (Perkins, Hobby, Prindeville)
 - o PDN Routing (Rokitansky, FernUni Hagen)
- 11:30 am Lunch
- 1:00 pm Opening Plenary Statement (Gross, MITRE)

1:15 pm Network Status Reports

- o Merit NSFnet Report (Braun, UMich)
- o IBM NSFnet Report (Drescher, IBM)
- o Arpanet/DDN Report (Lepp, BBN)
- o DDN Report (Brescia, BBN)
- o Interop 88 Network Report or 'How to build a complex internet in 2 days' (Almquist)
- 3:30 pm Break
- 3:45 pm Network Performance Presentations
 - o Packets Over A Different Kind Of Ether, including Amateur Packet Radio Demonstration (Karn, Bellcore)
 o Keeping The Usual Ether Filled Up With High Performance TCP (Jacobson, LBL)

-

3

- - **-** -

13

;

~

. .

2.2

. .

. .

¥. #

2 A - 1 - 1 - 1

- 5:00 pm Recess
- 7:00 pm NSFNET NOC Tour

WEDNESDAY, OCTOBER 19

- 9:00 am Congestion Control Observations Using NETMON (Mankin, MITRE)
- 9:30 am Working Group Reports and Group Discussion
 - o Authentication (Schiller, MIT)
 - o CMIP-over-TCP (CMOT) (LaBarre, MITRE)
 - o Interconnectivity (Brim, Cornell/Lepp, BBN)
 - o Host Requirements (Braden, ISI)
 - o Internet MIB (Partridge, BBN)
 - o Joint NSFNET/Regional Monitoring (Hares, Merit)
 - o Open SPF-based IGP (Petry, UMD)
 - o Open Systems Routing (Lepp, BBN)
 - o PDN Routing (Rokitansky, FernUni Hagen)
 - o Performance and CC (Mankin, MITRE)

12:00 pm Lunch

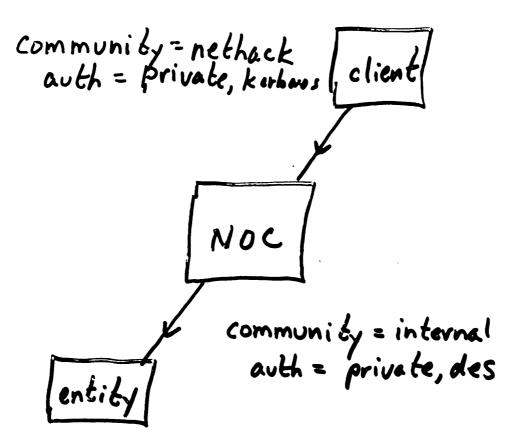
1:00 pm Working Group Reports and Group Discussion (cont'd.)

o Pt-Pt Protocol (Perkins, CMU)
o ST and CO-IP (Topolcic, BBN)
o TELNET Linemode (Borman, Cray)

1:45 pm What Is Usenet?, What Is NNTP? (Spafford, Purdue)

- 2:30 pm The NIC Domain Chart (Lottor, NIC)
- 2:45 pm On Some T1 Satellite Link Performance (Lekashman, Ames)
- 3:15 pm Concluding Plenary Remarks
- 3:30 pm Adjourn (Rush to Airport)

5. WORKING GROUP REPORTS/SLIDES ANN ARBOR, MI ACTIVITIES 17-19 OCTOBER 1988


.

Authentication

•

Jeff Schiller MIT

· •

monitored entities are simple complexity and access control centralized at NOC

CMIP-over-TCP (CMOT) (NETMAN)

Lee LaBarre MITRE

Unni Warrier UNISYS

CMIP-over	r-TCI	P (C	MOT)	WG	Report
Reported	by 1	Lee	LaBa	rre	-

17-19 Oct 1988 Ann Arbor, MI

The NETMAN (CMOT) WG met Oct. 17 and 18 at the IETF meeting in Ann Arbor, MI. The meeting occurred in two separate morning sessions.

Morning of Oct. 17

- Lee LaBarre provided a review of the groups charter, goals, and status as stated in IETF form 2.
- The group defined a set of issues for consideration by the IETF

MIB Working Group, including:

- definition of the MIT (naming or object instance tree),
- the distinction between Object class and attribute,
- definition of distinguished attributes for objects,
- the specification of optional attributes in the MIB, and the impact on aggregate objects, e.g., table entries,
- the need for definition of procedures and objects for event and security management,
- the definition of thresholds.

These issues were raised in the MIB WG meeting, and all but thresholds received priority consideration for work this year. Work on thresholds will depend on contributions from the NETMAN WG, and is contingent on the existence of an event control mechanism.

Morning Oct. 18

- We decided the NETMAN agreements would include the entire CMIS/P, ROSE, and ACSE protocol set, but stipulate a mandatory subset of services.
- Recommendations were suggested for modifications to IDEA0017, the thin presentation layer, including:
 - investigate necessity for multiple PCIs, e.g., ROSE, ACSE,
 - CMIP version, MIB version,
 - use of transports other than TCP and UDP, such as VMTP, etc.
 - negotiation of transport protocol for desired QOS,
 - investigate the multiplexing of associations
 across a single TCP connection,

- A decision was made to develop a proxy mechanism based on the use of object instance structure. This would minimize the number of associations and TCP connections used for proxy. It would also work in chaining a request through multiple managers.
- We reviewed the CMOT agreements document drafted by Unni Warrier and suggested revisions where appropriate.
 Lee LaBarre and Unni Warrier agreed to contribute new text to the document.
- o The issue of specifying alternative QOS for management purposes was raised by Keith McCloghrie. He suggested that only low quality (UDP) service should be specified since manager applications might have to be prepared to deal with either QOS anyway, and UDP would place the lowest burden on agents. This issue will be addressed at the next meeting.
- The distribution list for the demo was opened up to a wider membership and the name changed to netman@gateway.mitre.org.

Slides Attached

* ~

2.7

-

۲:

. .

.

5.1

33

YS
is
N

NetMan Working Group Report

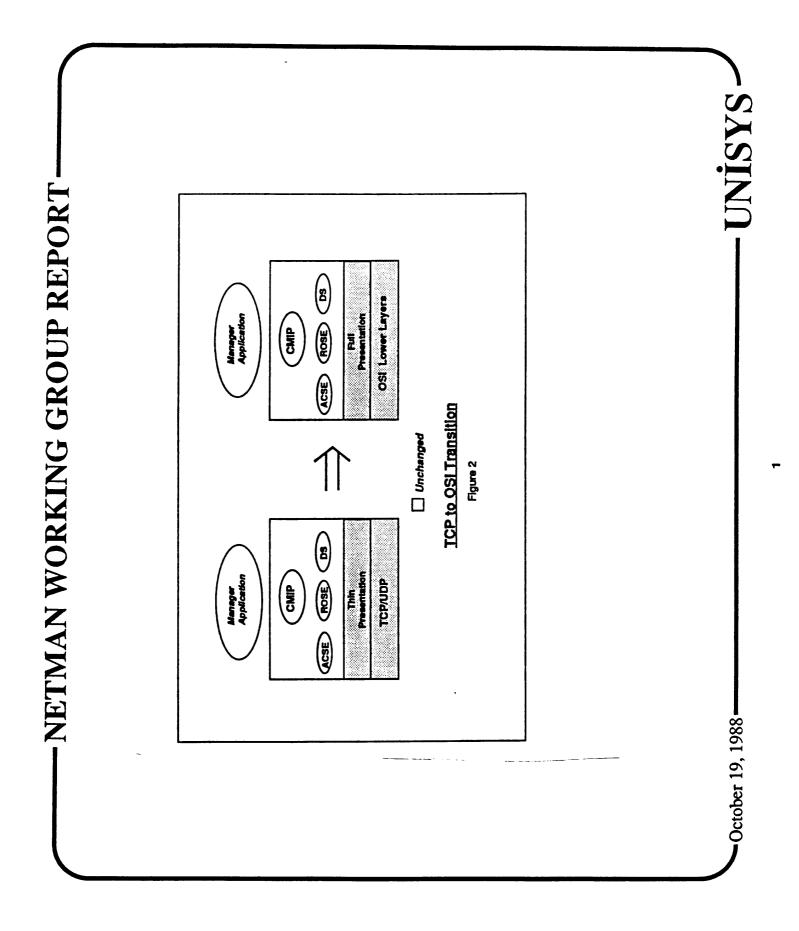
Internet Engineering Task Force (IETF)

Unni Warrier

(213) 829-7511 x5694

UNISYS Corporation Distributed Architecture Defense Systems 2400 Colorado Avenue Santa Monica, CA 90406 -NetMan Working Group Report-

CHARTER


Charter: As described in RFC1052.

- Develop a long term approach to management of the Internet based on the OSI Network Management Framework and the Common Management Information Protocol (CMIP).
- Provide input to the OSI standards process based on experience in International Standards on network management, in particular the Internet, and thereby influence the final form of OSI CMIS/P.

-SYSINU-

1. 1. - 1. - 1. - 1.

-19 October 1988-

-NetMan Working Group Report-

APPROACH

- Develop prototype implementors agreements on CMIP over TCP. a.
- Develop prototype implementations based on the CMOT agreements and IETF SMI and MIB agreements. þ.
- Experiment with CMOT and extensions to the SMI and MIB. ပ
- d. Develop final implementors agreements for CMOT.
- Promote development of products based on CMOT. e.
- Provide input to the OSI Network Management standards process in time to effect the International Standards. ۍن

-19 October 1988 -

UNISYS

. .

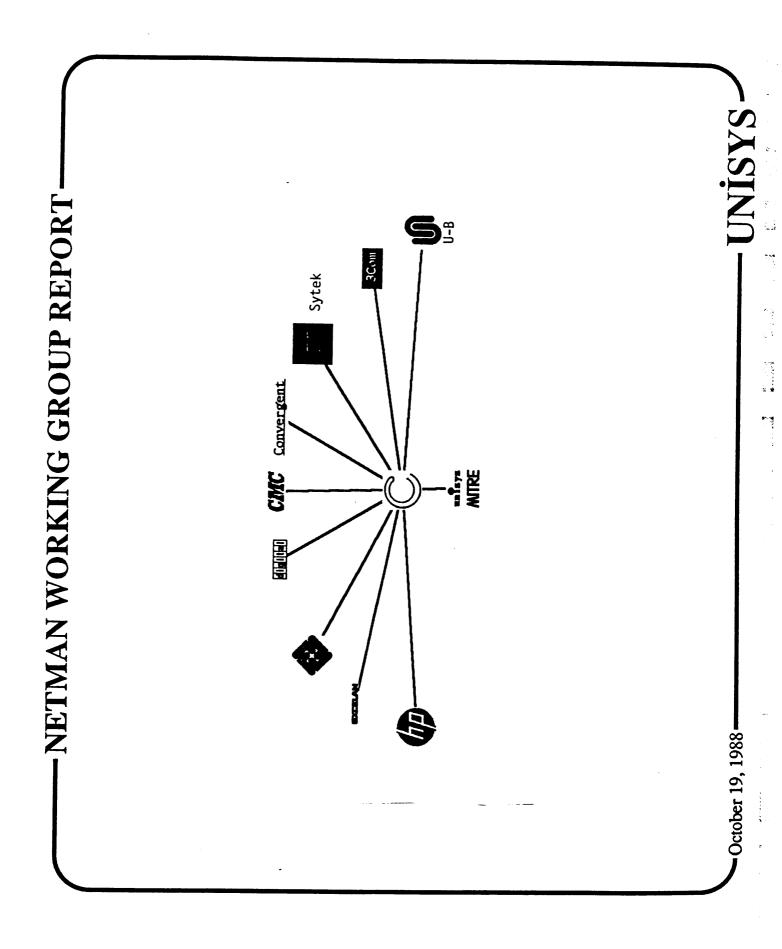
-
eport
Q
- e
Y
0
Z
Ľ
5
- CD
kii
rking
0
M
lan
<u></u>
Z
5

MEMBERSHIP

- Expected duration of group: The groups work should be completed by June 1989.
- Membership: Open

-SYSINU

		EA0025)	lemonstrated at	ment of the	en for the DIS CMIP ling the SMI and MII	
ACTIVITIES	S:	Overview document (IDEA0012) Thin Presentation layer (IDEA0017) Prototype Implementors Agreements (IDEA0025)	Nine vendor prototype implementations demonstrated at INTEROP 88 in Santa Clara, CA.	Experimentation occurred during development of the INTEROP demo, and is continuing.	Draft implementors agreements are written for the DIS CMIP over TCP (CMOT). Proposals for extending the SMI and MIB are in progress.	
	Achieved goals:	Overvie Thin Pre Prototyp	Nine ver INTERC	Experim	Draft implemer over TCP (CM are in progress.	
	chi	а.	þ.	Ċ	d.	

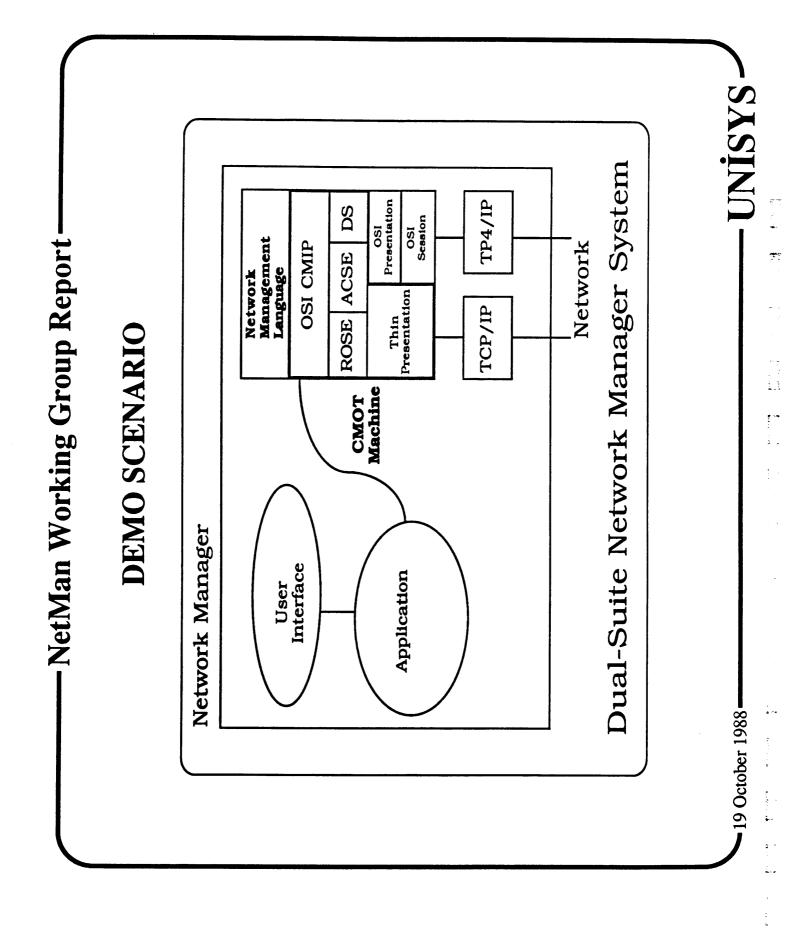

8.4

-NetMan Working Group Report-

ACTIVITIES (Cont.)

- Thirteen corporations participated in the INTEROP 88 demo. Nearly all the vendors in that group have indicated that they expect to field products during 1989 based on CMOT implementors agreements. ວ່
- network management standards organizations and carrying the Several Working Group members are participating in the OSI CMOT experience into that forum. 4.

-SYSINU



/ 19 October 1988-

NetMan DEMO Participants

-NetMan Working Group Report-

Advanced Computing Environments Communications Machinery Corporation Convergent Technologies Digital Equipment Corporation Epilogue Technology Corporation Excelan Hewlett Packard Corporation MITRE Corporation SUN Microsystems Sytek 3COM Corporation Ungermann-Bass UNISYS Corporation

O (Cont.)	Š.	nd Thresholds			cts)		
DEMO SCENARIO (Cont.)	• Variables aligned with MIB WG RFCs	 Experimental extensions for Events and Thresholds GETs 	• SETs	 Event Reports 	 Tables, rows of tables (aggregate objects) 		

-NetMan Working Group Report-

LESSONS from DEMO

- Events worked.
- Thin Presentation worked.
- Agent code size as low as 40K on terminal server, PC.
- Modify agreements from this experience.

· UNISYS

.

: قم ـ ـ

• •

eport
2
- La
K
dno
ō
0
60
king
ki
orl
0
5
lan
Ţ
E
e

FUTURE WORK

- Align with DIS, new Implementer's agreement (RFC- CMOT) in progress.
- Extensions to MIB, SMI proposals in progress.
- IDEA17 (Thin presentation) wrap-up and make into RFC.

-SYSINU

10/19/88

CMOT (NETMAN) WG Reviewed group charter/goals/status Defined issues for MIB WG to consider -Object class / attribute / instance -distinguished attributes for objects -optional objects / attributes in MIB -Event management -thresholds

- Agreed develop RFC on total DIS CMIS/P, ROSE, ACSE and stipulate mandatory subsci
- Recommend mods to IDEA017 (Thin Presentation) -multiple PCIs
 - map to other transports (TCP, UDP, VMTP?...)
 - -negotiation for transport -multiplexing associations on one TGP Conn. -use of Romain, name service

10/19/88

CMOT (NETMAN) WG (cont)

· Develop proxy mechanism based on object instance

- to reduce number of associations / TCP connections

Reviewed CMOT Draft RFC

• Change name mail distribution list & open

to new members

nmaiemoss@gateway.mitre.org netman @ gateway . mitre, org

Host Requirements

Bob Braden USC-ISI .

The Construction for each an endance of the Construction of the

. .

IETF Host Requirements Working Group

REPORT FROM ANN ARBOR IETF MEETING October 17-19, 1988 Bob Braden

I. INTRODUCTION

The Host Requirements Working Group met for 1.5 days at the IETF meeting in Ann Arbor, Michigan. This meeting was very important, since the Host Requirements RFC has reached a stage when it seems to be nearly finished, and because we are rapidly approaching our self-imposed deadline, the end of calendar 1988.

All discussions were based on the October 11, 1988 version of the spec.

II. SESSIONS AND ATTENDEES

* Monday, October 17, Morning Session

The Working Group met in closed session, with the following attendees:

Bob Braden (ISI), Dave Borman (Cray Research), Noel Chiappa (Proteon/MIT), Phil Karn (Bellcore), John Lekashman (NASA), Mark Lottor (SRI-NIC), Charlie Lynn (BBN), Paul Mockapetris (ISI), Allison Mankin (Mitre), Craig Partridge (BBN/NNSC), Drew Perkins (CMU), Bruce Schofield (DCEC), and Cal Thixton (NeXT).

Allison Mankin and Dave Borman both took minutes. A list of outstanding issues formed the agenda.

* Monday, October 17, Afternoon Session

The Working Group invited all interested people to an open session, in which the assembled group went through the entire document, section by section. There were 25 attendees, and most of the group kept picking the carcass clean until 6:30PM! Now, THAT is dedication. On the other hand, no one had been able to read the document all the way to the end, so that comments were quite sparse for the Application Layer and non-existant for the Support Services.

All those attending in the morning attended in the afternoon (except for Craig Partridge, who had to chair another meeting).

Additional people in the open session were:

Almquist (Stanford), Collins (MFENET-II), Gilligan (Sun), Jacobson (LBL), Karels (UCB), Katz (UMich), Melohn (Sun), Nitzan (MFENET-II), Opalka (BBN), Parker (CMU), Rochlis (MIT Athena), Schiller (MIT), and Westfield (Cisco).

Dave Borman again took minutes, for which I am immensely grateful.

Tuesday, October 18, Morning Session

A final closed meeting was held, with Braden, Chiappa, Karn, Lekashman, Mockapetris, and Partridge in attendance. The group dealt with the remaining issues from the original list, and with some of the new issues raised at the open session. The major discussion item was Dead Gateway Detection.

III. QUESTIONS AND DECISIONS

We now summarize the important points that were raised in all these meetings, both those that were decided and those that are still undecided.

Introduction

o Section 1.1.4 Embedded Gateway Code

Suggested: there are advantages to embedded gateway functionality other than simple convenience [Melohn]. ACTION ITEM: Draft some text: Melohn.

Link Layer

o Section 2.3.1 Trailer Negotiation

Agreed: Need a definition of how trailer negotiation is done. ACTION ITEM: Draft some text: Karels.

O ARP

Agreed: ARP implementation MUST hold onto at least one packet [the most recent] destined for a given unresolved target address.

o Section 2.2.2 ARP Cache Validation

Received Received Local Received Received Received

۰. مرجع

2.4

14

Suggested: the ARP cache timeout time of 60 seconds currently specified is much too short [Jacobson]; this is because ARP cache timeouts generate traffic that increases quadratically <<Ed: somewhat faster than linearly?>> with the number of hosts on the Ether; timeout should be at least 5 minutes.

<<Ed: The discussion of ARP cache validation in the current draft is based on experience at CMU with a particular timeout algorithm. Two specific ARP cache algorithms have been proposed, and one or both should be written up as RFC's. The argument for a 5 minute timeout is based on the idealistic assumption that Proxy ARP is broken and ought to be abolished; however, Proxy ARP has many dedicated supporters.

While the quadratic argument is somewhat theoretical, lots of experience shows that it would be a mistake to ignore it. Itis unclear how to resolve this issue.>>

o Section 2.4 Link/Internet Layer Interface

Agreed: RFC ought to define interface, including upcall for dead gateway discovery.

Internet Layer

o Section 3.2.1.6 Type of Service

The Host Requirements spec requires TOS at all levels (application, transport, Internet) in order to break the chickenand-egg problem with gateway implementations of Type-of-Service. A future "Assigned Numbers" RFC will include recommended values for the TOS bits for use by the major application protocols.

It seems likely that gateways will implement TOS by granting one TOS attribute (low delay, high throughput, or high reliability) while diminishing the others to some extent. Because of this and for simplicity, the recommended values will set at most one attribute bit.

Suggested: the Host Requirements RFC should give the philosophy of the bits, even though the actual recommended values are in Assigned Numbers.

Agreed: An application SHOULD be able to change TOS during lifetime of TCP connection, to support single-connection applications like SMTP. This MAY take the form of setting TOS on every SEND call. Agreed: The TOS values in applications must be configurable, because we can only guess at the actual service effects of particular TOS bit combinations, and because particular hosts will want to tune the TOS values for special situations.

Agreed: TCP segments in each direction will have TOS determined by application on sending side. If the applications at the two ends specify different TOS values, then ACK's will come back with different TOS than was used to send the data.

Agreed: A transport protocol MAY communicate to its application the TOS with which incoming datagrams arrived.

€.1

<u>ल छ</u>

1

1.1

÷

ě.

.

o Section 3.2.1.7 Time to Live

TTL: is it a time, or a hop count? This has been debated at length by the Working Group, was debated in both the closed and open sessions at Ann Arbor, and is still unresolved.

There is considerable sentiment in favor of redefining the TTL field as a pure hop count. However, the editor believes this would be a fundamental change to the architecture, which precludes making this change in the present Host Requirments document. Those who support the hop-count-only position need to make a cogent argument, considering all facets of the problem, in a published paper or RFC.

o Section 3.2.1.5 Identification Field

Agreed: Drop recommendation to base Ident field on the triplet: (src, dest, prot).

o Section 3.2.1.8 Source Route Options

The Editor detected some willingness in the open meeting to take the Editor's side, against source routing by hosts.

o Section 3.2.1.9 Mis-Addressed Datagrams

Agreed: An IP layer MAY check each incoming datagram for a bogus source IP address.

o Section 3.2.2.4 Time Exceeded

Agreed: ICMP Time Exceeded (Reassembly) may be used to trigger an MTU discovery procedure (see e.g. RFC-1063) when one is standardized, but the present document should specify that these ICMP messages are to be ignored. o Section 3.2.2.5 Parameter Problem

Agreed: do not need new code for missing option.

o Section 3.2.2.6 Echo Request/Reply

Agreed: Record Route and Timestamp options are to be returned in the Reply, with the present host entered (ie, as if the echoing host were a hop in the path); the options will not be truncated.

o Section 3.2.2.9 Address Mask Request/Reply

This area has gotten a lot of attention <<Ed: more than it deserves>> from the WG, and discussion continues.

The open meeting and the closed WG meeting differed on the importance of a host implementing a dynamic way to learn the Address Mask (open: MAY, WG: SHOULD). There has been difficulty figuring out how to limit replies to authoritative sources. We cannot decide whether a statically configured address mask should take precedence over a dynamically determined one; people have arguments for both.

Agreed: a host with a statically-configured mask MUST NOT automatically be authoritative for address masks; to control this, the configuration needs an "Address Mask authoritative" flag.

Agreed: authoritative source for address mask reply may be a gateway or designated host(s) (e.g., a file server for diskless workstations).

Suggested: Internet architecture should logically pair address mask and IP address, so address mask for an interface should be determined at boot time by the same mechanism that is used to determine the IP address of that interface; therefore, ICMP Address Mask messages solve the wrong problem [Braden].

o Section 3.3.1.3 Route Cache

Suggested: although the present draft recommends that the route cache be based upon destination hosts, the use of destination networks as the cache key is an important optimization [Karels].

Suggested: Timing out routing cache entries is a bad idea because of scaling arguments [Jacobson]. Pinging of gateways in use is acceptable when neither lower-level nor higher-level advice are available. Agreed: A route cache entry should include a timestamp indicating when the gateway was last set or updated.

The Working Group is quite clearly and lamentably confused on the entire issue of dead gateway detection. In the Working Group, several different approaches have been proposed, discussed, drafted into RFC's, and later rejected.

The conclusion from the Ann Arbor meeting was that the best we can do currently is to list the alternatives and state the arguments.

2

74

i ~...

. .

÷

٤.

1.0

2.2

÷ .

o Section 3.3.4 Multihomed Hosts

Suggested: the model of multihoming contained in the current draft should be replaced by a different model [Karels].

TCP

o Section 4.2.2.2 Use of Push

An animated discussion of the section on Push was a mixture of confusion and religion. Some believe in Push, some do not. The people who don't believe in Push (falsely) accused those who do of using Push to improve performance. Agreed: Push has nothing to do with performance, only correctness. In fact, the opposite it true: it is NOT pushing that can improve performance in some systems.

o Various Sections

Van Jacobson suggested changes to clarify or correct the text concerning the relationships between the Nagle and slow-start algorithms, between slow-start and the older "retransmit only the front of the queue" rule, and between Push and the Nagle algorithm. He also suggested improvements in the discussion of delayed ACK's.

<<Ed: The discussion of TCP performance requirements
is included in the Host Requirements RFC because the Performance
Working Group has not yet completed their task of creating a
comprehensive RFC on the subject. The discussion in the Host
Requirements RFC is necessarily fragmentary>>

o Section 4.2.2.12 Retransmission Timeout

Agreed: change text to avoid implication that there must be a "retransmission queue" (implying that segment boundaries are recorded in this queue) [Karels]. There may be implementation advantages in deferring packetization until a segment is sent.

o Section 4.2.2.13 Shrinking Window

Agreed: document a pitfall -- when window shrinks from the right and in fact goes to zero [Karels].

o Section 4.2.3.2 Delayed ACK's

Agreed: current text omits an important advantage of delayed ACK's -- letting application have a shot at the CPU before an ACK is sent [Jacobson].

o Section 4.2.3.3 SWS

Agreed: modify sender-side SWS algorithm to handle windows smaller than MSS [Karels].

o Section 4.2.3.4 Connection Liveness

Agreed: The current draft, which specifies that connection liveness ought to be based upon retransmission count rather than time, is correct.

o Section 4.2.3.4 Keepalives

Suggested: mechanism that is documented in current draft is not the latest spiffy idea [Karels]. ACTION: supply text: Karels.

<<Ed: In general, the WG seems quite firm against TCP
keepalives, although the current text in the document is rather
wimpy on the subject.>>

o Section 4.2.? Data with Control

Agreed: a TCP MUST support data with a FIN bit, and SHOULD support data with a SYN bit [Karn].

o Section 4.2.3.12 Invalid Address

Agreed: A TCP should ignore any datagram addressed to a broadcast or multicast address [Karn].

o Section 4.2.? SYN Overload

Agreed: it is OK for a TCP to indicate overload by sending a RST in response to a SYN. However, it would be worthwhile to follow Charlie Lynn's suggestion of a text error message in a RST segment. An RFC is needed.

SMTP Section 5.1.2.1 VRFY

Agreed: there needs to be a new 4xx response defined for VRFY when it cannot get an answer (e.g., because domain lookup fails) [Barns].

TELNET Section 5.4.2.* Status Option

Agreed: SHOULD implement the Telnet Status option.

TFTP Section 5.3.* Broadcast requests

Agreed: TFTP SHOULD ignore transfer requests sent to a broadcast address.

BOOTING

Suggested: RFC should contain separate discussions of dynamic configuration and of booting [Perkins].

Agreed: BOOTP should be recommended, since it provides the most general solution to dynamic configuration, and since it works through gateways. However, the RFC ought also review the various partial solutions to dynamic configuration:

> ICMP Information Request (=> Network number), RARP (=> entire IP address), ICMP Address Mask (=> Address mask).

BOOTP encompasses all of these and can also provide a list of default gateways.

ACTION: Write text about RARP: Melohn.

However, BOOTP is not sufficiently general to specify the configuration of all interfaces on a multihomed host. In this case, a host must either use BOOTP separately on each interface, or configure one interface using BOOTP and then access a file to configure the other interfaces.

Agreed: application layer configuration information will be taken from file(s), not obtained dynamically.

Agreed: there is a need for an IETF working group to create a general solution to the problems of dynamic configuration and booting, including the dynamic assignment of IP addresses.

Slides Attached

. .

. . .

77 (Y

8.2

 $t \in C$

in de

.

HOST REQUIREMENTS RFC

- Group Effort
 - 19 active contributors from 15 org's
 7 from vendors,
 - I2 univ, govt agency, res labs
- Intensive Effort
 - ▶ 5 meetings in 8 months
- Comprehensive -- all major protocols
- Explicit and detailed

- 11 -

• OBJECTIVES:

- ► Define requirements
- Point to essential documentation
- Correct/update original documents

2.2

濟

् ते द्व•इ

i. Mart

- ► Fill gaps in specifications
- ► Limit choices
- Document known solutions to recurring issues

- 3 -

Chapter 6		DNS	S		Mg	t		во	ΟΤΙ	NG
Chapter 5	SN	/ITP			FTP		TF	TP	TELNET	
Chapter 4				Г	CP			JD	Ρ	
Chapter 3				ł	Ρ			MP		
Chapter 2 & RFC–1009	ARP									

- 13 -

HOST REQUIREMENTS RFC

• Requirements ...

◆ "MUST", "REQUIRED"

• Recommendations ...

◆ "SHOULD", "RECOMMENDED"

. .

57

2.4

in

5

Options ---

⋆ "MAY", "OPTIONAL"

- 14 -

HOST CONFIGURATION

IDEAL: AutomagicREALITY: Not even close !!

- Require extensive configurability, but defaults will ease the pain.
- Many parameters must be adjustable ---
 - ► Depend upon environment
 - ► Administrative requirements
 - ► Wizards are unsure
 - ► Interoperate with past mistakes

- 19 -

* . Bourse and

.

.

.

ł

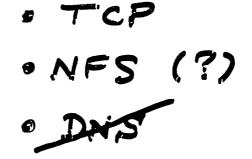
· GATEWAY DISCOVERY

- STATIC CONFIGURATION
- DYNAMIC CONFIGURATION (BOOTP)
- ICMP "GATEWAY DISCOVERY" MESSAGES

["Blew" the RFC]

- DEAD- GATEWAY DETECTION
 - LINK-LEVEL ADVICE (-) FROM:
 - · ARPANET/MILNET

साम मन्द्र मन्द्र


No.

webs with

to the second

- TOKEN RING
- ETHERNET ???

HIGHER-LEVEL ADVICE (±) FROM:

GATEWAYS BROADCAST ICMP "UP-GATEWAYS" MSG -DRAFTED RFC -CURRENTLY DEAD

PING" ACTIVE GATEWAYS - SCALES BADLY

TIMEOUT ROUTE-CACHE ENTRIES

- SCALES BADLY (or worse)

211 - 121 NGCOND 20

100-000 E

WIRETAP' GATEWAY IGP - ARCHITECTURALLY UNSOUND

Host: Venera.isi.edu Path: pub/ietf-hosts.rfc.txt

Mailing list: ietf-hosts-request @ nnscinsf.net

• • Marchine Constraints

Interconnectivity

Guy Almes Rice University

,

.

.

i. ę.

• .

ž

•

7

.

.

INTERCONNECTIVITY WG

WHY? CURRENT ISSUES:

- EGP CAN'T SUPPORT WHAT MUST HAPPEN WITHOUT "TRANSIENT" LOOPS.

> MULTIPLE BACKBONES PEER CONNECTIONS

- ORWG WON'T BE READY FOR "A WHILE"

- SOON OVER 1000 NETS

ELEGANCE IS NOT THE MAJOR ISSUE CAN WE USE EGP3? OTHER NEAR-TERM SMALL DESIRES

- MORE INFORMATION FOR MORE DECISION-MAKING BY MID-LEVELS.

- MAKE WHAT IS NOW IMPLICIT EXPLICIT, IN A PROTOCOL

03

2....

1. 1. 1.

- MORE INFORMATION FOR BOBON-HUNTING

CF WHERE ROUTING INFORMATION CAME FROM; DON'T TRY TO BUILD LOOP-FREE PROTOCOL.

YES, WE CAN USE EGP3.

GOALS: (1) FINISH EGP3 CHANGES

(2) START ANOTHER COMPANION RFC. RECOMMENDATIONS AND WARNINGS, NORMATIVE USE IN INTER-AS ROUTING.

TRY TO MAKE IT GENERAL.

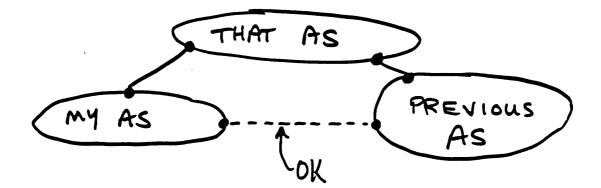
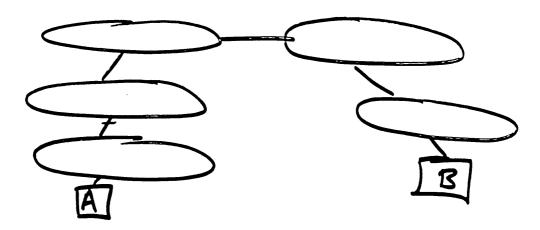


TABLE ENTRIES BY NET, NEXT GW, PREV AS

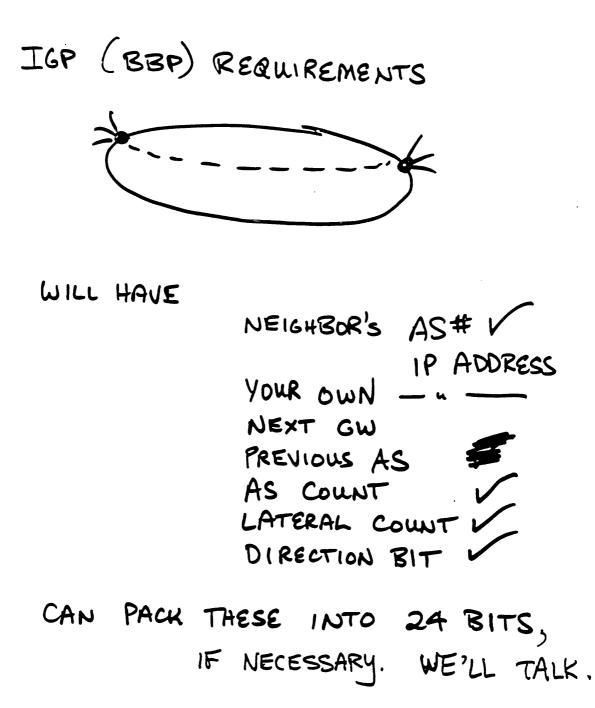

ALLOWS FORWARDING OF EGP INFORMATION ONE MORE HOP SAFELY.

WELL, WHY NOT ADD SOME MORE?

VARIABLE-LENGTH LIST OF ASS ORIGINATING AS PREV-PREV-AS

WOULD YOU REALLY USE IT?

WHAT TO DO WHEN CAN'T RESTRICT TO THREE AS HOPS?



WHEN THERE IS NO OTHER CHOICE? WITH STRONG CAVEATS, 5 3 ADD "AS COUNT" = TOTAL # OF AS'S ROUTING INFO HAS PASSED THROUGH. MUST AVOID LOOPS! RESTRICTION: IF INFO GOES DOWN, CAN NEVER GO WP AGAIN. 3"THE REKHTER BIT": DIRECTION. DELATERAL AS COUNT = # OF SUCCESSIVE PEER BOUNDARIES CROSSED. -?

SENCODE ASSIGNED POSITION IN HIERARCHY ?!

WHAT ABOUT METRICS? - CURRENTLY EGP METRIC NOT USED (MUCH) - ? USEFULNESS OF - OLD EGP METRIC - ASSIGN MEANINGS? - AS COUNT AS METRIC? - PRIMARY/SECONDARY INDICATOR? REAL USE NOT CLEAR. WILL PROBABLY LEAVE SPACE FOR MULTIPLE

WILL PROBABLY LEAVE SPACE FOR MULTIPLE METRIC TYPES / VALUES.

. . . .

F7]

11.000 H

1

another word about EGP3 Tevel 0 Revel 1 Rovel 2 down bit - once down, set Later a bit A ---> Rest move metrico - Probably not Prinsecondany /ter bicty Do not propagate information fields ? type DLR ?? prev AS per net reed an explicit down

С., Г.,

Transformer and

Bernsteine in der Beiten der Steine Beiten der B Beiten der Bei

* 5 2 2 ● *

.

·

Internet MIB

Craig Partridge BBN

[no report/slides provided]

• 、 2000 - 100 -tensural Thursday

L'ANDER AN

NSFnet/Reg Monitoring JOMAAN

Susan Hares Merit, Inc.

.

and the second sec tariy a**t**

in the second

May former of

×

NSFNET-Regional Me	eting Report	17 October	1988	
Sue Hares, Chair,	skh@merit.edu	NSFNET NOC		Arbor

- A collection of maps was distributed to all attendees. An effort to collect all kinds of maps will be made by Sue Hares.
 - A. Maps of campuses, regionals, consortia, backbones should be sent in Postscript format to Sue Hares.
- II. It was pointed out that On-line databases are kept at nis.nsf.net. Information such as Routing configurations are available.
- III. Major discussion took place on the backup announcement of networks behind the regionals.
 - A. Some major points:
 - 1. routing metric is interpreted *locally* by the NSS.
 - 2. multiple EGP peers can talk to one NSS with the same AS#.
 - although the previous point is true, it was stressed that it is easier to manage the NSS when every peer has a unique AS#.
 - 4. every peer of an NSS should announce the shared net.
 - 5. NSFNET NOC needs one contact point within an AS#. Makes dealing with problems easier.
 - B. Sue Hares discussed a "Cold Backup" strategy:
 - 1. configure two EGP neighbors.
 - 2. set egpmaxacquire to one.
 - 3. you would then peer with one at a time, trying the other only if you lost the first neighbor.
 - 4. must be careful with this because once your first neighbor came back up, you would not switch back to it until your second neighbor goes down. Sue Hares can configure this for your site if you wish. Contact her directly.
 - C. Notification and confirmation of backup sites.

- When adding new nets or when changing an additional network configuration, the NSFNET routing coordinator will make an effort to confirm the change with all parties involved. For example, checking with the primary announcer of a network before adding a secondary announcer for the same network.
- 2. The NSFNET routing coordinator will send out a mail message to NSFNET-SITE-PEOPLE notifying them of recent changes to the routing configurations. This message may be daily or as needed.

10 10 10

14

1.4

÷ •

-

.

. .

E. . .

· • •

2.4

Notes on Kenterso

in a second

- IV. SGMP/SNMP/CMOT based tools.
 - - A. There are no CMOT based tools.
 - B. Shall we share SGMP sessions?
 - Some groups expressed concerns about the security of having one global SGMP session.
 - 2. Concerns were expressed by many people regarding the changing of a global SGMP session every two weeks.
 - 3. Agreed that it would be beneficial to all regionals and the NSFNET backbone to share SGMP information.
 - 4. A read-only session called "monitor" should be added to all regional and NSFNET gateways by Friday, October 28, 1988. Progress on getting the sessions configured should be sent to Sue Hares and she will post a status report to NSFNET-SITE-PEOPLE.
 - 5. It was suggested that people read Guy Almes's paper. It is available on the NIS machine. The NOC will post where it is located.
 - 6. The common SGMP session must be considered private. Only the regional NOCs should be made aware of it. The session name will remain the same until there is some pressing need to change it.

- C. There was loose consensus that problems between regionals should be hashed out by the concerned parties. The NSFNet backbone people would get involved in the event of a stand-still at solving the problem or in the case of an actual NSFNET backbone problem. Sharing SGMP information would make it a bit easier to pin-point the problem without NSFNET being the middle man.
- D. Concern was expressed by certain regionals about lack of manpower in tracking down certain problems mentioned in the previous section without the help of NSFNET. At this junction, it was said that NSFNET would try and help.
- E. Sue Hares of NSFNET will compile a list of available SGMP/SNMP tools. This will include vendors supporting SGMP/SNMP as well as public domain stuff. If you know of anything out there, please let her know.
- V. Other Trouble-shooting tools.
 - A. Some other tools in detecting network problems were brought up. They were as follows:
 - 1. Ping with record route.
 - a. doesn't show TTL exceeded.b. will crash Ultrix.
 - 2. Matt Mathis tool.
 - a. using TTL exceeded messages to trace the source of a route.
 - 3. Ken Loewe's PC monitor program.
- VI. Summary of Action Items.
 - A. Get your Postscript Maps to Sue Hares.
 - B. Make sure you are announcing the shared network to your NSS.
 - C. NSFNET routing coordinator should mail out messages to NSFNET-SITE-PEOPLE regarding routing changes.

- D. Add an SGMP session called "monitor" to your regional gateways by October 28, 1988 and notify Sue Hares. She will then send out a status report to NSFNET-SITE-PEOPLE.
- E. NSFNET NOC should post where Guy Almes's paper is located on nis.nsf.net.
- F. Sue Hares will compile a list of available SGMP/SNMP tools.

(Notes by Mark Fedor of Nysernet. A big thank-you to Mark for a fine job... Sue Hares)

Slides Attached

5-----5------##

...

 \sim

3

• • • • • • • •

Purpose

- Discuss how to find problems in the next hop network
- Create list of tools which can solve these problems
- Create a list of routing topology maps of regional networks

Agenda

- 1.) Introduction
- 2.) Routing TopologyMaps and Agreements
- 3.) Tools from Standards
 - SGMP/SNMP/CMOT/MIB

с-я --

1.000 A

Baselin an

5, 17 × 5 17 × 5 × 5 ₩4

- 4.) Other Tools
- 5.) Methods

.

Methods

finding problems in the next hop network can use two methods:

- Verify not your end, and then call next hop network (NSFNET) who calls 2nd hop
- Debug via common tools whole path

Methods

 Complete list of contacts for campus, mid-level networks put on-line at NSFNET

~ 7

ين . فوط يدرا ورو

ann e ser

10000 - - - **X**

ongoing process

Tools

- Common SGMP sessions between NSFNET and regional networks
 - SNMP once NSFNET supports SNMP
 - Document on support of SGMP/SNMP in gateways and NSFNET
 - Document on viewing tools for SGMP/SNMP

Other Tools

 Repository for tools at NSFNET IS machine (shareware status)

44 44

. .

-

1000 A

 List of Tools on NSFNET IS machine

MAPS

- On-Line Maps in simple postscript form on IS machine for campus, mid-level, and national networks
- Hard copy Maps collected too

. د بې هرية na san ter and the second

10100 B

Open SPF-based IGP

Mike Petry University of Maryland

> John Moy Proteon

.

· A state of the state
 A state
 A state
 A state
 A state
 A state

Open SPF-Based IGP WG Report	17-19 Oct 1988
Reported by Mike Petry	Ann Arbor, MI

A meeting was held to review and make comments on the draft specification of the OSPFIGP protocol written by John Moy. The most outstanding changes that were made were:

1) An encryption type field and fixing the size of the encryption field. I was decided that this field woul be used to validate the message using an out of band encryption method that was determined by the type field. This relieved the requirement to have a large or variable field set aside for things like large keys. Something like a cryptographic checksum of the packet was deemed more inline with the needs.

2) 32bit network mask. A full 32bit mask was allocated as a network mask. This allowed a more consistent determination of host routes vs. subnet routes vs network routes.

3) TOS - Some bit field adjustment were made so the TOS bits were easier to deal with. Including the precedence bits in this field is being considered.

4) The inclusion of a backup designated router, which was include in this draft, was explained.

A discussion of routing table representation was led by Van Jacobson. Van gave some insite on the merits of using Patricia Trees for compact routing table lookups.

Group Status

The OSPFIGP Requirments document remains completed. There has been little no changes to it since early spring 88.

The protocol specifications document has gone through what is hoped the last set of cosmetic changes. A few bits slid around, but no changes in philosophy were made.

The latest revision, in PostScript form, were made availabe via anonymous ftp from mank.proteon.com late in Dec. The packet formats should now be chiseled in stone.

There are three implementation of this protocol that are being work on.

- 1) MIT for the MIT C gateway
- 2) Proteon for the Proteon router
- 3) UMD for 4BSD based systems

There is considerable collaboration between UMD and Proteon at this time. In fact, UMD has decicated a person to this task full time for the last five months. (Rob Coltun) The resultant UMD code will become public domain. A common set of C header definition has been created that should aid in future implementations.

Here is a rough update of the UMD implementation:

- > Code design and approximately a third of the OSPFIGP implementation
- > has been completed. Currently finishing the SPF algorithm (which will include
- > the new updates for the AS external and summary link updates) and the
- > the receive packet routines. We expect to have a version by the April IETF
- > that has been tested on a few local UMD machines and with the NeST
- > simulation tool.

Because of timing problems, the OSPFIGP group has not planned to meet at the Jan IETF. Instead we are trying to get the NASA video conf system for the end of Feb.

Slides Attached

÷ -

÷ .

· •

10. - 10. La contrata

. :

2.3

5777 115

-

1000 - 10

ৰ ব উচ্চ Open SPF-based IGP WG Report Reported by Mike Petry

17-19 Oct 1988 Ann Arbor, MI

At the Oct IETF Meeting:

The draft specification of the OSPFIGP protocol written by John Moy was reviewed. The following modifications were made to his specificiation:

- 1) An encryption type field and fixing the size of the encryption field. I was decided that this field woul be used to validate the message using an out of band encryption method that was determined by the type field. This relieved the requirement to have a large or variable field set aside for things like large keys. Something like a cryptographic checksum of the packet was deemed more inline with the needs.
- 2) 32bit network mask. A full 32bit mask was allocated as a network mask. This allowed a more consistent determination of host routes vs subnet routes vs network routes.
- 3) TOS Some bit field adjustment were made so the TOS bits were easier to deal with. Including the precedence bits in this field is being considered.
- 4) The inclusion of a backup designated router, which was include in this draft, was explained.

The protocol specifications document has gone through what is hoped the last set of cosmetic changes. A few bits slid around, but no changes in philosophy were made.

The latest revision, in PostScript form, were made availabe via anonymous ftp from mank.proteon.com late in Dec. The packet formats should now be chiseled in stone.

There are three implementations of this protocol being worked on.

- 1) MIT for the MIT C gateway
- 2) Proteon for the Proteon router
- 3) UMD for 4BSD based systems

There is considerable collaboration between UMD and Proteon at this time. In fact, UMD has dedicated a person to this task full time for the last five months. The resultant UMD code will become public domain.

A common set of C header definition has been created that should aid in future implementations.

Here is a rough update of the UMD implementation:

Code design and approximately a third of the OSPFIGP implementation has been completed. Currently finishing the SPF algorithm (which will include the new updates for the AS external and summary link updates) and the the receive packet routines. We expect to have a version by the April IETF that has been tested on a few local UMD machines and with the NeST simulation tool.

OSPF16P · 5.6 ... + mosk 32 6:+5 , Backup designated routen TOS + Prac , Multicast routes . Multicast va Broodcast . Brandcost mudium raq. bidirations (. Host routes supported by nook . Cryptosrophic type syppont · ext isto of untyped 32 6:ts

ospfisp@treator. und. edu ospfigp-request

5500

1.00 Color

Open INOC

Jeff Case UTK

[did not meet at Ann Arbor]

• 7 1411-112 111-112 111-112 . • K. Strate in a state of the ·

Open Systems Routing

Marianne Lepp BBN

•

fraic

X X J 13:

• ÷ R. 3 Provinces

Sector Sector

Open Roubling Working Group

Charter: medium-tern replacement 8] EGP

Requirements: ZDEA007 Now consider policy crucial

Current work Strawman architecture · Describe Policies . Distribute Database Enfo Compute Routes
Forward Rackets

Policy Links can carry in formation Attribute list Limited flow of into Stata nakossis Line up/down

Database hierarchical will not flood even thing Compute Routes Have not addressed in detail Link state Local break/local fix Forward Rackets source rout ing Roule Set -up

1000 C

OSI Interoperability

[did not meet at Ann Arbor]

.

•-

201-1-1-20 201-1-1-20

PDN Routing

C-H Rokitansky FernUni Hagen

An and the second 8. 52. **8** 8. 57. **8** 8. 57. 53 •

AGENDA OF THE 2nd PDN ROUTING WORKING GROUP REETING AT IETF, at 18 "

rok; @ DHAFEU 52. BITNET AND rok; @ A. ISI. EDU

- INTRODUCTION
- BACKGROUND INFORMATION
- DETAILED TECHNICAL DISCUSSION AND SPECIFICATION OF SHORT TERM GOALS (VAN-GATEWAYS, EGP3, ROUTING METRICS, ETC.)
- Discussion of MEDium TERM GOALS
- LONG TERM GOALS
- STATUS REPORT ON BBN-VAN-GATEWAY (BUTTERFLY REPLACEMENT, EGP, ETC.) by (Mike Brescia, BBN)
- PROPOSAL FOR A MAPPING BETWEEN DNICS AND INTERNET / PDN - CLUSTER NETS - Discussion (Carl-H. Rokilansky, Fernlini Hapen)
- DISCUSSION OF HIERARCHICAL GATEWAT ALGORITHI FOR ROLTING AND NETWORK REACHABILITY INFORMATION EXCHANGE BETWEEN LEVEL 1 TO 4 GATEWAYS (Corl. H. Koletansky)
- PROPOSAL OF AN X. 121 ADDRESS RESOLUTION - PROPOSAL OF AN CALL SETUP & REVERSE CHARGING - PROPOSAL OF AN CALL SETUP & REVERSE CHARGING - PROTOCOL (CRCP) FOR X.25 CONNECTIONS
- (Carl-H. Roleitansky)
- TECHHICAE DISCUSSION
- PDN ROUTING PERFORMANCE TESTS
- ASSIGNMENT OF ACTION ITEMS
- MISCELL ANEOUS

PDN ROUTING WORKING GROUP STATUS

PUBLICATION

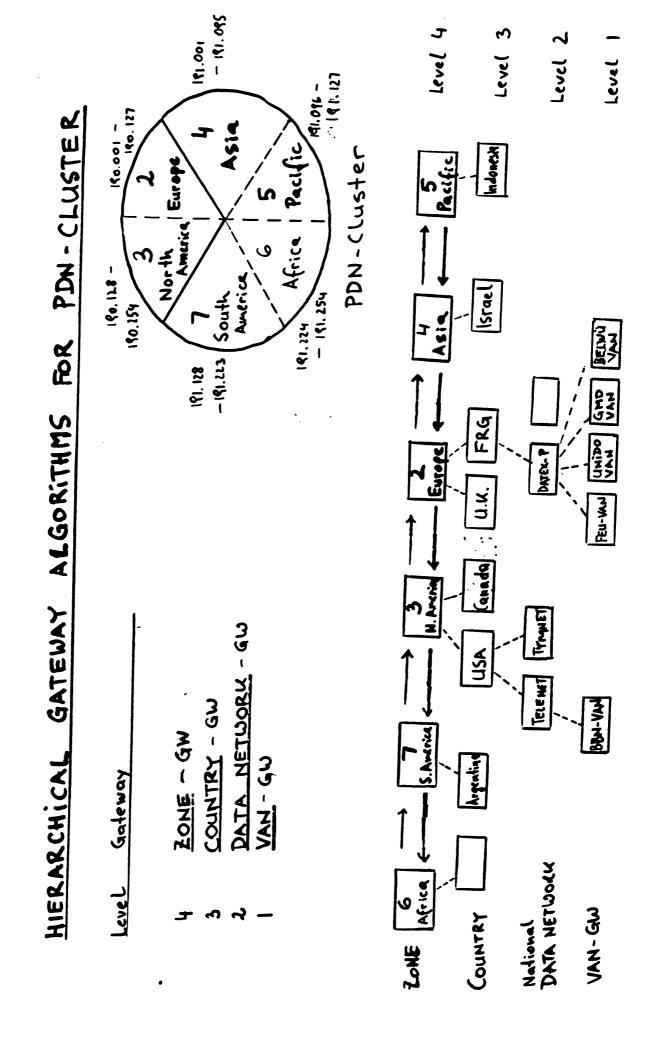
- INTERNET CLUSTER ADDRESSING PAPE IN PROCEEDINGS OF 9" INTERNATIONA COMPUTER COMMUNICATIONS CONFERENCE (ICCC '88)

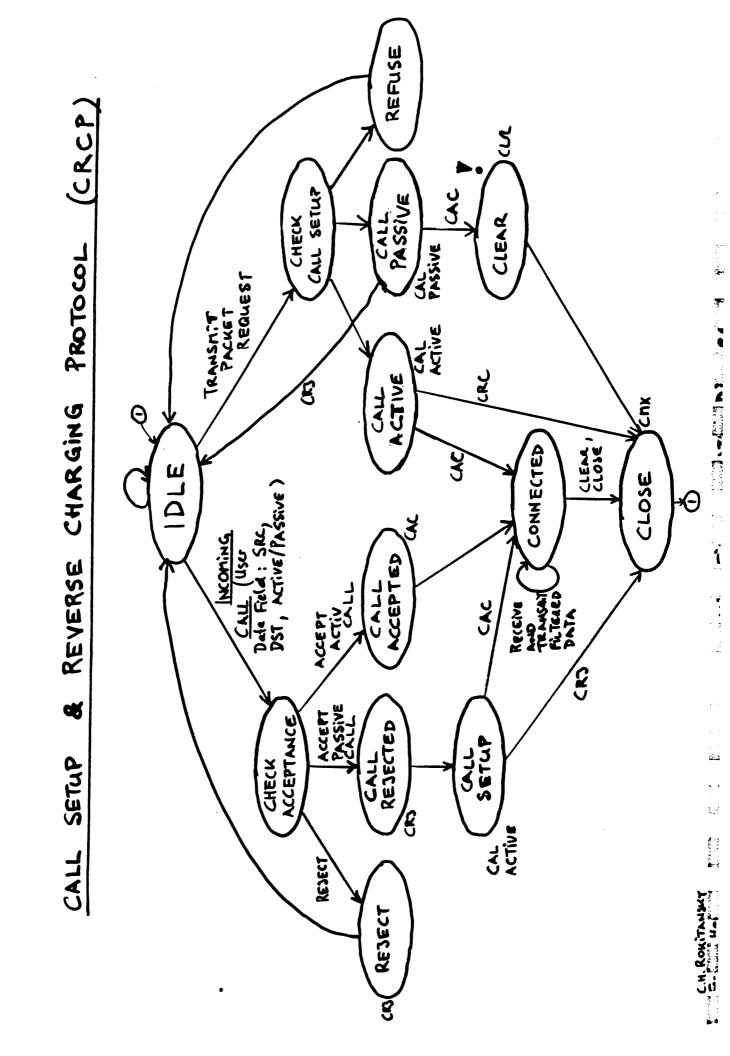
PROPOSALS:

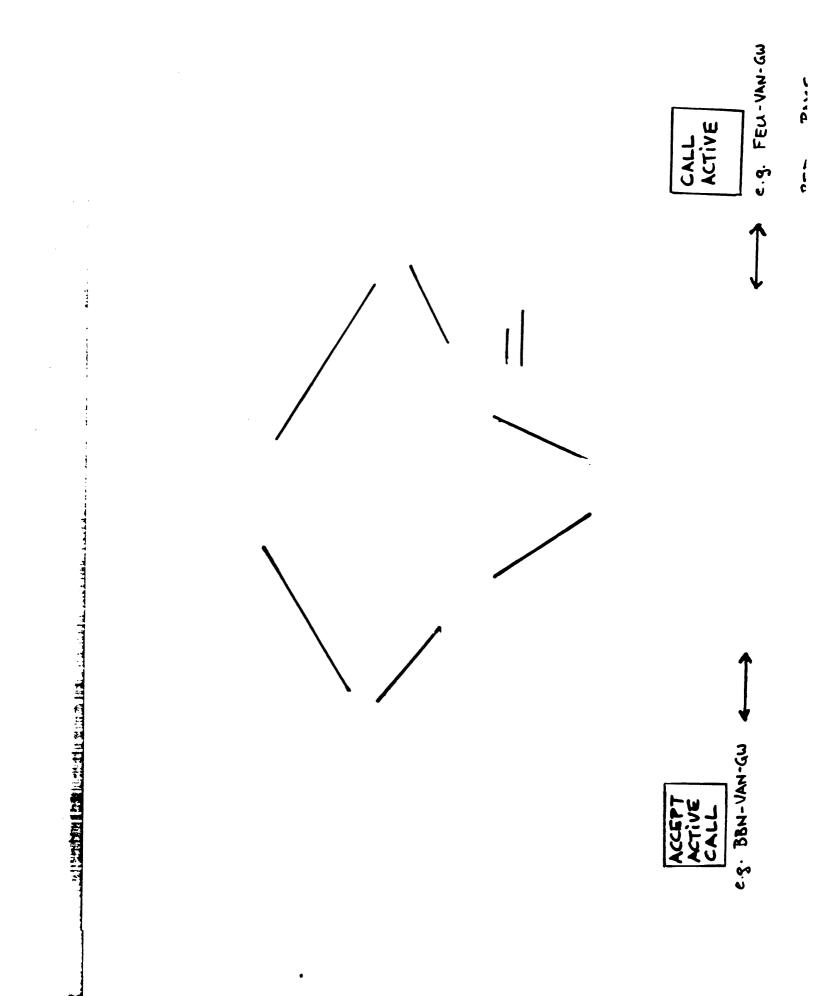
- X. 121 ADDRESS RESOLUTION PROTOCOL

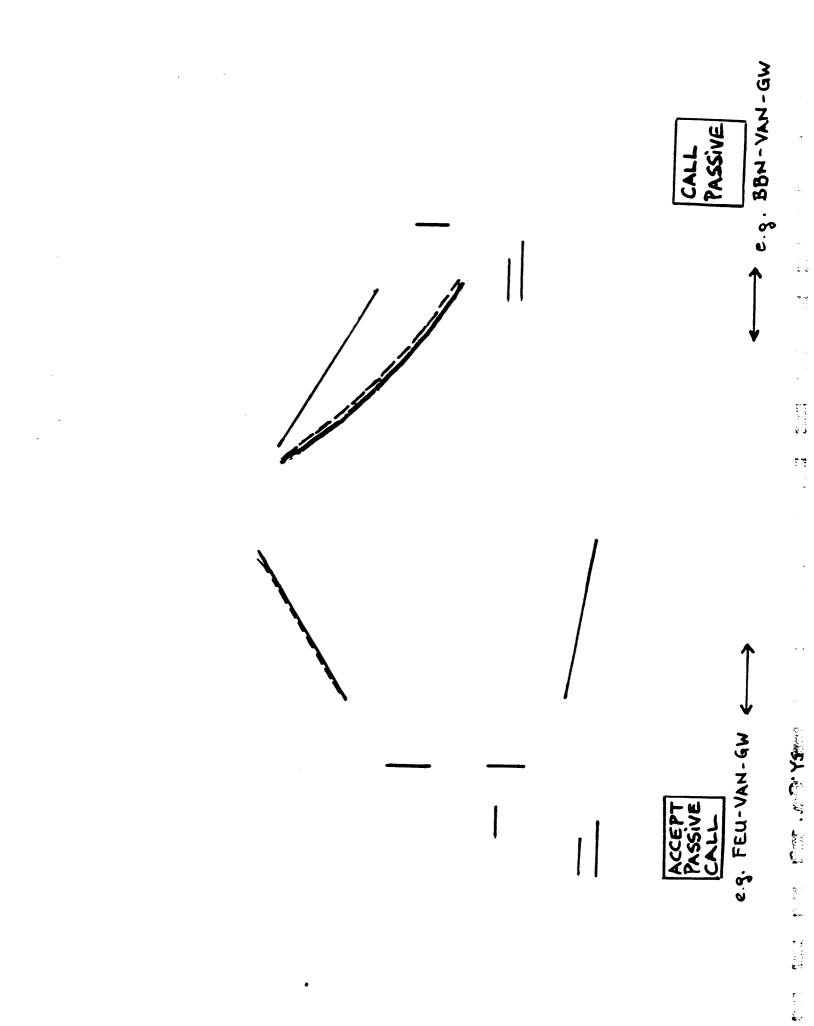
- DNIC INTERNET PDN-CLUSTER
- HIERARCHICAL GATEWAT ALGORITHMS
- CALL SET UP & CHARGING DETERMINATION PROTOCOL (SCDP)

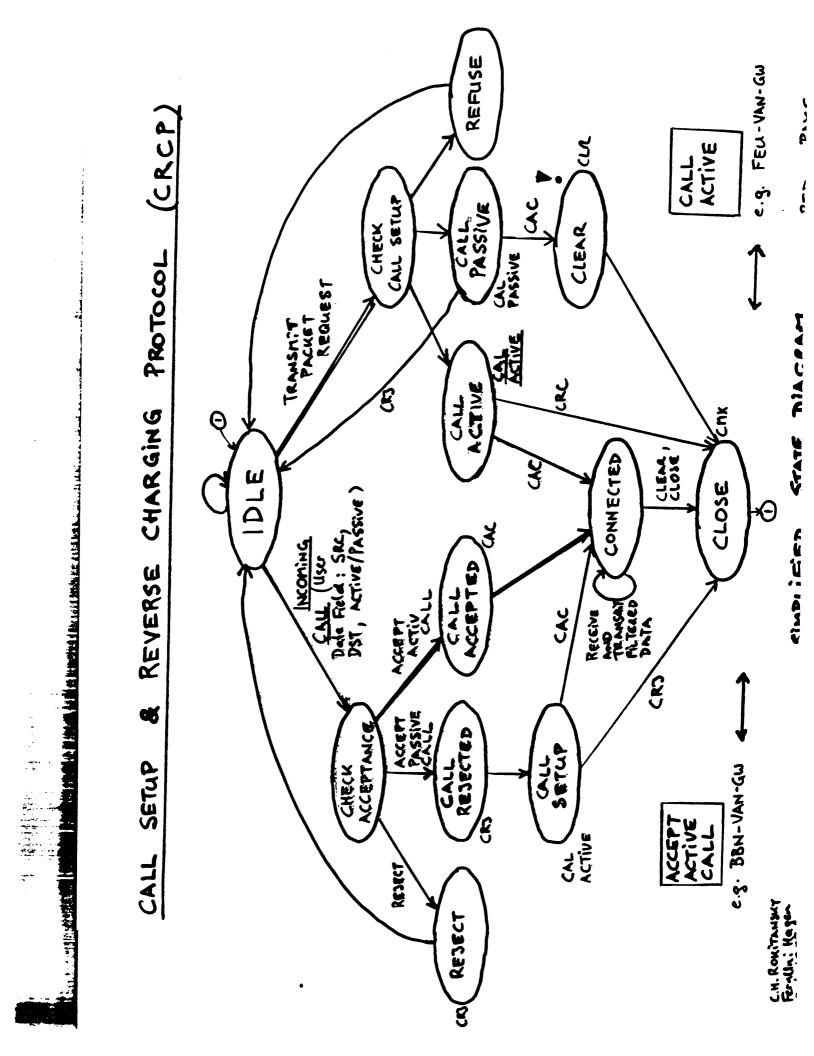
DNic Assignment

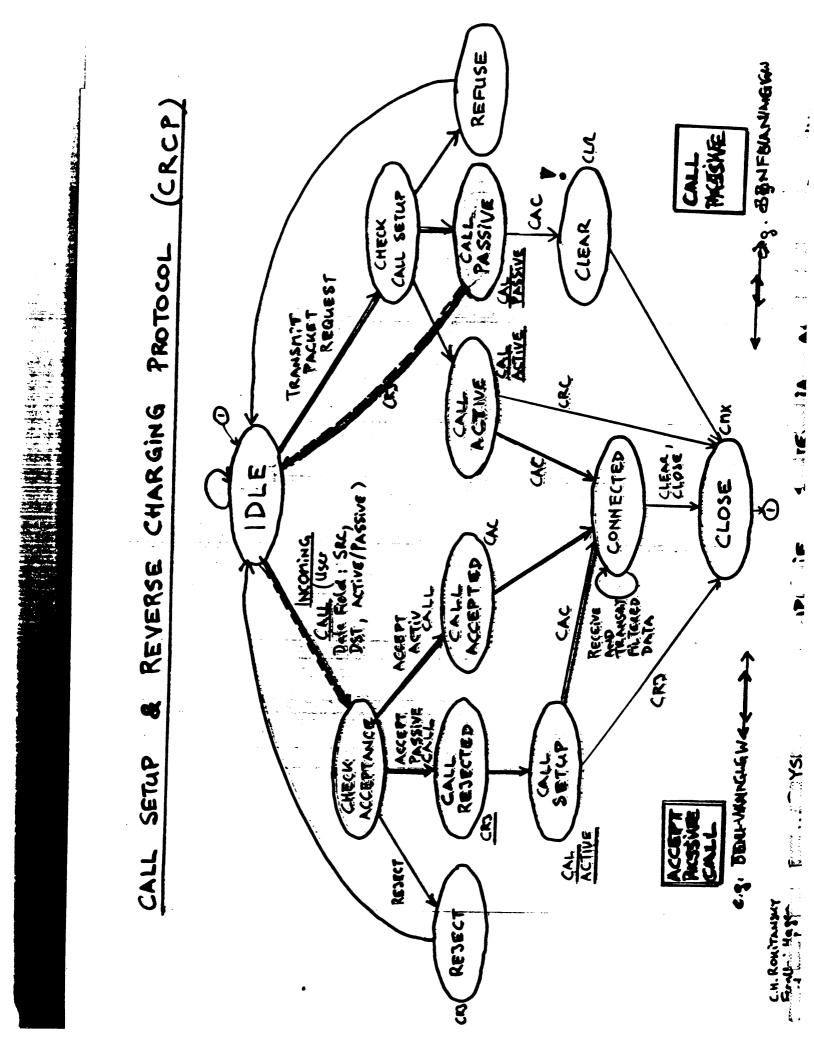

DNICS assigned Zone Area


- 5 Europe ィ
- 39 N. AMERICA 3
- 5 Asia 7
- 20 PACIFIC و ً ما
- AFRICA 8 S. AMERICA 44 ٢
- 200




	~	& INTERNET/PDN-CLUSTER Mapping	ER Mapping
reserve	Hemisphere	PDN-Cluster Networks	Net MSB.
721	EAST	190.001 - 190.127	0000-0111
127	WEST	190.128 - PG0.254	1000-1111
95	EAST	191.001 - 191.035	0000-0101
32	EAST	,	1110 - 0110
31	WEST	191. 224 - 191. 254	1110 - 1111
96	WEST	•	1011 - 0001
508			
		PDN - CLUSTER Mask :	
		00 0000 0000 0111 IIII	0 <154.0.0.0>
		<u>PDN - West Mask :</u> 1111 1110 1000 0000 00	0 <254,128.0.0
		WEST EAST	۲ÿ
		67324	S
	international de la constant de la		


÷.



PDN ROUTING WORKING GROUP PAPERS

- X.121 ADDRESS RESOLUTION PROTOCOL IDEA (jen '89)

- MAPPING BETWEEN DNICS AND PDN-CLUSTER NETWORKS - IDEA (den 189)
- CALL SETUP & CHARGING DETERMINATION PROTOCOL (SCDP) - IDEA (Jon/Feb '89)
- HIERARCHICAL GATEWAY ALGORITHMS AND NETWORK REACHABILITY INFORMATION EXCHANGE FOR PDN-CLUSTER -IDEN (Jan/Feb 189 ?)

PDN - CLUSTER FUNCTIONALITY TESTS BETWEEN USA AND EUROPE, EXPECTED TO START DEC '88

ŝ.a Number of Street, Stre

Performance and CC

.

Allison Mankin MITRE

7 . . **8** 20 20 Real Provides ja seren ja Marantzaria

. . IETF Performance/Congestion Control WG Oct 1988 Reported by A. Mankin & G. Reichlen (MITRE) Ann Arbor

Attendees: Roger Beeman (Boeing), Art Berggreen (ACC), Scott Brim (Cornell), Steve Casner (USC/ISI), Bilal Chinoy (MERIT), Mike Collins (LLNL/ESnet), Gene Hastings (PSC), Van Jacobson (LBL), Paul Love (SDSC), Ken Lowe (Univ. of Washington), Allison Mankin (MITRE), Matt Mathis (PSC), Philippe Park (BBN), Paul Parker (CMU), Guru Parulkar (Washington Univ.), K.K. Ramakrishnan (DEC), Gladys Reichlen (MITRE), Robert Reschly (BRL), Bruce Schofield (DCEC), Geof Stone (Network Systems Corp.), Paul Ticknor (NASA/NAS), Claudio Topolcic (BBN), Steve Wolff (NSF), Jessica Yu (MERIT).

The Performance Working Group met on Tuesday morning. Currently this group has a paper in progress which addresses Internet performance for TCP and gateways. During an off-line discussion with Bob Braden, from the Host Requirements WG, it was recommended that the Performance WG produce a separate document (as a Draft RFC) specifying TCP congestion control methods, in particular Slow-start. This document would be an adjunct to the Host Requirements RFC. The WG agreed that this was a good approach. Therefore a draft of this new paper will be put together, and distributed to the WG via email for comment, before the January meeting.

Claudio Topolcic from the ST/Connection-Oriented IP WG briefed us on their group's direction. They are working on two documents: a modification to the current ST specification and a connection-oriented Internet protocol requirements document. In the requirements document they will be defining performance guarantees needed from the network for successful use of applications such as video-conferencing, in addition to the common ones (FTP etc.). Our two groups will cooperate.

In response to the Host Requirements RFC reiterating the definition of IP TTL as a time, not a hop count, the Performance WG discussed several issues: TTL as a time does not give enough range (that is, usual values of TTL, such as 30 seconds, could be quite unsafe with the current range of Internet transit times, if most gateways suddenly treated the TTL as a time. However, TCP not wanting to wrap sequence numbers while a segment is in the network requires the bounded lifetime implied by TTL as a time. A suggestion for an alternative that met some favor was to have gateway IP bound packet lifetime on the queue. The TTL maximum times the queue stay bound would have to be within the TCP Maximum Segment Lifetime.

Van Jacobson talked to us about his recent activities. The report in these minutes will be sketchy, since we hope to hear about these projects in detail in future IETF plenary presenta-tions:

Gateway congestion control experiments: reserving bandwidth for packet video through gateways, in conjunction with an ARMA congestion predictor. The set-up is done with options and a special TOS is used during the lifetime of the video. Good success so far with reserving 250Kb/sec bandwidth for each video flow and still running TCP connections fairly.

Analytical modelling: he has a tractable model of transport and gateway with one gateway. It's not tractable with a larger Internet. The results so far support TCP window flow control (versus rate-based control) -- another reference on this was Aurel Lazar (Columbia Univ. Telecommunications).

1.11

• •

411

- ,

تد د

. .

¢.2

1.2

5.

R CO. CO.

Stimulated by a request from Phill Gross (visiting), we had a discussion of source quench, with the following as a brief summary of the various arguments about its effect:

- 1. SQ is not good, but not really bad except it takes bandwidth at a time when you really don't want to do that.
- 2. SQ has an underlying model-that congestion problems are being by a small number of hosts. This underlying model is not the same as the reality of transit gateways: confluences from a range of hosts at varying distances from the gateway.
- 3. Why not assume source quench is an early indication of packet drop? Because gateways are not held to using source quench to mean this. A connection can safely interpret source quench as meaning there is some congestion, but not what degree and not whether caused by itself; in LAN experiments, the SQ went consistently to the wrong host, i.e. the host with the smallest windows and the most random sends. Slow-start therefore does a restart in response to SQ, but does not change the ssthresh, the size of the window above which further opening is done slowly.
- 4. SQ is essentially broken even if you can guarantee you quench the right source, it is still not the right mechanism. Slow-start has a conservative handling of SQ, but it still has to be considered what harm it may do: synchronization effects and effects on control loops by taking action at a rate less than the round-trip time are two possibilities.

The group discussed whether it would make sense to produce a short ''kill SQ'' RFC--consensus was yes. Approach: a collection of existing data to support the con arguments of the discussion. Van and Allison have experimental evidence to contribute to the paper.

The remaining hour of the meeting was taken up with a discussion of gateway performance and the extent to which gateways, as they exist now, can support performance guarantees. The unsolved problem of how gateways can accurately signal bandwidth changes to TCP (and similarly behaved traffic) is a big obstacle.

Next Meeting:

At the next IETF meeting, the group will discuss a draft of the TCP document (coming). The agenda will also include new information gathering for the second document on gateway performance. .

•

• •

-

and a set

and the second second

्र २ भाष

Pt-Pt Protocol

Drew Perkins CMU

.

• 1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1 Barran Marina Marina

17-19 Oct 1988 Ann Arbor, MI

The PPP WG met at the IETF meeting in Ann Arbor, Michigan during the morning of Tuesday, October 18, 1988 and also briefly during the afternoon of Wednesday, October 19, 1988.

Attendees on Tuesday were Drew Perkins (CMU), Ron Broersma (NOSC), Michael Petry (UMD), Bob Gilligan (SUN), Mark Lottor (SRI-NIC), Terry Bradley (Wellfleet), Becca Nitzan (NMFECC), Milo Medin (NASA), John Moy (Proteon), Russ Hobby (UC Davis), Philip Prindeville (McGill), RIck Boivie (IBM), Jessica Yu (Merit), Cal Thixton(NeXT) and Phil Karn (Bellcore). Russ Hobby took minutes.

The first item on the agenda was a discussion of the "Point-to-Point Protocol Requirements" document. Three changes were suggested:

- 1. A section should be added discussing hardware vs. software requirements.
- 2. A definition of "fragment" should be added.
- 3. The section on "Sequencing" should mention that it should not be ruled out. There may be times when it is desired, such as for other protocols and possibly when the reliability bit is set in IP datagrams.

The rest of the meeting was spent discussing proposals for the protocol.

- 1. Discussion on liveness/up-down capabilities
 - a. The protocol should make sure to use hardware status (carrier detect, etc) when possible.
 - b. The use of the liveness protocol should be negotiated before line is brought up.
 - c. Liveness protocol should compare frame counts sent to frame count received at other end for line line quality. Negotiate line quality (error rate) at which to take down and bring up the line.
- 2. Discussion on error detection/correction
 - a. The protocol should send CRCs in ALL cases, other end does not necessarily need to check them if it does not want error detection (i.e. you want to pass through data even if it is know to be bad, may be the case in voice or video).

- b. There was much discussion concerning error correction. Conclusion: error correction not used by default but may be enabled when it is necessary. Suggest using LAPB.
- 3. Discussion on async protocol
 - We discussed two framing protocols for async links: the a. framing protocol used by Rick Adams' SLIP, and the Proposed Draft International Standard ISO 3309 Revised The DIS ISO 3309 defines how to do HDLC framing (E). for "Start/stop transmission", aka async links. Since backward-compatibility with SLIP is not one of our goals (SLIP provides so little that it doesn't make sense), we decided that we may as well abandon SLIP and standardize on ISO 3309 HDLC. This should work out well since HDLC is more likely to be supported in the future by modem and IC manufactures. It also clears up the confusion about back compatibility quite nicely (it won't work).

5 5

#~

10. m

7 A

8.2

ź.e

5. 1

burn g

NE.

- 4. Discussion on sync protocol
 - a. No one questioned that the "obvious" thing to do is use HDLC framing, with addresses 1 and 3 and UI in the control field. This is very nice because full LAPB can be run in parallel simultaneously if desired.
- 5. Discussion on packet format
 - We decided to use our own numbering system for the type a. field with standard values independent of MAC layer (async/sync/etc). Conflicting goals of even packet boundaries for high-speed links and high link efficiency for low-speed links led to agreement on an ISO'ish protocol (reminiscent of HDLC addresses). **All** protocol types values can be represented in 15 bits or less. For the foreseeable future it is likely that there will be very few protocols, probably less than Therefore, the type field will normally be a 32. single octet for async links, but will be extended to two octets when necessary (protocol type exceeds 1 octet). On sync links, the two octet representation will be used at all times. This is accomplished by using the MSB of the first octet transmitted/received to indicate a one/two octet type field. When the MSB is one, the field is 16 bits and remaining 15 bits are the type value. When the first bit is zero, the field is 8 bits and the remaining 7 bits are the type value.

The initial values will be as follows: zero - reserved 1 - link control 2 - IP 3 - ISO 4 - XNS 5 - MAC bridge 6 - DECNET 32767 - reserved (all 1's) Discussion on Link Control Packets 6. Line Reset a. b. Line going down Others c. 7. Discussion on Option Negotiation Packets One item will be negotiated per packet, but packet may a. have multiple parts (ie: a list of addresses) b. **Option Packet Fields** Option type - 16 bits Length - 16 bits Data c. Items considered for negotiation ITEM DEFAULT MTU 576 Compression Off Liveness (Up/Down) Off LAPB (error correction) Off Addresses None (use ARP format?) Authentication Encryption Off Character mapping Off d. General strategy for bringing up line. Start dumb, learn smarts. Start with basic communications and negotiate other capabilities.

ensures compatibility at start. Discussion on problem of loopback detection and Master/Slave 8. establishment. Protocol: Send random number (64 bit) challenge. Get response. Compare. If response is the same number, may be loopback, try new random number. If get back same number after N tries, assume loopback. Possible

This

MAC address Machine serial number Non-volatile memory configuration Low bits of clock

sources for random number:

Result of comparison determines master and slave. Higher number is master. For HDLC, higher number is DCE (address 1), lower number is DTE (address 3).

: · •

.

an an an

۲**:**

i na

1979-1979 - **1**

0100 C

ST and CO-IP

Claudio Topolcic BBN

.

.

5.e

Sector Sector

ST and connection oriented internet protocol - Two parallel tracks - ST specification - Longer term connection oriented internet protocol issues - ST specification - Identified a number of issues - Did not resolve any - Will meet by multimediz conferences - Will exchange mail - Intend to have a good draft by next IETF -Implement after - Connection oriented internet protocol - Progress understanding what we mean - Plan - Identify requirements -Specify options -Possibly test some options on ST -Incorporate results from Inter Domain Routing -Write a specification - Requirements document -Driven by applications -Req's of protocol -Req's of networks -Have an outline -Have writing assignments -Will continue by E-mail - Plan to have a draft by next IETF

Sala Anona Carlos An and see a Harris and

TELNET Linemode

Dave Borman Cray

Ativ Stat ر. هنده And the second s and the second

TELNET Line Mode

- Reviewed & modified
 draft #2 of IDEA 16
- o Draft #3, this meetings changes, will be very close to RFC
- Get new draft out for
 I-2 months review, then
 submit as an RFC

こう アドリア Long an Vieta ang Ang tao ang tao , ₹**7** 500 S. M biss Proc. the second 開いた

٠

. •••. •••

User Services

.

Karen L. Bowers NRI

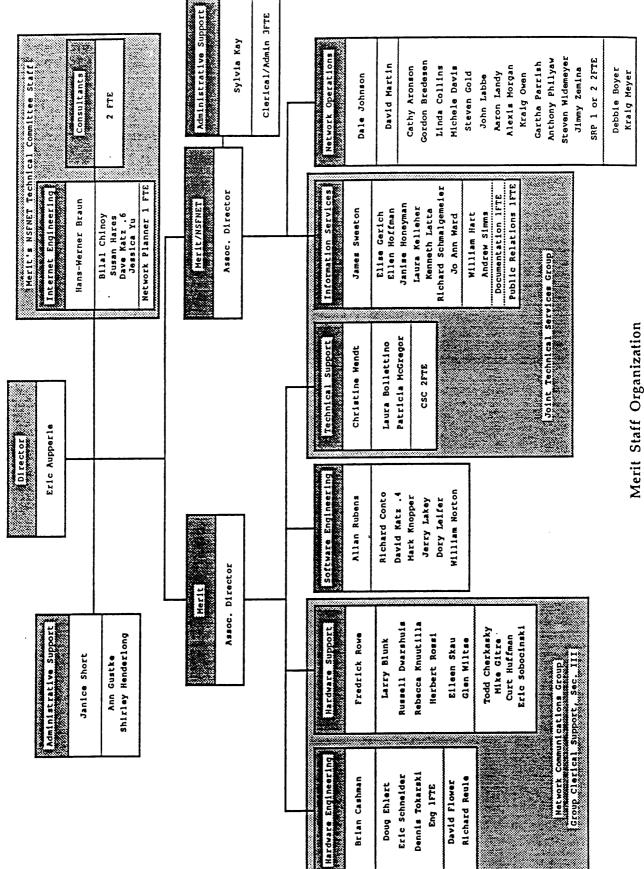
[newly formed; will meet 18-20 Jan 89]

Construction of the second se Second sec A structure of the second seco الالالالية (مالية الم

6. NETWORK STATUS BRIEFINGS AND TECHNICAL PRESENTATIONS

o '

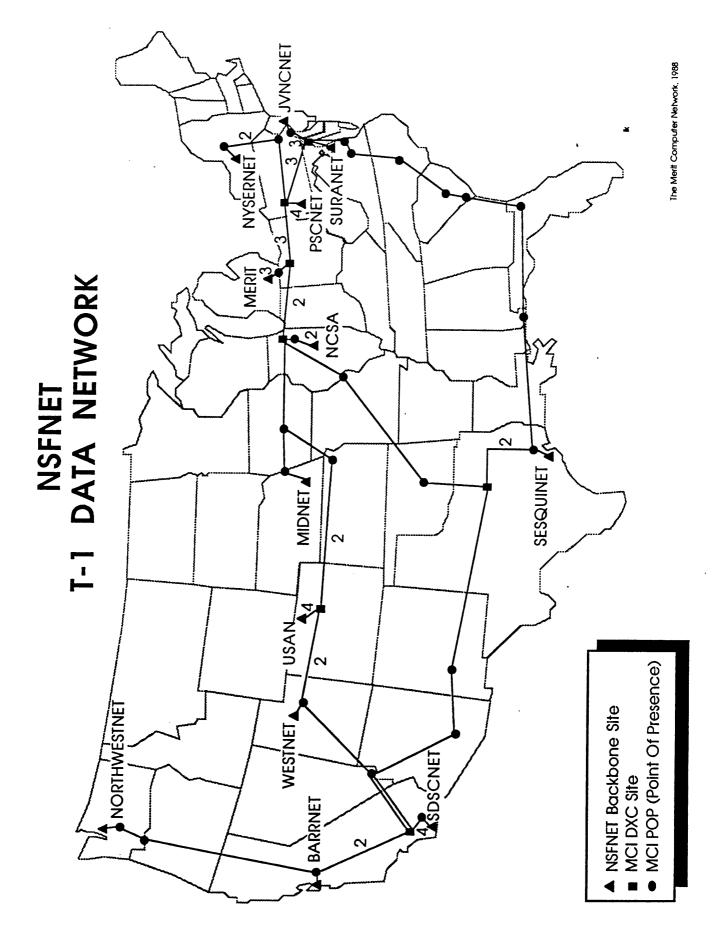
л. И . . **.**.... and the second sec हो। 4


केल ा 着

in the

NSFnet Report

Part I

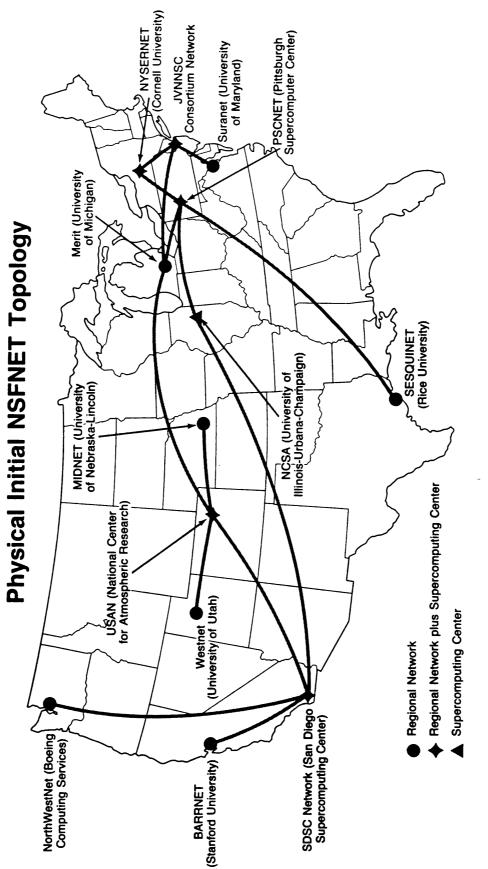

Hans-Werner Braun Merit, Inc. (University of Michigan) Artestan A N-12-12 March 1-14

.

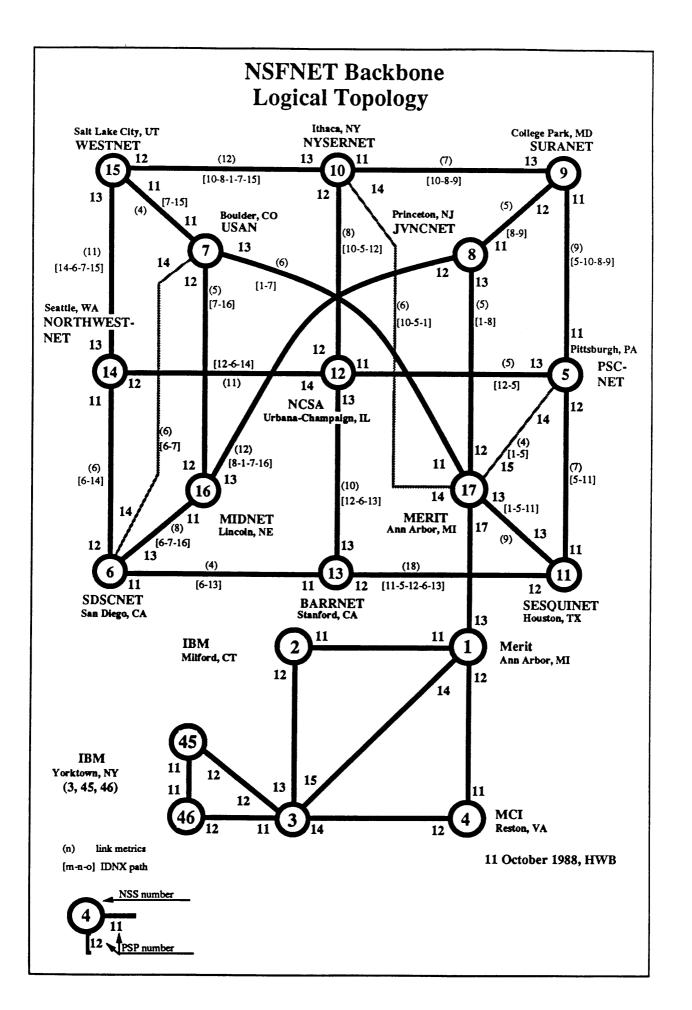
8-19-88

erit Staff Organizatio including NSFNET

an and the D. Harrison

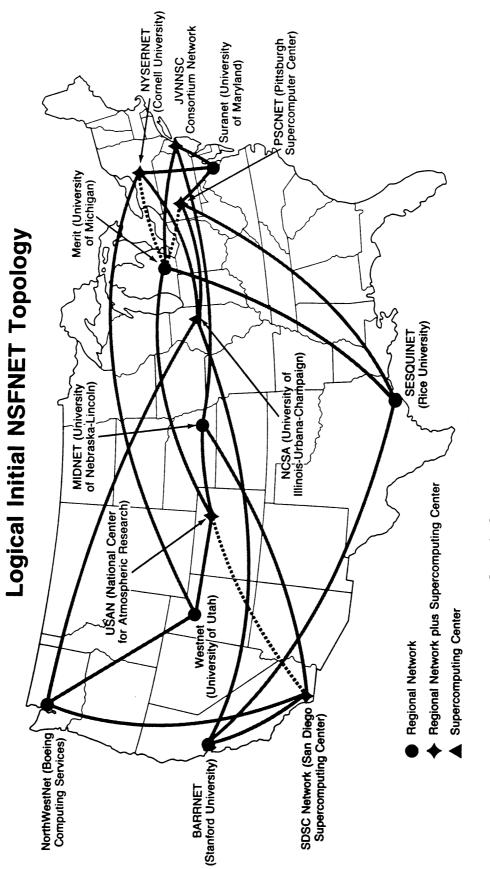

2211-22

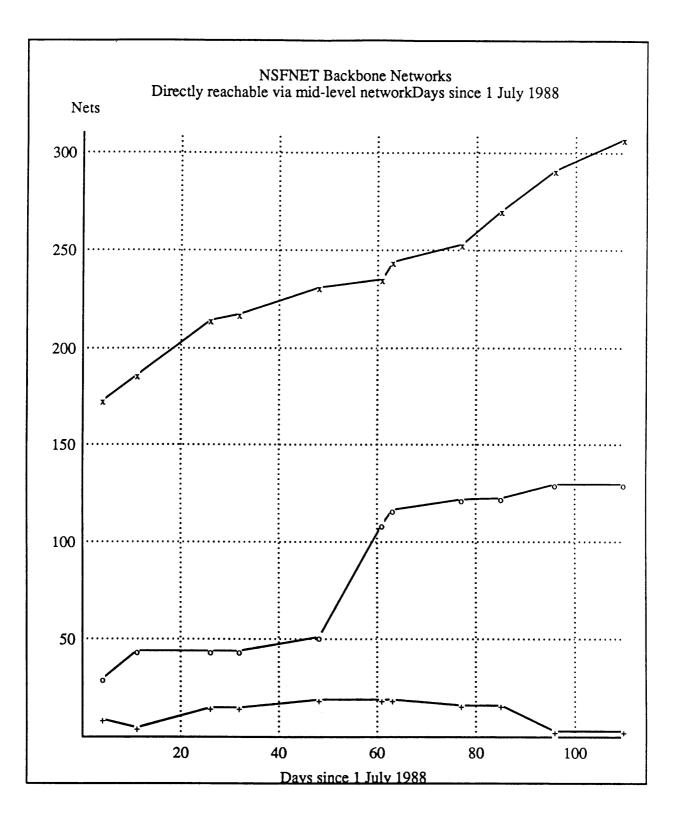
Sur The State

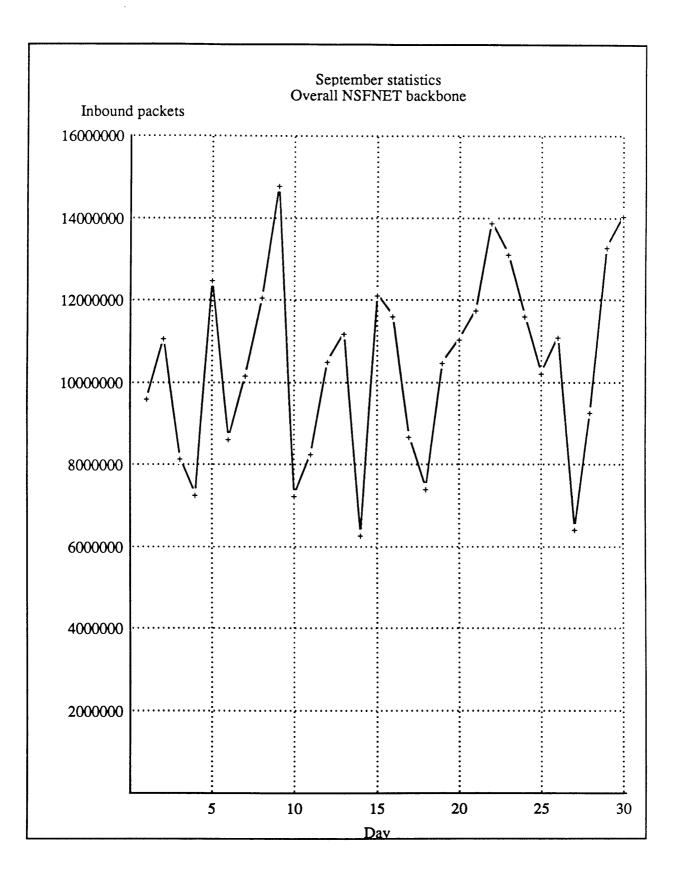

the second

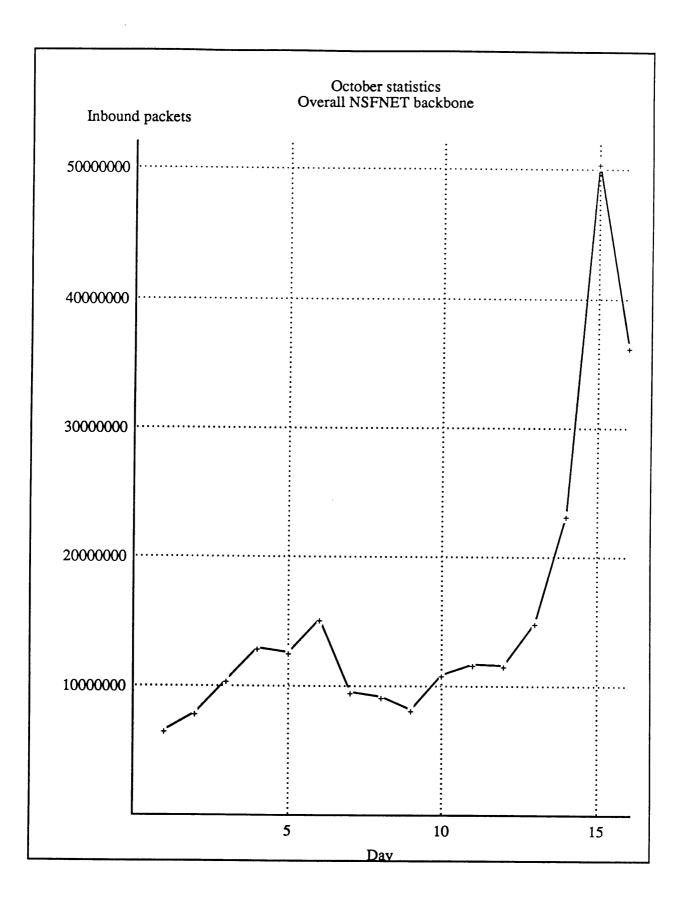
Second 1 and the second are word

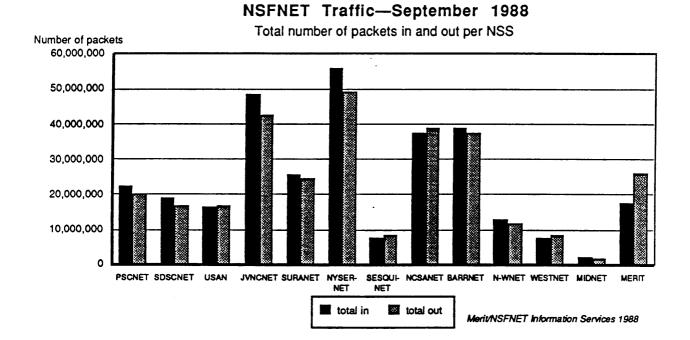
Ale all all

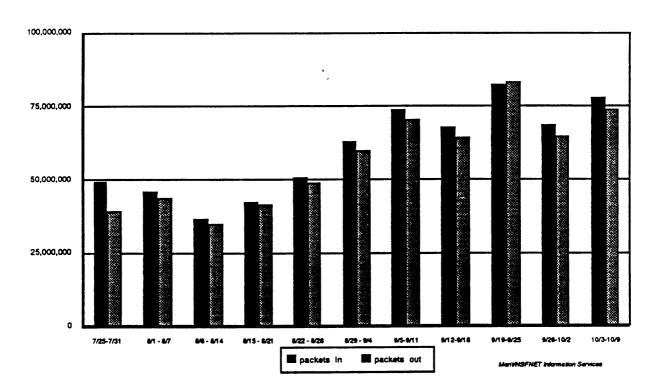


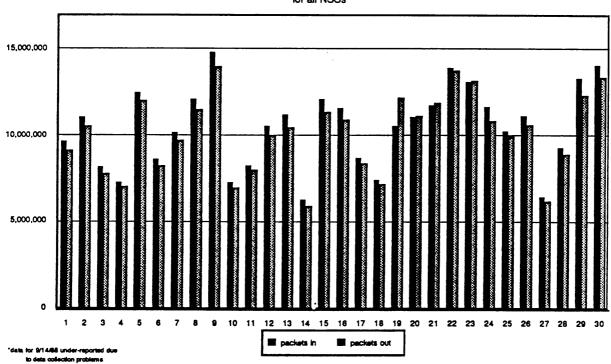



-


•

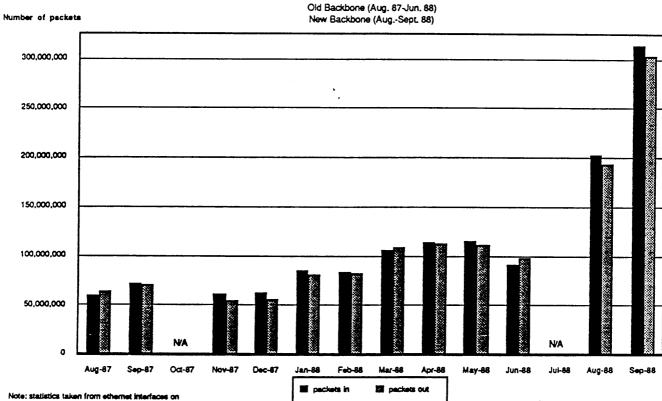






.

NSFNET Traffic-Weekly packet counts 1988



•

NSFNET Traffic—September 1988 Daily traffic in and out for all NSSs

• •

.

NSFNET Traffic-1987-1988

old backbone, from token ring interface for new backbone

...

MeriUNSFNET Information Services

Textores Tex

A strategy

8.3

-

÷ .,

j.

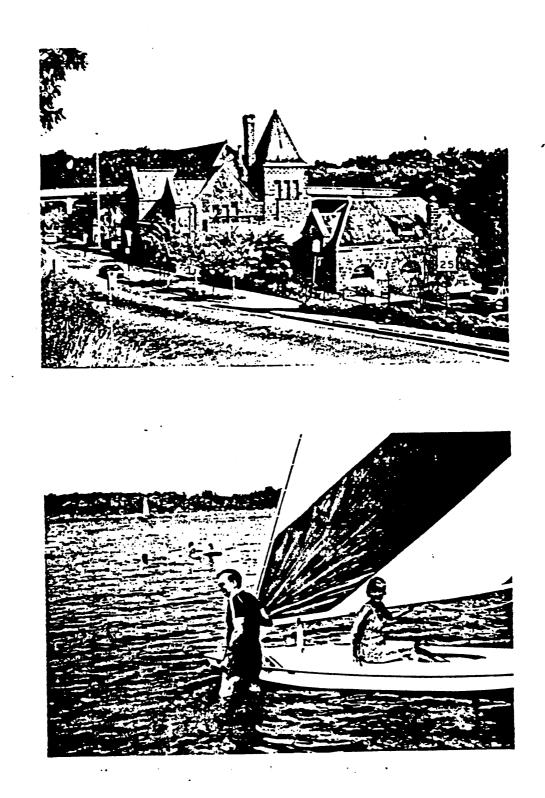
n o o **n**

NSFnet Report

Part II

J.E. Drescher IBM Corporation

-


-

R---1 n the trig

National Science Foundation Network

STATUS REPORT

J.E. (Jack) Drescher IBM Corporation Technical Computing Systems Milford, Connecticut

. .

a constante

100 S

ALL STREET

.

SOME IBM PEOPLE

RESEARCH

YORKTOWN

BARRY APPELMAN

JORDAN BECKER

MATT KORN

NGUYEN HIEN

- JACOB REKHTER - GEOFF CARPENTER - FRED ROBBINS

- WOLFGANG SEGMULLER
- BERT WIJNEN
- MILTON LILIE
- BILL RUBIN
- JED KAPLAN

TECHNICAL COMPUTING SYSTEMS

ANN ARBOR

MILFORD

GAITHERSBURG

JACK DRESCHER WALTER WIEBE

PAUL BOSCO TOM STIX

- JIM SHERIDAN

- RICK BOIVIE - RICK UEBERROTH - LOU STEINBERG

- MYRON HEPNER

- STEVE CAPORALE - FRANK BARTUCCA - MATHI PACKIAM

SKK 10/13/88

- AL WATSON
- BILL CROSTHWAIT
- MIKE SABOL

- TIM ROLFES
- SUE WANG

NETWORK MANAGEMENT OPPORTUNITY

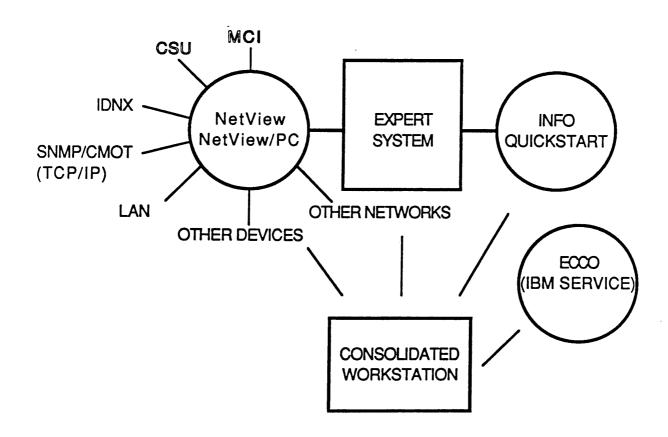
WE CAN BECOME THE NATIONAL SHOWCASE

- -- PUBLICITY
- -- FACILITY
- -- ATTITUDE
- -- SKILLS
- -- BASE PRODUCTS

 $\overline{C}_{ij}^{(i)}$

States of the

• •


ş÷

5, 1. 8......

.

WE CAN LEAD WAY IN AUTOMATING/SYNERGIZING PRODUCTS TO PROCESS

DIRECTION

NSFNET SHORT TERM FOLLOW-ON FUNCTION

- STIMULATED BY ACCEPTANCE/TRAFFIC GROWTH
 AND POSITIVE USER RESPONSE
- INCREMENTAL DELIVERY: 4Q88 THRU 4Q89
- APPROXIMATELY 50 LINE ITEM CANDIDATES DEFINED
- IBM HAS ASSIGNED INITIAL PRIORITIES, TARGET DATES
- PARTNERS REVIEW/INPUT 10/20/88
- TARGET TO CLOSE PLAN 11/01/88 (TIGHT)

NOTE: DOES NOT INCLUDE UPGRADE TO T,

• FEATURES

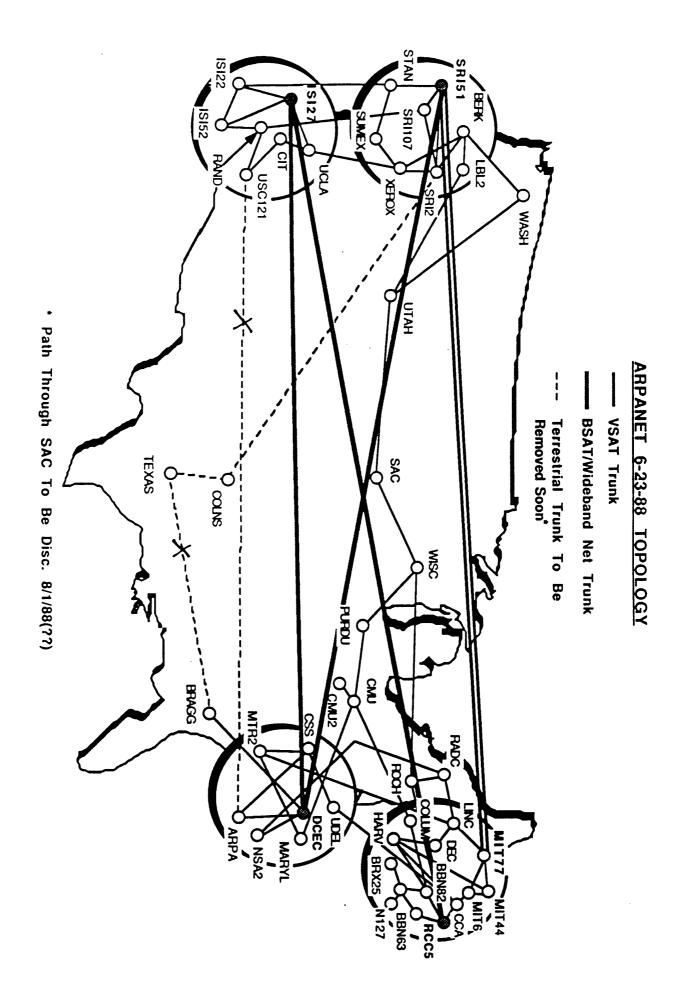
٩

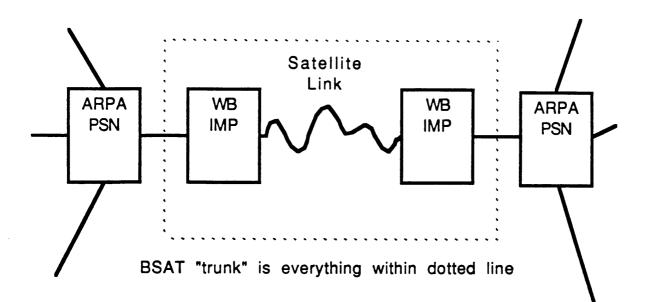
- PERFORMANCE/CAPACITY ENHANCEMENTS
- MORE AUTOMATED CONTROL/ADJUSTMENT
- ENHANCED NETWORK MANAGEMENT
- ADVANCED PROTOCOLS e.g., SNMP. CMOT, EGP3
- STREAMLINED CONFIGURATION ITEMS
- SOME EARLY SPECIFICS
- MIB INTERFACE TO NSS
- X.25 ARPANET ADAPTOR
- 3 COM ETHERNET ADAPTOR
- RTIC IDNX DRIVER (Ţ)

. . 8-----**]**

ARPANET/DDN Report

Marianne Lepp BBN


ы.-К.15 ٠,


ARPANET STATUS Oct18, 1988

Marianne Lepp

alon de el solo de la solo

大学 しょうざい ひょうしょう しょうしょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう ひょうしょう しょうしょう ひょうしょう ひょうしょう

-

Press of the Article A

BSAT Lines

• Installed between

RCC5 and ISI27 DCEC and ISI27 DCEC and SRI51

- Intended to replace transcontinental terrestrial trunks
- Network diameter reduced from 9 to 7 hops
- "Piggybacked" on Wideband Net
- Frequent outages caused by high and variable delay
- Improved by lengthening retransmission timer, increasing number of logical channels, and relaxing "line down" criterion
- Remaining outages caused by Wideband Net resets

Arpanet Topology

Summary Statistics

22

: : : : :

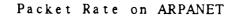
500 500 **5**44

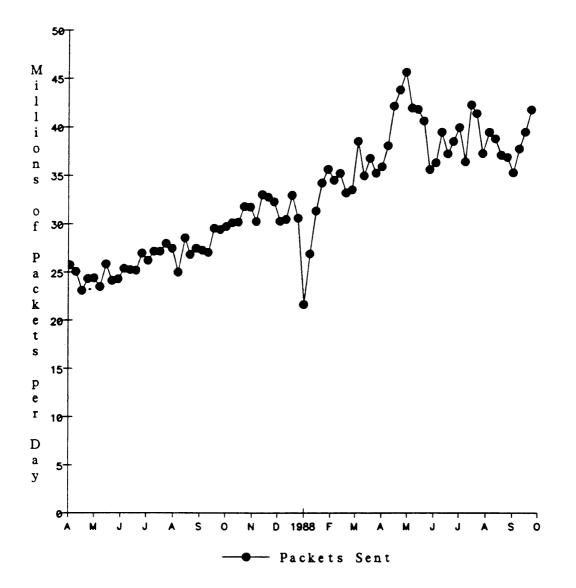
	Aug 87	Feb 88	Jun 88
Nodes	45	43	50
Trunks	67	68	82
Trunks per Node	3.0	3.2	3.3
Active Hosts	170	155	202
Hosts per Node	3.8	3.6	4.0

Arpane: Performance

Week Long Summary Statistics

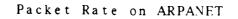
	Aug 87	Feb 88	Jun 88
Host Traffic Msg / Sec	229	325	320
Total Internode Throughput (KB/S)	300	332	336

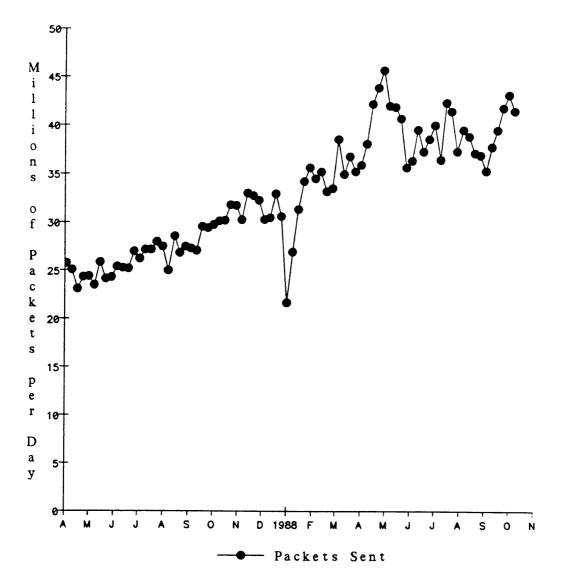

Arpane: Performance


Peak Hour Summary Statistics

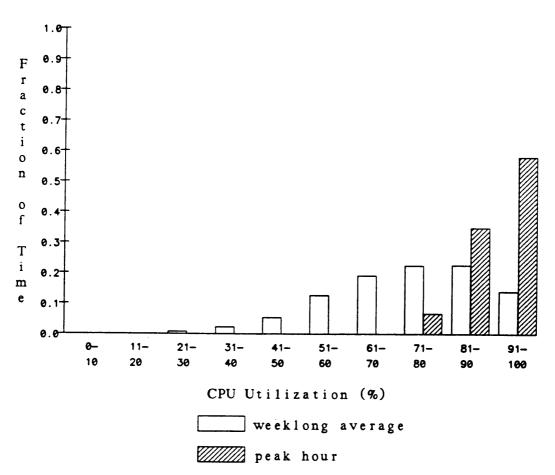
З÷,

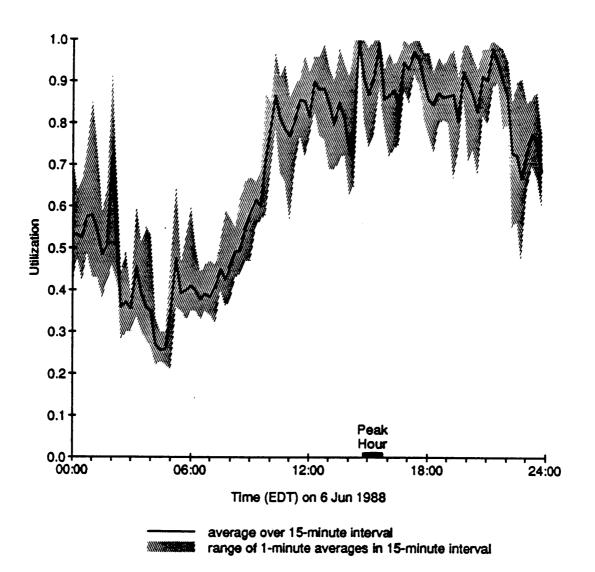
:


	Aug 87	Feb 88	Jun 88
Host Traffic Msg / Sec	296	447	470
			470
Total Internode Throughput (KB/S)	397	494	449



`


•

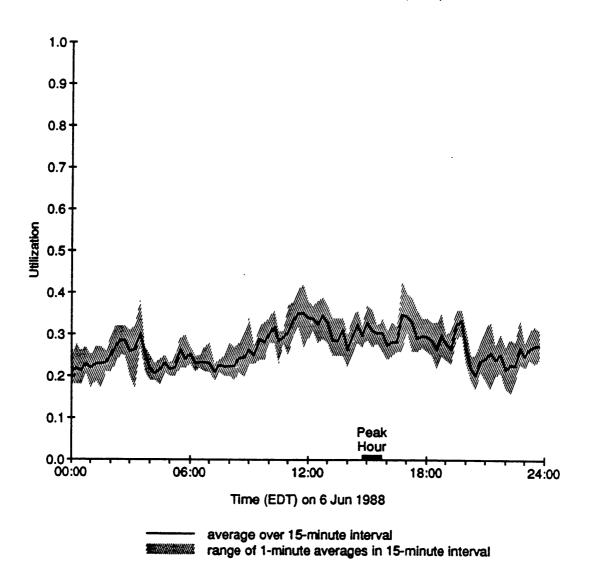


÷ •

(**P**) (1)

CPU Utilization of ARPANET Node 14 (CMU) 6-10 June 1988

CPU Utilization of ARPANET Node 14 (CMU)


anticating to a construction and the second secon

2

2

ж. .

CPU Utilization of ARPANET Node 27 (ISI27)

•

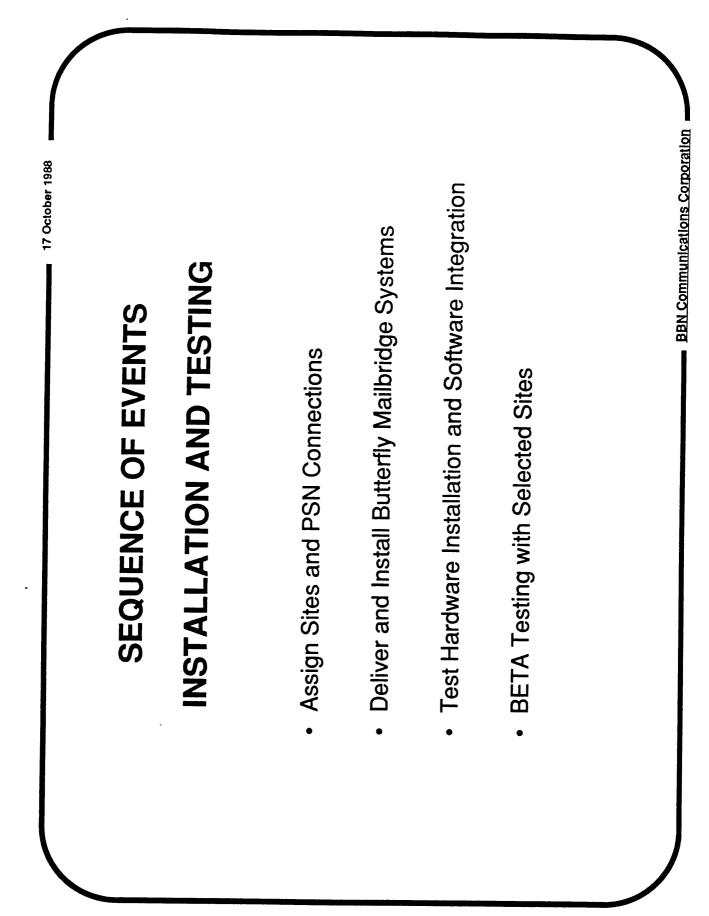
в.č

е. : Е. :

en este es

100 - 11 - 11 100 - 11 - 11 DDN Report: Transition of DDN Mailbridges from LSI-11 to Butterfly Gateways

> Michael Brescia BBN Communications Corporation


• • • A state of the sta

TRANSITION OF DDN MAILBRIDGES FROM LSI-11 TO BUTTERFLY GATEWAYS

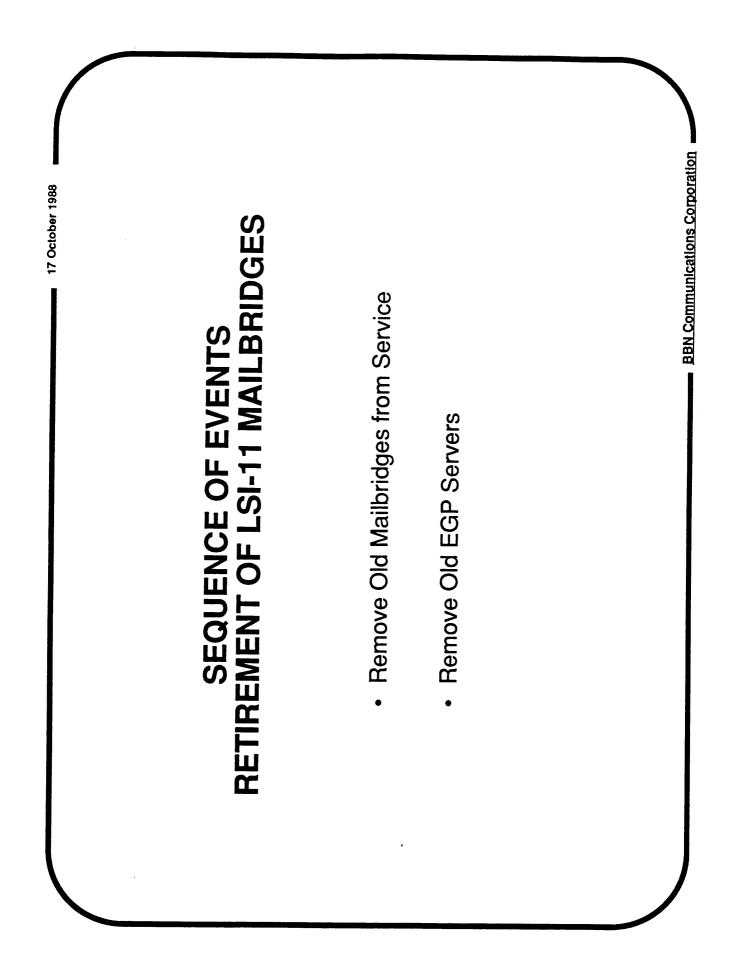
Michael Brescia

BBN Communications Corporation

. . · · · •

17 October 1988

SEQUENCE OF EVENTS

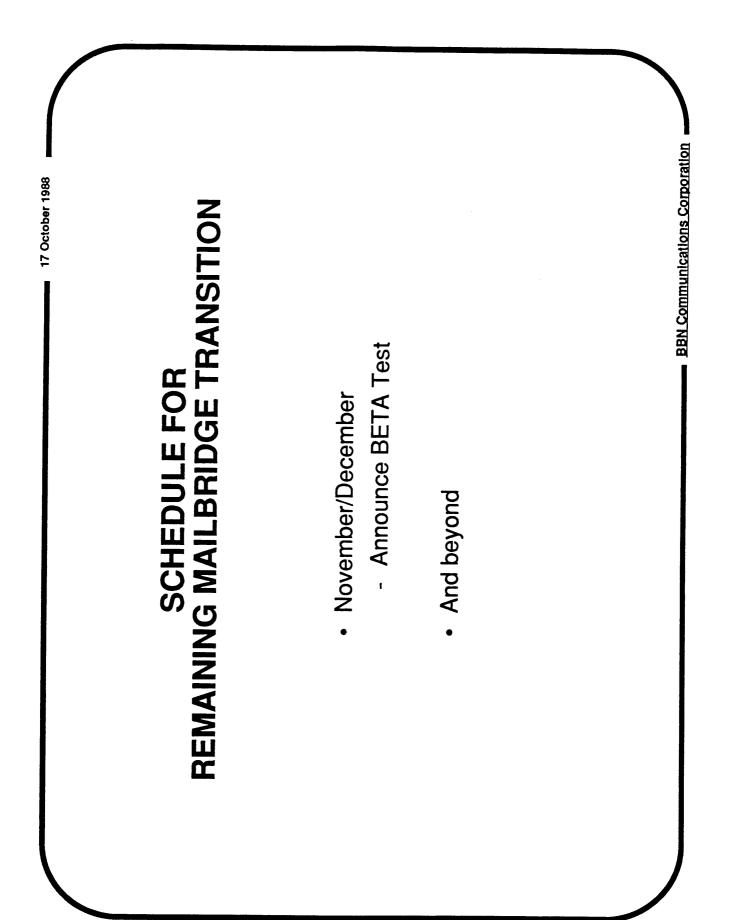

TRANSITION PLAN

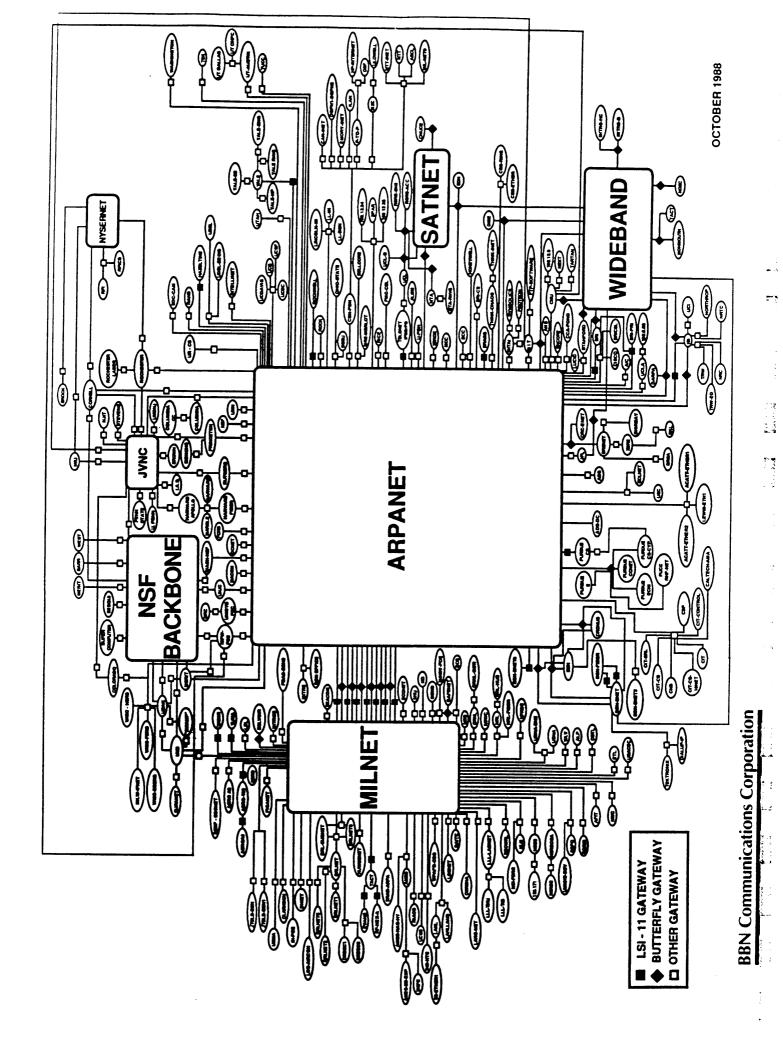
- Prepare Mailbridge Transition Plan for Host and Gateways
- Design and Announce via "DDN Management Bulletin"
- New Load Sharing Assignments
- Schedule for Dropping Old Mailbridges
- Announce via EGP-PEOPLE Mailing List
- New EGP Servers
- Schedule for Dropping Old EGP Servers

BBN Communications Corporation

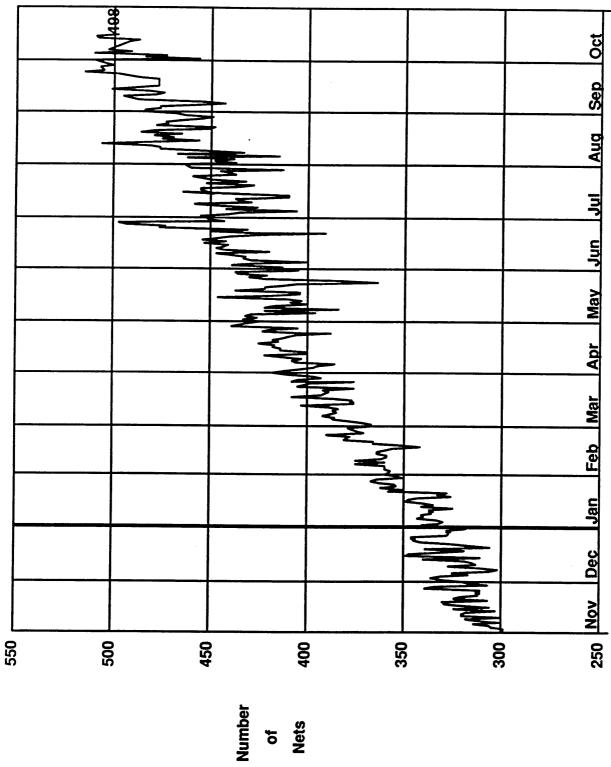
F 1

ALC: TOTA


17 October 1988


STATUS OF MAILBRIDGE TRANSITION

- Sites and Connections on Arpanet and Milnet Assigned
- 3 on East Coast (DCEC, MITRE, BBN)
- 3 on West Coast (AMES, ISI, LBL)
- July
- Butterfly Mailbridge Hardware Installed
- August Present
- Software and Hardware Testing in Progress
- Establishing Procedures with the Site Coordinators
- · Discovered EGP Problems
- Examining Solutions


BBN Communications Corporation

1) L

đ

• • - -nterative. Areative. Ar 7 **Brain** Contraction

INTEROP 88 Network Report

Philip Almquist Stanford University

• • Non N . The second s 5000 C

The INTEROP 88 Network: Design, Problems, and Lessons Learned*

Philip Almquist

* WARNING: do not try this at home. Professional stunt driver required.

``` 500 ST • • •

## Introduction

- Large scale demonstration of TCP/IP Interoperability
  - 49 vendors
  - Approximately 250 hosts and gateways
  - Almost 2 miles of cabling
  - High-speed connections to ARPANet, MILNet, NSFNet, ...
- Standalone network for CMOT (NETMAN) demonstration
- Very successful
- Purposes of this talk
  - Inform
  - Stimulate IETF action

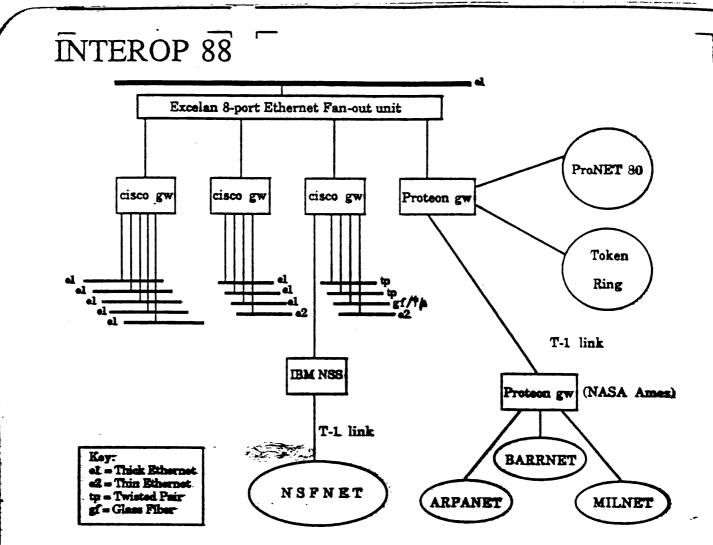
.

ī

....

alesson d

No. 17 - 1924


•

· · ·

7 T

## **Description of the network**

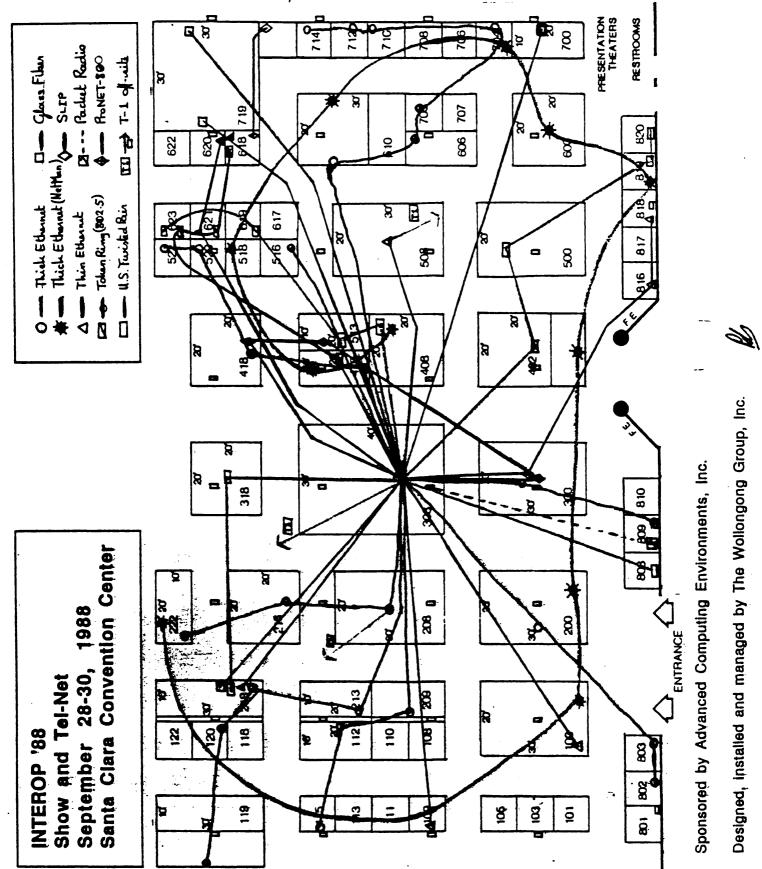
- Designed by Peter DeVries and myself
- Subnetted class B net
- Multiple media
  - Ethernet
  - Thin Ethernet
  - Ethernet over twisted pair
  - Ethernet over fiber
  - PRONet-80
  - IBM/802.5 token ring
  - SLIP
  - Packet radio
  - (also Hyperchannel, PRONet-10, T-1, and Ethernet over broadband in individual booths)
- Tree topology no alternate routes
- Small subnets
- All backbone routers in NOC
- Built in 5 1/2 days by Peter, myself, 3 parttime technicians, and a horde of volunteers



Show and Tel-Net Topology

#### **Participating Vendors:**

3Com ACC Apple Ca as Sign **BBN Ca** mications COMPUTATIORLD CMC Computer Network Technology Concurrent Computer Convergent Technologies cisco Systems **DCA/SRI** International DEC Deore Eon Systems Excelan/TGV/Kinetics FTP Software


Halley Systems Hewlett-Packard Highland Setware IBM/MCI/Merit/CMU Interactive Systems: InterCon Interphase Lechman Associates Mitre/Unisys (NetMan) Network General Network Research Network Solutions. Network Systems Frantice-Hall Prime Computer Process Software. Protect

Sirius Systems Spider Systems Sun Microsystems SynOptics Communications Syntax Systems/10Net Sytek Tandem Computers TCL TRW Ungermann-Base UNIX World Vitalink Communications VXM Technologies/MIPS Wellifest Communications Western Digital The Wollongong Group Xypier:

23

1.5

z,



#### Cabling

- What we did
  - Cabling hung from ceiling
  - Intentionally very visible
  - Tranceivers reachable with a ladder
- Problems
  - Ran out of cable
  - T-1 didn't want to work (of course!)
  - Too many people inside the wiring center

- --

: . . .

57

1

- One booth on wrong subnet because vendor rewired it!
- Mysterious temporary failure of one Ethernet segment on second day of show
- The usual minor problems...

#### IP address assignment/host table creation

- What we did
  - We obtained a domain: ShowNet.COM
  - Vendors filled out host questionnaires
  - We assigned IP addresses and created a zone file
  - A program read the zone file to generate the IN-ADDR.ARPA zone files and a HOSTS.TXT
- Problems
  - Questionnaires were returned late and filled out incorrectly
  - No host table czar
  - Zone file inaccessible until T-1 came up
  - Some vendors required /etc/hosts format

#### **Domain service**

- What we did
  - 3 authoritative servers (two off-site)
  - Off-site servers set up as secondaries

. . .

9. ar

and the second

6.5

6

- Small TTL's and refresh times
- Problems
  - Syntax errors in the master files
  - Little familiarity with domain software on primary
  - Miscommunication between the NIC and Wollongong
  - Root server update procedure failed
  - Primary not installed until the day before the show

Lessons

- Make sure domain requests get honored well before you need them
- Root server updates are probably not as robust as they should be
- Hand-typed zone files require a syntax checker program

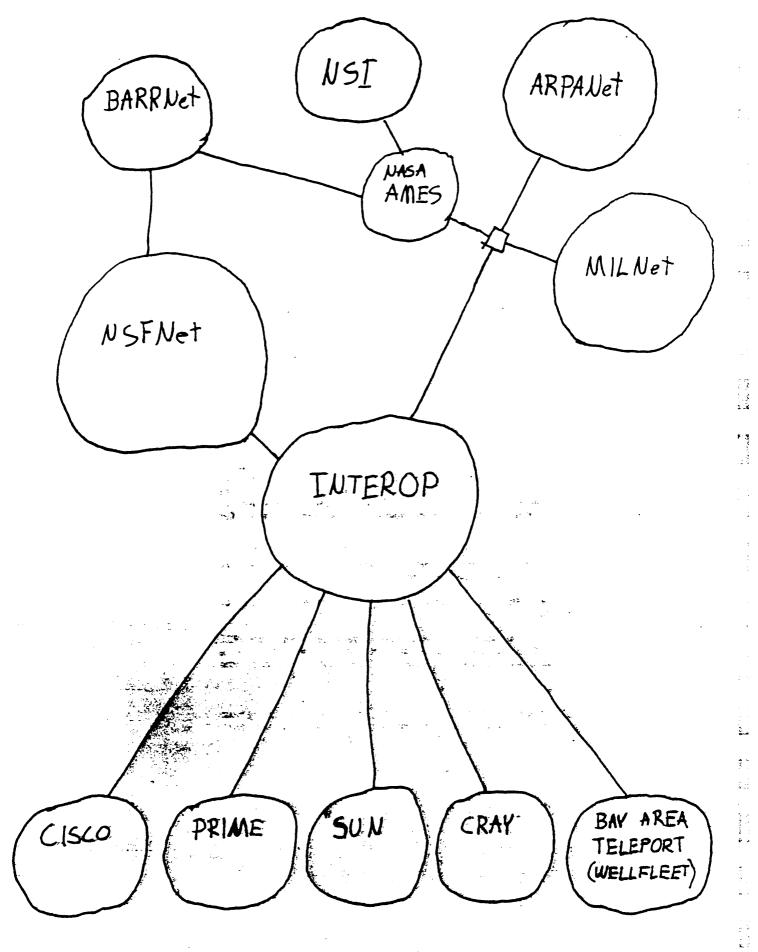
#### **Network Management**

- What we did
  - SUN running Wollongong/NYSERNet SNMP tools
  - Protocol analyzer
  - Smart Ethernet terminator
- Problems
  - pre-SNMP code on cisco routers the first day
  - bug in Proteon SNMP
  - SUN had incomplete/incorrect SNMP configuration files
  - Most segments didn't have extra tranceivers for monitoring
  - NOC personnel unfamiliar with the particular management tools available
- Lessons
  - Network management tools are useless if they can't be used quickly and easily when problems occur

| Internet Protocol Police Notice of Protocol Violation                          |                       |                                                               |
|--------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------|
| IP Address                                                                     | of Offender:          |                                                               |
| Domain Na                                                                      | me of Offender:       |                                                               |
|                                                                                | Configuration         | Protocol Violations                                           |
| Wrong IP Address                                                               |                       | Forwarding broadcast packets                                  |
| Wrong IP broadcast address Wrong Subnet Mask                                   |                       | TCP response to broadcast                                     |
| -                                                                              |                       | □ ICMP response to broadcast                                  |
| <ul> <li>(or subnets not supported)</li> <li>Excessive Broadcasting</li> </ul> |                       | Ignoring ICMP redirects           Ignoring ICMP source quench |
| ARPing for Broadcast Address                                                   |                       | Broadcast TCP packets                                         |
| Invalid Ethernet/Subnet address                                                |                       | TCP Keepalives                                                |
|                                                                                |                       | TCP aborts on ICMP message                                    |
| Monting                                                                        |                       | while connected                                               |
| Warnings                                                                       | •                     | Misc. protocol error                                          |
| Disabling UI                                                                   | Checksums             |                                                               |
| addresses                                                                      | cvers while resolving |                                                               |
| Tinygram ge                                                                    | eneration             | ARP                                                           |
|                                                                                |                       |                                                               |
|                                                                                | jestion avoidance     |                                                               |
| · · · · · · · · · · · · · · · · · · ·                                          |                       |                                                               |
| . Ľ-                                                                           |                       |                                                               |
|                                                                                |                       |                                                               |
|                                                                                |                       |                                                               |
|                                                                                |                       |                                                               |
|                                                                                |                       |                                                               |
|                                                                                |                       |                                                               |
| inspector:                                                                     |                       | Date:                                                         |
| inspector:                                                                     |                       | Date:                                                         |
| inspector:                                                                     |                       | Date:                                                         |

.

t: N


......

Berch

#### Internal routing

- What we planned
  - Use RIP throughout
  - Back doors were allowed only if not advertised
- What we actually did
  - Core routers sent all routes via RIP
  - Core routers believed RIP only from other core routers
  - Core routers had static routes to subnets behind non-core routers
  - Hosts and non-core routers to avoid RIP and use a static default route
  - Reasoning: possible bogus routes from misconfigured RIP-speakers
- Problems
  - Large and unnecessary RIP broadcasts (from NSFNet routes) caused prolems for PC's

- Lessons
  - Static routing is a b\*tch



#### **External routing**

- What we did
  - T-1 between core Proteon and AMES ARPANet/MILNet gateway
  - static routing over T-1
  - Proteon advertised RIP default
  - static routes to cisco, Prime, SUN Cray, Bay Area Teleport
  - Explicit RIP routes for NSFNet routes through IBM's NSS
- Lessons
  - cisco routers ignore RIP default

#### **External routing - NSFNet**

- What we did
  - NSFNet NSS in IBM booth
  - Secondary NSFNet path through BARRNet

É.

Ţ

**7** 3

ě.,

New Cord

5

- IBM "subnet" was a class C net so EGP could treat it differently
- PC/RT in IBM booth EGP peered with NSS and distributed RIP routes on the class C net
- cisco core gateway also EGP peered with the NSS and distributed RIP routes on the class B net
- Result: routing policy decisions by IBM and the NOC were independent of each other
- NOC policy decision: always believe NSF routes (except for one afternoon when the NSFNet T-1 was flapping)

#### • Problems

- We started out the show running old cisco code without NSFNet fixes to EGP
- The NOC policy decision somewhat controversial...
- Black holes occurred due to bad mixtures of static routes and firewalls in some of the regionals
- Lessons
  - Because of firewalls, it is dangerous to add a network to NSFNet without informing the regional networks.

### Disappointments

- Network took one day too long to build
  - No time for interoperability testing
  - Network management not set up
  - No time for packet watching
  - Vendors pretty much left to sink or swim on their own
  - Network would have been more solid if it had run for a day before the show

34

# Things I was particularly happy about

- It worked well enough...
- We got a tremendous amount of help from the Internet community

#### The reasons it all worked

**Rick Boivie** Len Bosack David Bridgham **Eric Brunner** Jeff Burgan Myu Campbell Mario Castro Shelly DeVries Steve Knowles Susan Hares Alex Latzko Sandy Lerner Milo Medin **Robert Michaels** Paul Mockapetris Mike Moesler Vince Raya Sue Romano **Greg Satz** Mick Scully **Jim Shimoto** Mike St. Johns James VanBokken John Veizades

1114

n 12 -

12

12

14

#### People who contributed to this talk

Peter DeVries Milo Medin Internet Protocols ("TCP/IP") for Amateur Radio

Phil Karn Bell Communications Research .

5

**1**00 - 200

•

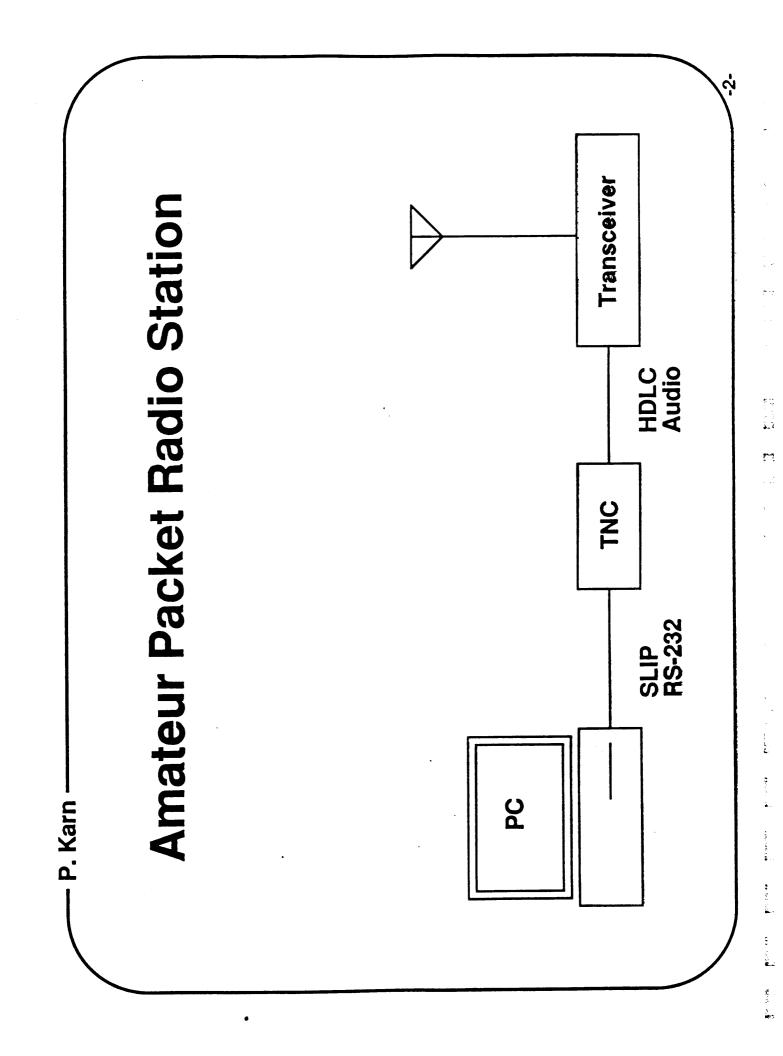
r Train

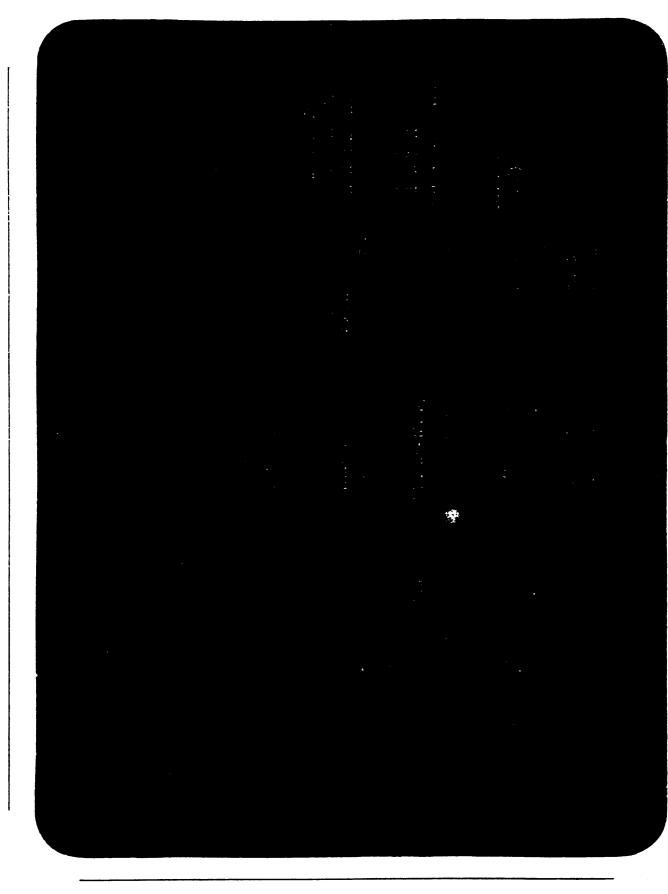
و : ب

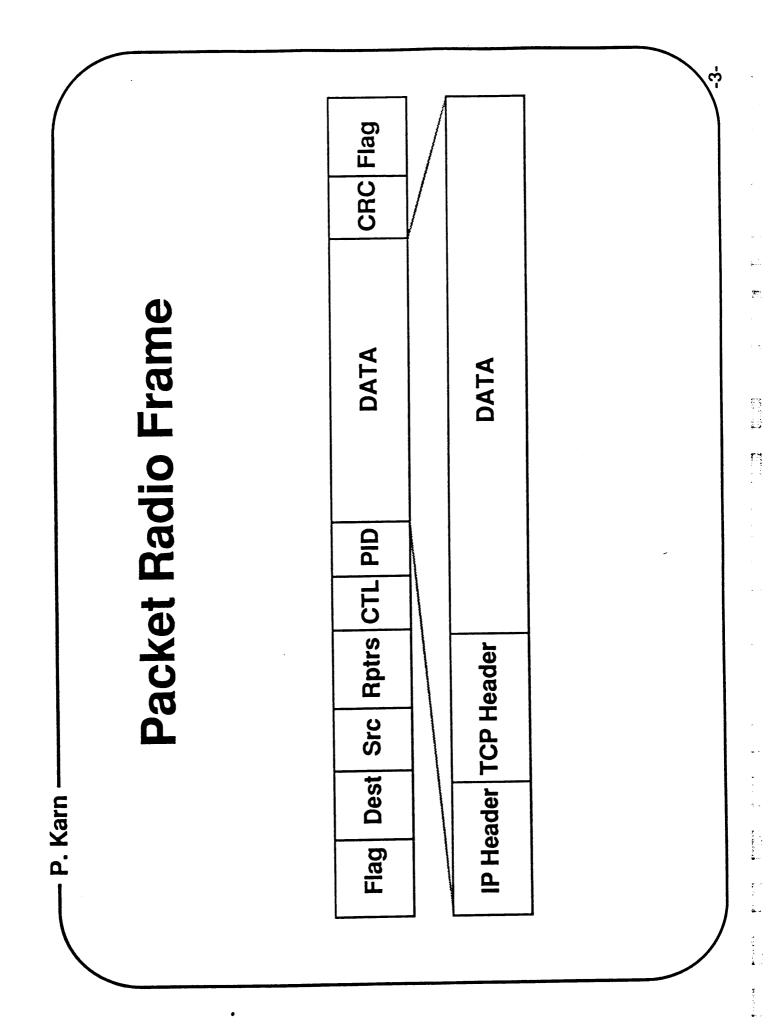
And the set

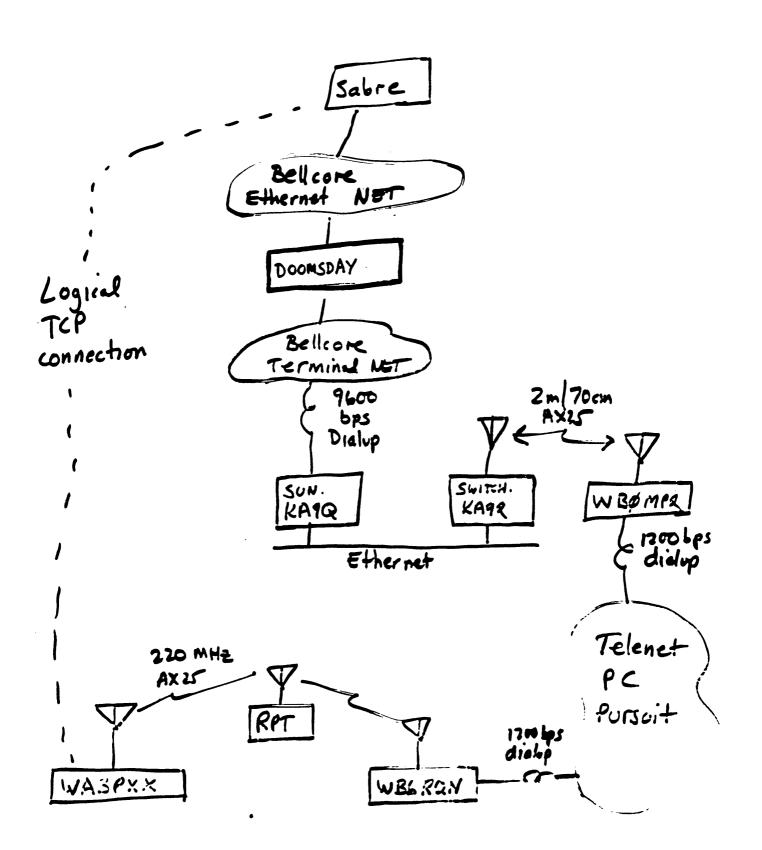
6 . . . . **. 1** 

n an an Aranga an Ara


INTERNET


PROTOCOLS


("TCP/1P")


for AMATEUR RADIO

Phil Korn, KA9Q





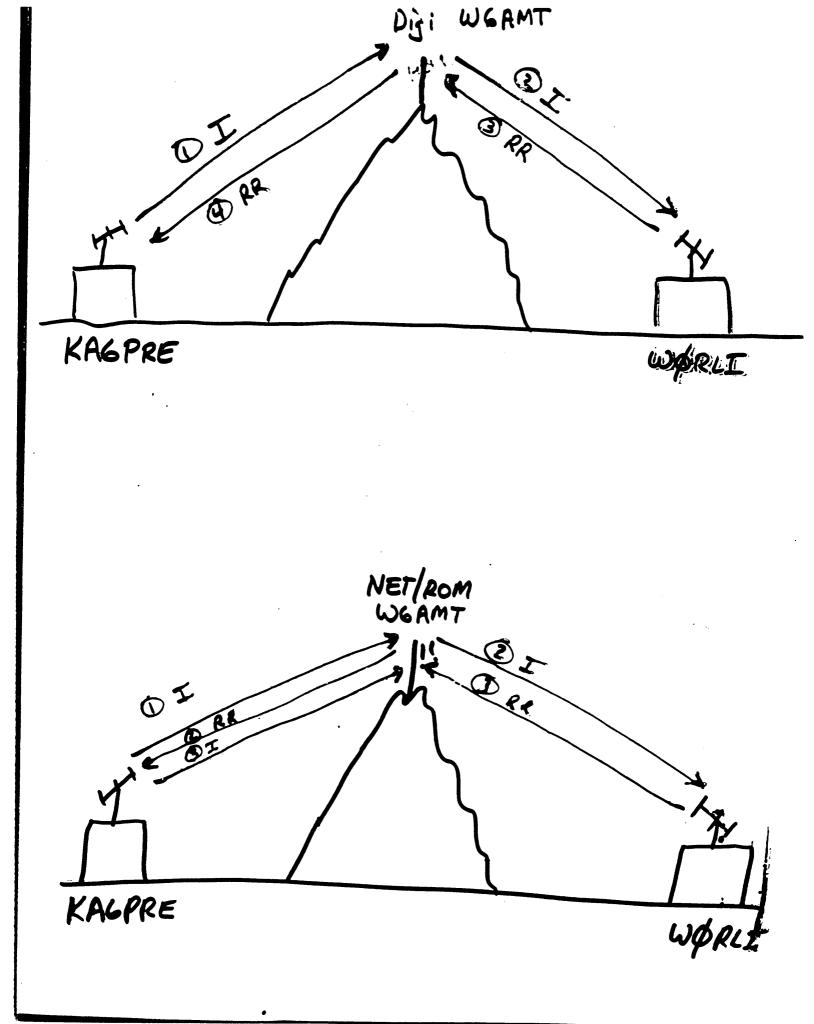




#### **Packet Modem Developments**

-----

56 Kbps MSK (WA4DSY)
 3 board kit from GRAPES (Atlanta)
 28 MHz IF to linear transverter


9600 bps FSK (G3RUH)
 9600 bps FSK (K9NG)

 board kit
 Connects to FM voice radio
 Internal connections required

• 4800 bps (HAPN)

• 1200 bps PSK (TAPR/JAMSAT) • 1200 bps PSK (G3RUH) 1 board kit Connects to SSB/FM radio (FO-12)

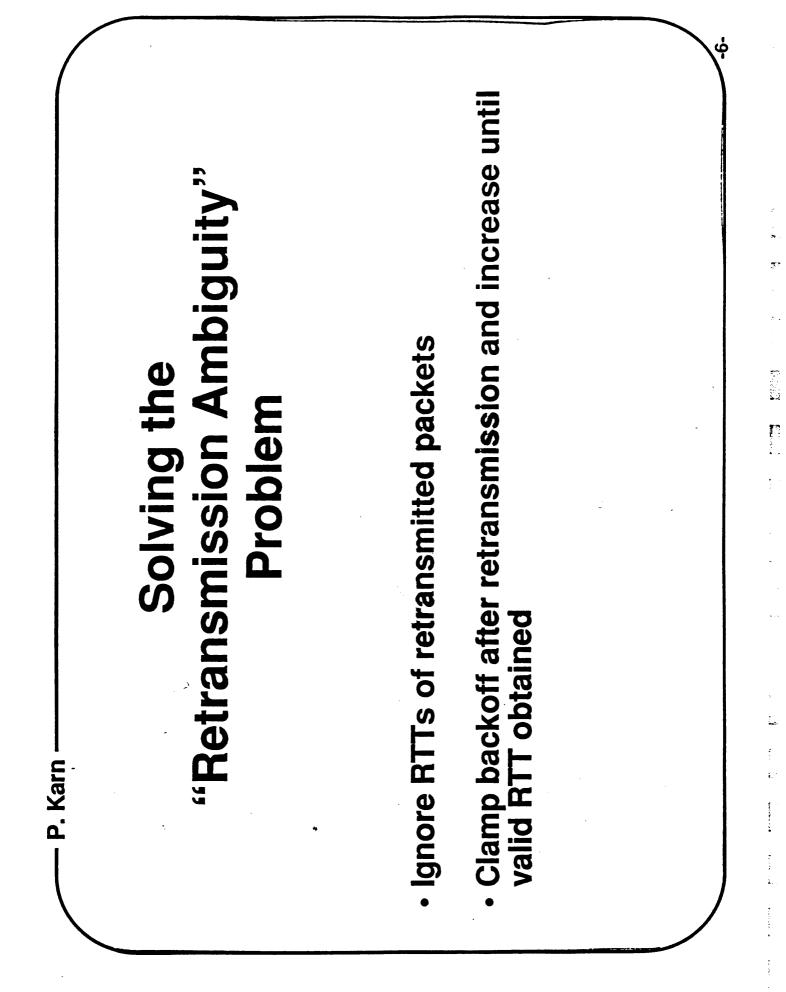
- 1 -



# Problems

P. Karn -

- Tinygrams
- Poor round trip timing algorithms
- Protocol violations, esp. on retransmit
- Short giveup timers
- Telnet echo
- Keepalives
- Fragmentation


4

-----

Fixes

P. Karn -

- Nagle tinygram avoidance algorithm
- Believe the numbers you get no arbitrary limits! Jacobson, Karn RTT algorithms
- Eliminate TCP giveup timers Application, *not* TCP, should abort
- Eliminate TCP keepalives



**Partial Fixes** 

- P. Karn -

- Telnet local echo
- Link level retransmission
- Not a replacement for "doing it right" at the physical layer
- Link level (transparent) fragmentation

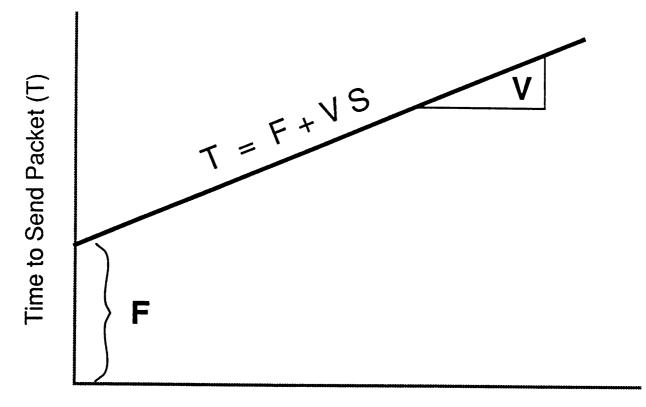
. . . : 4.2 Leeding 5 1 an search an nterestantes notas en entrestantes e entrestantes entrestant High Performance TCP Over An Ethernet

Van Jacobson Lawrence Berkeley Labs

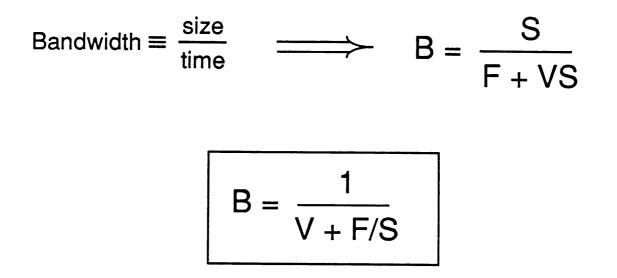
**89-4** The fields the second s

### Costs (in time) to Send a Packet

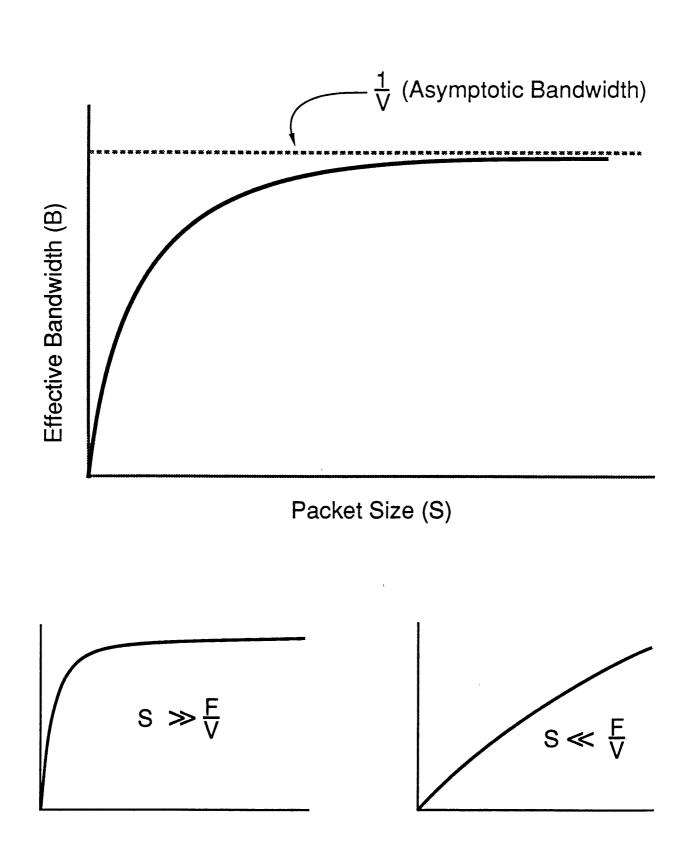
"Fixed" (per-packet):

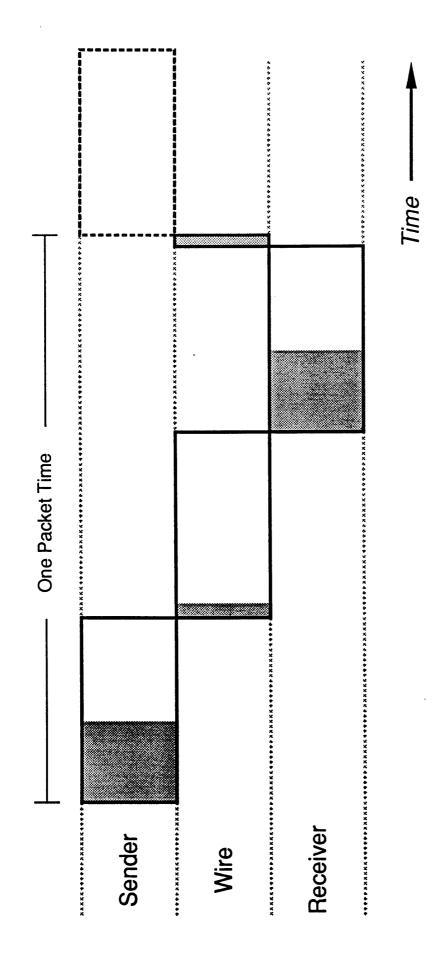

Examples:

- Media acquisition time
- Packet headers & trailers
- Protocol processing
- Device & interrupt service


"Variable" (per-byte):

Examples:


- Bit time on wire
- Copy to/from user space
- Checksum data




Packet Size (S)



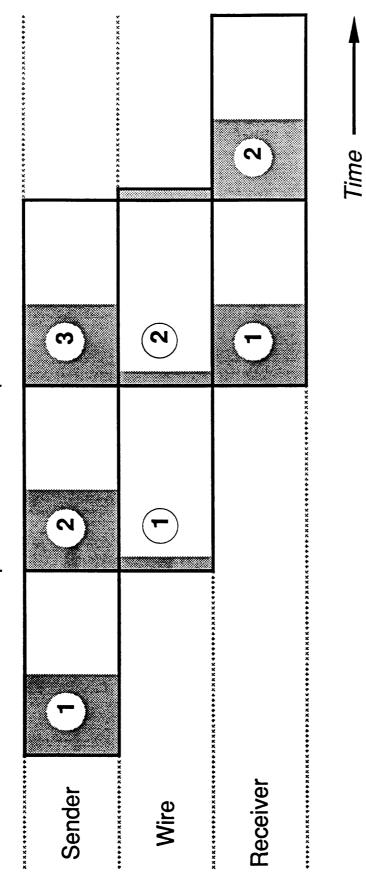
ş÷



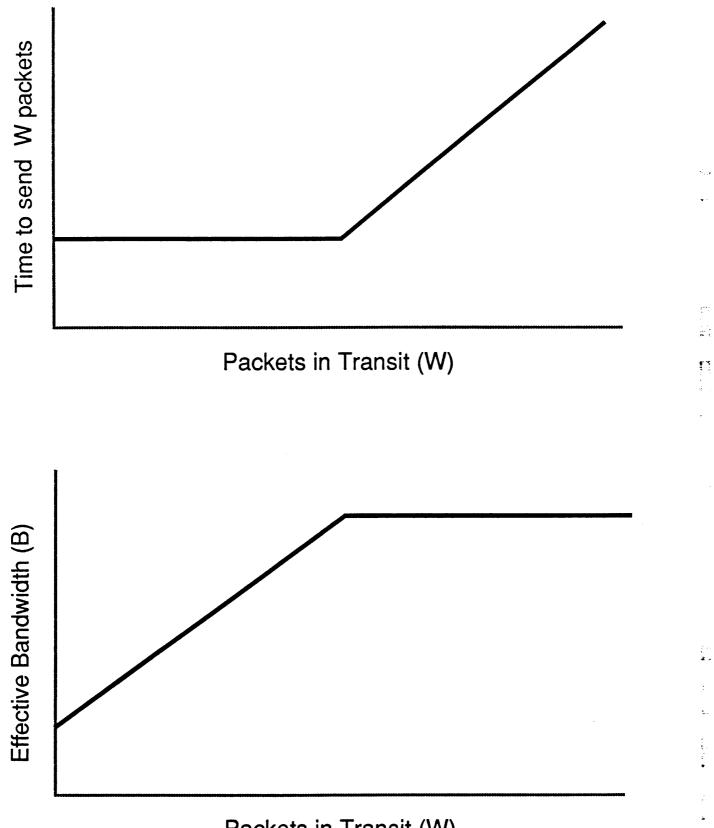


# Sequence of Events: Sending One Packet

. .


s. :- : : :

and the second


-

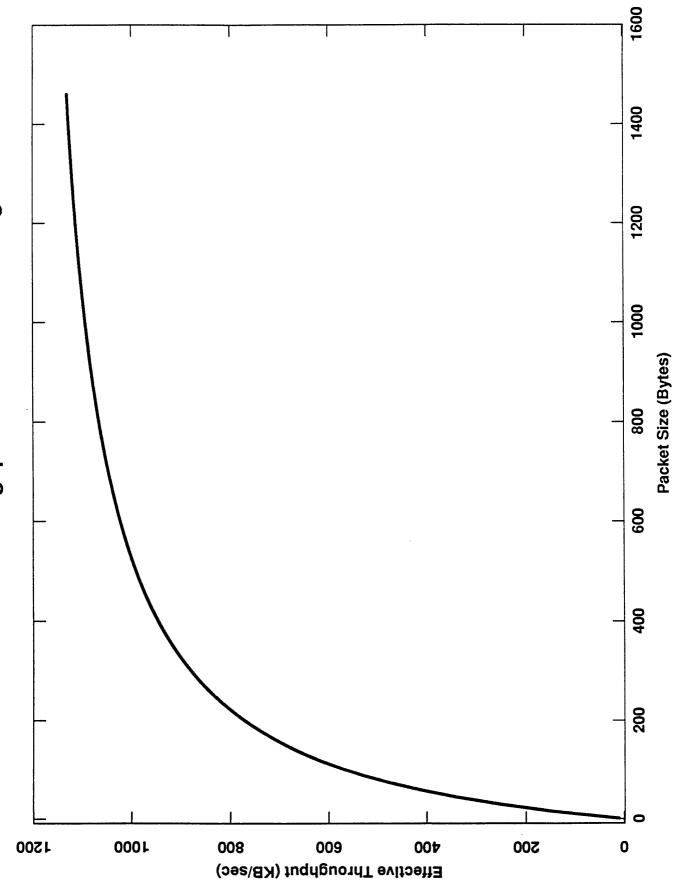
Ľ










Packets in Transit (W)

### **Ethernet Costs**

| • Fixed costs:                    |                |
|-----------------------------------|----------------|
| 24 byte IPG / Sync / CRC          |                |
| 14 byte Ether header              |                |
| 20 byte IP header                 |                |
| 20 byte TCP header                |                |
| 78 bytes (= 62 us)                |                |
| $\times 1.5$ (one ack per 2 data) | 93 us / packet |
| • Variable Cost:                  |                |
| 10 Mbps                           | 0.8 us / byte  |

 $F/V = 116 \implies$  want at least 1160 byte packets.

Max packet length is 1538 bytes. 1538 - 78 = 1460 bytes user data max variable cost =  $1460 \times 0.8 = 1168$  us total cost for max length packet = **1261 us** max efficiency = 1460 / 1577 = 93%



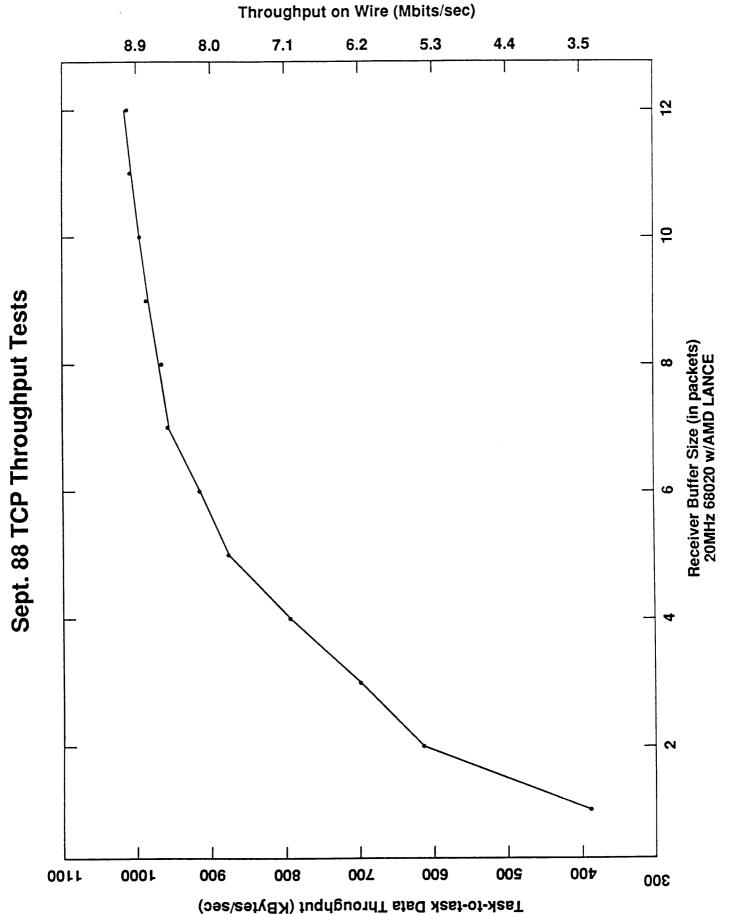


.

: \* :

2

2

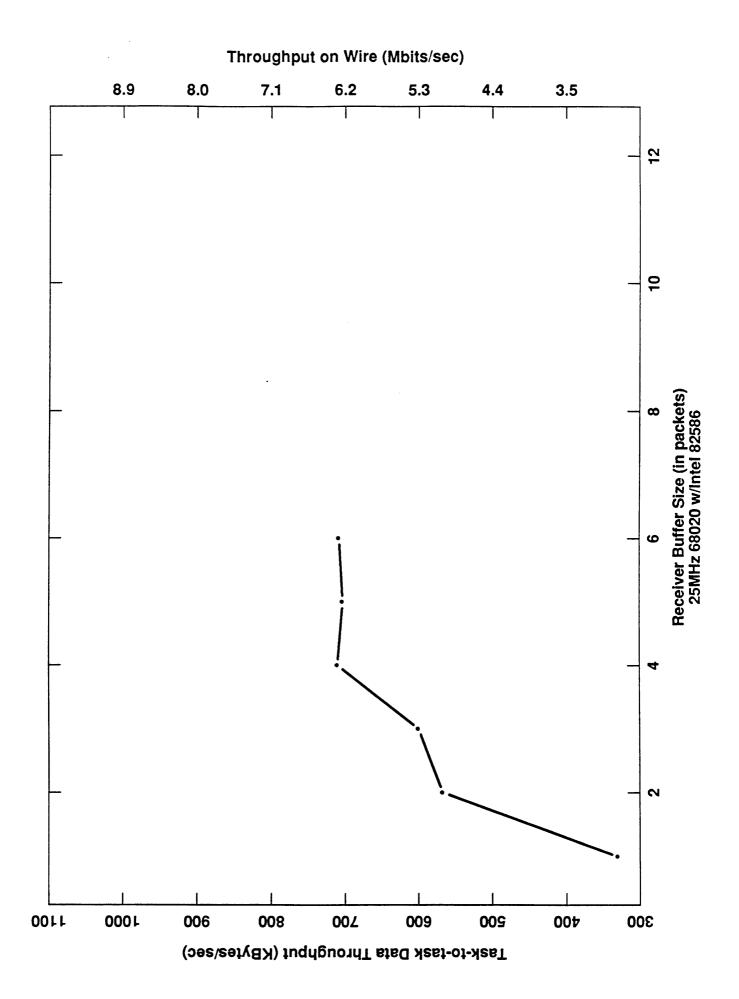

Stright B

### **CPU / System Costs**

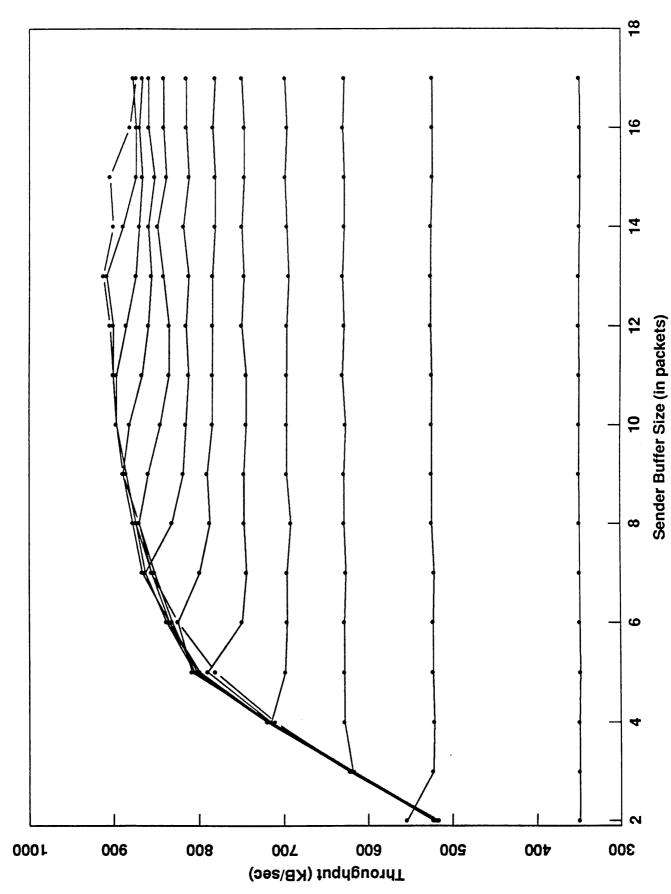
(for 20MHz 68020 running 4BSD Unix)

| • Variable Costs (for 1460 byte  | packet):      |           |        |
|----------------------------------|---------------|-----------|--------|
| (limitting bandwidth is memory @ | @ 130 ns/byte | <i>э)</i> |        |
| User — System copy               | 200 us        |           |        |
| TCP Checksum                     | 185 us        | }         | 771 us |
| LANCE bus use                    | 386 us        |           |        |
|                                  |               | ر         |        |
| • Fixed Costs:                   |               | _         |        |
| LANCE (Ethernet) driver          | 100 us        |           |        |
| TCP / IP / ARP protocols         | 100 us        | }         | 440 us |
| other OS functions               | 240 us        |           |        |
| (syscall, sleep, wakeup,         |               | ر         |        |
| 3 interrupts)                    |               |           |        |
| Idle                             |               |           | 200 us |
|                                  |               | _         |        |

1411 us



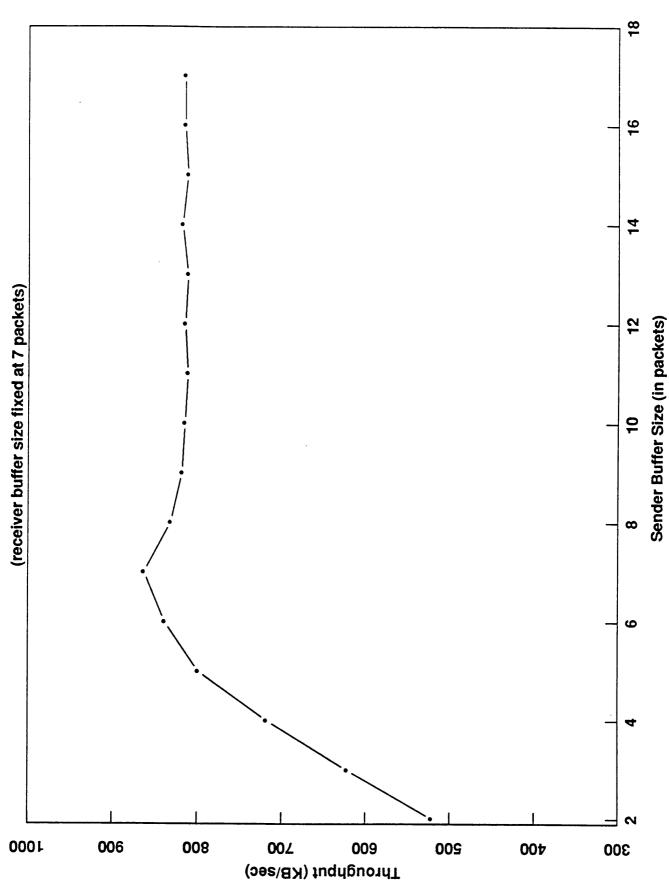

<u>.</u>


. .

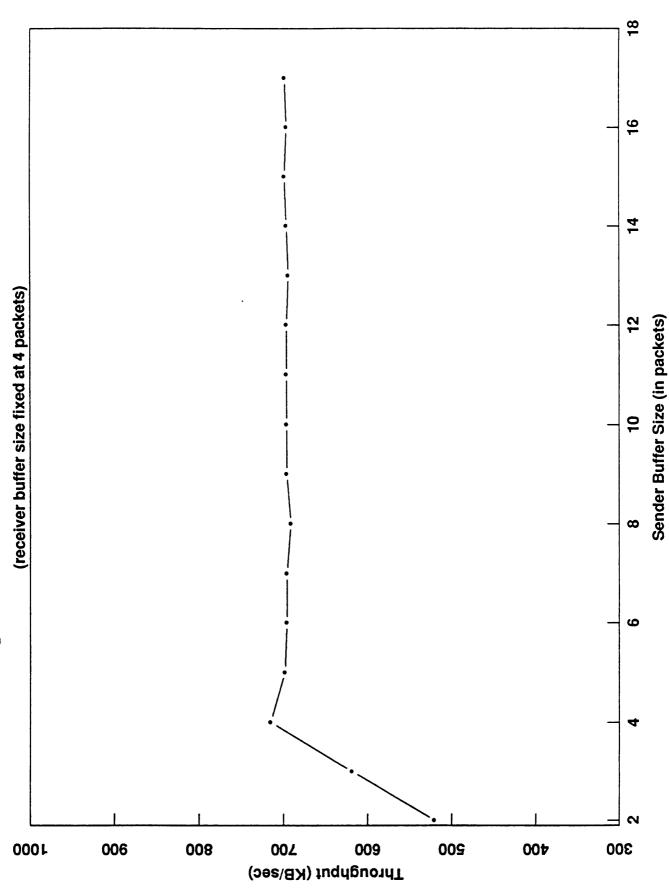
÷.,

=









.

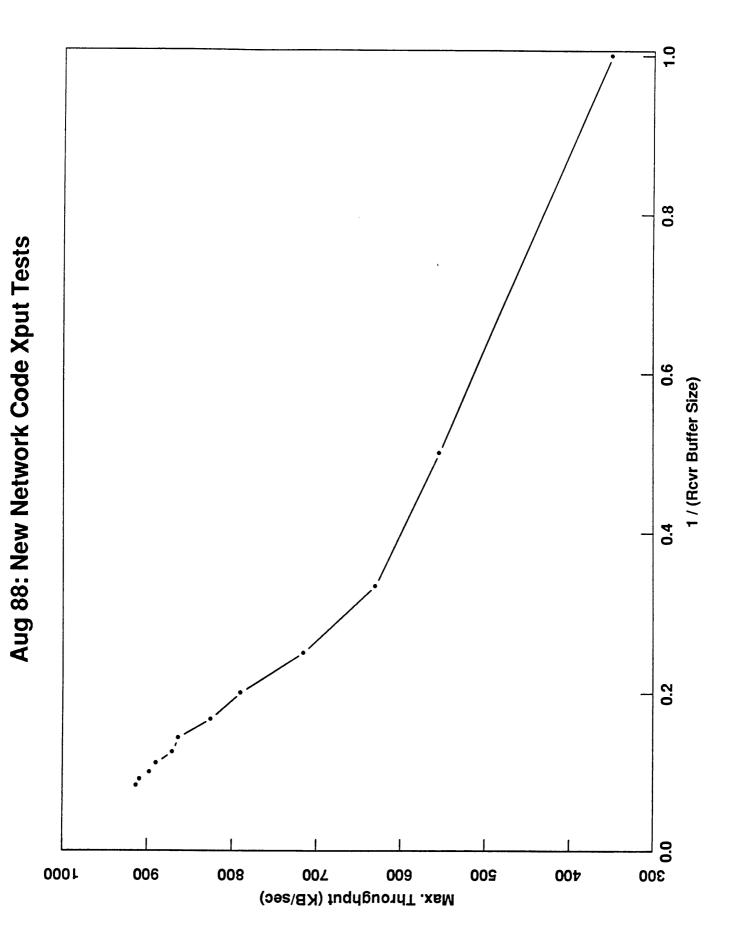
ter en la constante Ser en





Aug 88: New Network Code Throughput Tests




F 1

і. 1. ....

इ. े

And the strength

and a second



5 ė ę H ann M •...• 1 . . . 1 

### 4BSD TCP "Header Prediction"

Identifying candidates (*ti* points to the incoming segment, *tp* points to the protocol control block).

**Brute-force version:** 

#define FLAGS (SYN|FIN|RST|URG|ACK)

Minimalist version:

"Receiver" processing: (I.e., data in the packet.) Make sure there's no piggy-backed ack, no packets on the reassembly queue, and enough buffer space to take the data.

```
if (ti->ack == tp->snd_una &&
 ti->len <= so->so_rcv.sb_cc)) {
 tp->rcv_nxt += ti->len;
 m->m_off += sizeof(struct tcpiphdr);
 m->m_len -= sizeof(struct tcpiphdr);
 sbappend(&so->so_rcv, m);
 sorwakeup(so);
 tp->t_flags |= TF_DELACK;
 return;
}
```

Provided Activity Contraction Cont

"Sender" processing: (i.e., no data in the packet.) Make sure something is acked, the ack is for data in-transit, and we're not in the middle of slow-start or congestion avoidance.

If this segment was timed, update the round-trip timer. If all outstanding data is acked, stop the retransmit timer, otherwise restart it for the next segment. If there's a process waiting to output, give the user a crack at the new space. Otherwise, if there's data in the socket buffer, let the output routine decide whether to send it.

```
if (SEQ_GT(ti->ack, tp->snd_una) &&
 SEQ_LEQ(ti->ack, tp->snd_max)) {
 if (tp->t_rtt && SEQ_GT(ti->ack, tp->t_rtseq))
 tcp_xmit_timer (tp);
 sbdrop(&so->so_snd, ti->ack - tp->snd_una);
 tp \rightarrow snd una = ti \rightarrow ack:
 tp->t_timer[REXMT] =
 tp->snd_una == tp->snd_max ?
 0 : tp->t_rxtcur;
 m_freem(m);
 if ((so->so_snd.sb_flags & SB_WAIT) ||
 so->so_snd.sb_sel)
 sowwakeup(so):
 else if (so->so_snd.sb_cc)
 (void) tcp_output(tp);
 return;
}
```

.

.

·

• •

~

. . .

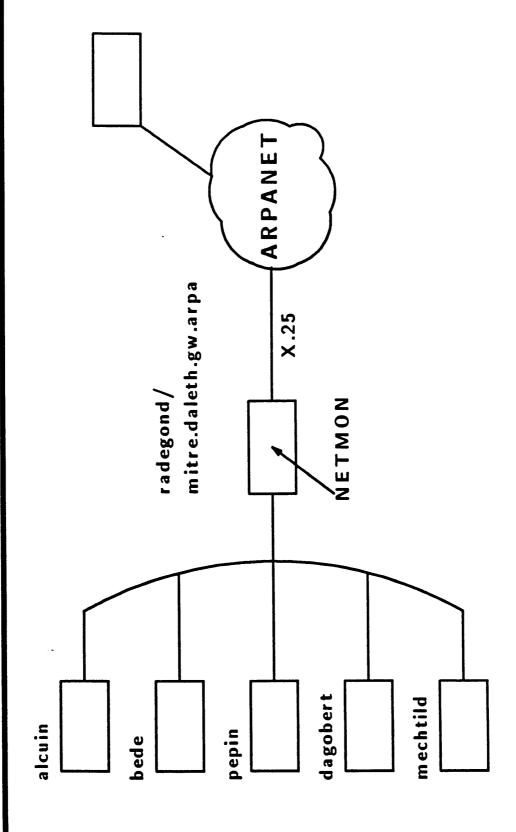
.

۰. ۲۰

**\*** ·

### Congestion Control Observations Using NETMON

•


Allison Mankin Mitre

And a second sec

## **Congestion Control Observations Using NETMON**

Allison Mankin

## Internet Engineering Testbed

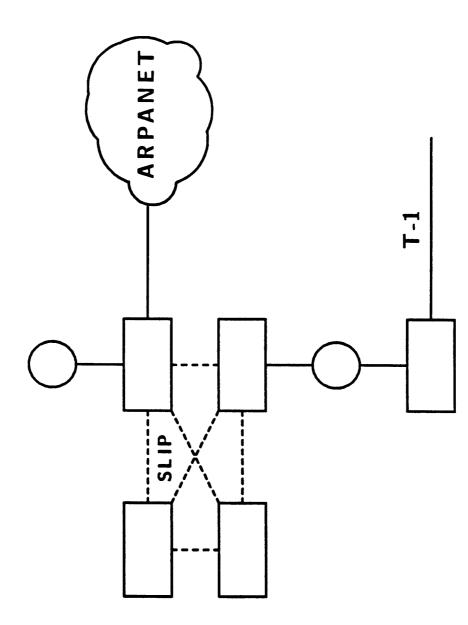


MITRE

₩.ż

to a state

**,** 


لأشد

e . -

and the state of t

er er er

# **Expanded Internet Engineering Testbed**



### NETMON

- Internal packet monitoring for
  - BSD UNIX 4.3
    - SUNOS 3.X
- :: :
- Not restricted to Ethernet
- Would like some installation in other BSD clones

### MITRE

Level - 1

**5**0000 - 20

\* : ;

### NETMON (continued)

- Double buffer design and fixed-size records to minimize amount of interrupt disabling
- Timestamp can be from alternate clock
- Access (reading the records, modifying parameters) through special file

### **NETMON Records**

- MBUF ADDR
- TIMESTAMP
- LOCATION
- EVENT
- INFO WORD

### MITRE

•~~ **•** 

Provide State

ALL CLEAR AND A

## NETMON Records (continued)

### QUEUE LEN

- PROTOCOL DATA
  - 12 BYTES

(Plus next record whole, if header mode is selected instead of measurement mode)

### X25\_0UT X25\_DEQ X25\_IN ETH\_DEQ ETH\_OUT ETH\_IN Defined locations IP-OUT NI-4I

• Events

REQUEST DELIVER NEW\_CIRC\_REQD AT\_SEND\_REQD AT\_SEND\_FAIL DISCARD FORW

### MITRE

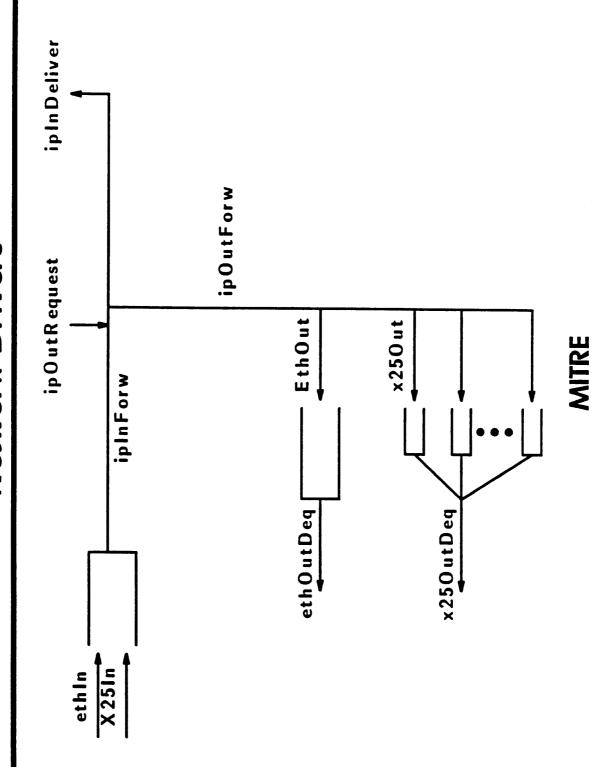
: • : •....

**7** 7

5 A

1997 - 1997 - **19** 

\* :


(continued)

INFO WORD
 (Varied Meaning)
 X25 LCN# (QUEUE ID)
 Interface ID

VG-0010 MITRE - McLean, VA

Ailison Mankin

### **NETMON** Probes in Gateway - 4BSD IP and Network Drivers



se né

**r** ?

. .....

VG-0011 MITRE - McLean, VA

Allison Mankin

## Measurement Mode Example (as formatted by NETMONLOG)

| 4105   | 801E6700      | 16:45:11.84   | ethIn>0                                      | 0    | len -1: |
|--------|---------------|---------------|----------------------------------------------|------|---------|
| 4106   | 801E6700      | 16:45:11.84   | ipInForw>0                                   | qe0  | len 40: |
| alcuin | .mitre.org.11 | 33>ucbarpa.b  | alcuin.mitre.org.1133>ucbarpa.berkeley.edu.9 |      |         |
| 4107   | 801E6700      | 16:45:11.84   | ipOutForw>-1                                 | dda0 | len 40: |
| alcuin | .mitre.org.11 | .33>ucbarpa.b | alcuin.mitre.org.1133>ucbarpa.berkeley.edu.9 |      |         |
| 4108   | 801E6700      | 16:45:11.84   | x25Out>2                                     | 2    | len -1: |
| ۰      |               |               |                                              |      |         |
| •      |               |               |                                              |      |         |
| •      |               |               |                                              |      |         |
| 4135   | 801E6700      | 16:45:13.03   | x25OutDeq>3                                  | 2    | len -1: |

# Measurements of Slow-start TCP

- **Competing 4.2 TCP connections do hog bottleneck queue**
- Attempts to find a cliff with increasing numbers of connection sharing bottleneck queue
- Couldn't breake RTT estimation couldn't see any spurious retransmissions and no established connections gave up
- From 18 on, some connections got to SYN giveup point (relic of 4.2 - 75 seconds counted by keepalive timer) 1
  - All of these 4 SYNs in a row source quenched (SQ) preference to small windows)
    - Repeated, frequent queue overflow starting with 3 connections to same destination

Aside -

Need to be able to monitor for bottleneck queues like this 3-connection case

• ?? MIB Object -

First hop destination of last dropped packet Poll in conjunction with a counter of drops

# Preliminary Results on Random Dropping

- Algorithm selected with setsockopt
- First Cut:
- ip\_output gets Q empty/not empty indications from network drivers
- hysteresis in starting and stopping random drop ł
- when on, drop each jth (a random number) packet 1
- source quench not sent
- Direct observation --- fairness, queue dynamics

### MITRE

| •        |
|----------|
| · ·      |
| ~        |
| -        |
|          |
| 6        |
|          |
|          |
| ä        |
|          |
| 1        |
|          |
| v        |
| -        |
| -        |
| _        |
|          |
|          |
|          |
| ш        |
|          |
| ~        |
| <u>u</u> |
|          |
| _        |
| -        |
|          |
| ~        |
|          |
| -        |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
|          |
| -        |
| ••       |
|          |
|          |
| 0        |
| ō        |
| Υ.       |
|          |
| 0        |
|          |
| <b>`</b> |
| ~        |
|          |

# Random Dropping

- Queue max brought down to 5
- Many queue overflows in first 10 secs (out of 300) were totally eliminated by starting random drop at once instead of on next input
- Little decrease in total number of dropped packets still have to "make mistakes to get information"
- 4.2 TCP gets large share of discards
- seen more than 1 discard for any background connection) Innocent bystanders get very few discards (haven't yet

# MITRE

e. Assessed

i...

ĉ

-

1 . .

What Is USENET? What Is NNTP?

Gene Spafford Purdue University

•

•--

**9**7. 1.

.

а. •

÷

• --

. . .

.

.

#### What is USENET? What is NNTP?

#### Subtitle: Where did all my disk space go?

Gene Spafford

Dept. of Computer Sciences Purdue University W. Lafayette, IN

spaf@cs.purdue.edu

#### **Some History**

• A News

Started as mailing lists in 1979 at Duke and UNC. Tom Truscott & Jim Ellis had the idea, based on UUCP.

Steve Bellovin did first version of news, with Steve Daniel. Intended for less than 100 sites, less than few messages per group.

• B News

B News at U. C. Berkeley by Mark Horton and Matt Glickman. 2.9 released in 1982.

Notes written by Ray Essick and Rob Kolstad at same time. Based on Plato system, integrated with News in 1985-1987.

• Extensions

2.10 was released in 1984 by Rick Adams @ seismo. Moderated groups were added at this time.

#### History (cont.)

• Directed Changes

2.11 was released in 1986. Included batching, compression, sendme features, central consistency control.

• Next Generation

Now in Beta Test — available 1989.

#### **Structure**

- Each article stored as a separate file
- Like articles are grouped in directories by topic
- Topics have hierarchies (comp, news, sci, soc, misc, rec, talk)
- Hierarchies differ by content and distribution. Examples; bionet, biz, world.
- Article structure defined in RFC 1036 header and body. Simple files, simple text.
- Central control files contain pointers & authorizations
- Independent reader agents access files & display articles
- News posting and transfer agents interact with control files through well-defined functions.

÷.,

an o oa Asaran

1

÷.

#### **Flow**

- Articles copied to neighboring systems based on distribution
- Cycles rejected, too old articles rejected. Information in the article header used to determine validity.
- "Flooding" algorithm redundancy built in
- Articles expired locally after set interval, or canceled

#### **Transport**

Primary transport for Usenet has always been UUCP.

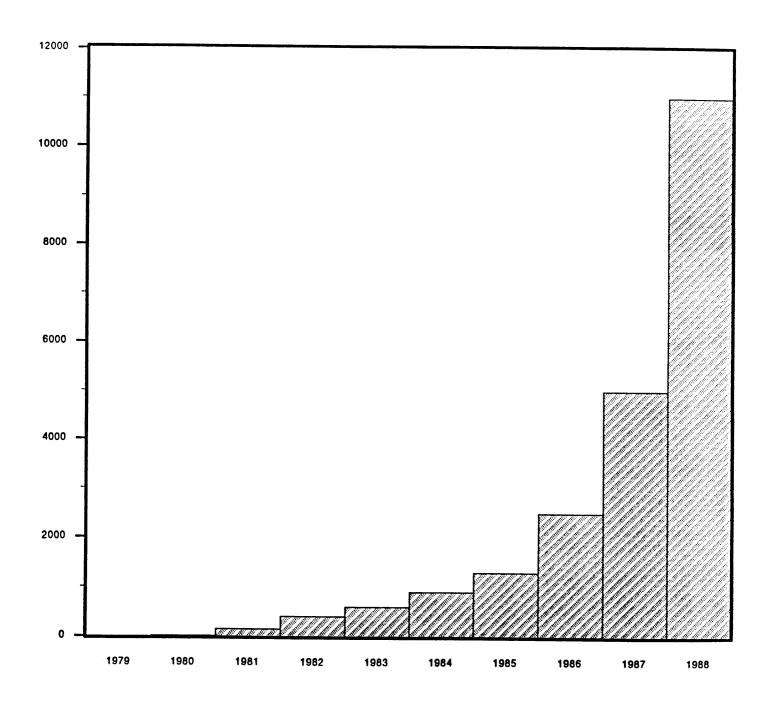
- 1979 to 1982, 300 baud dial-up
- 1982 to 1985, 1200 baud dial-up
- 1985 to present, 2400 baud dial-up
  - \* 1986 had LZ compression, UUCP-over-TCP
  - \* 1986 saw NNTP arrive (RFC 977)
- 1987 to present, Telebit Trailblazers with MLZ and UUCP support
- 1986 to present, NNTP over TCP, UUCP over X-25
- 1985 to present, some sites get USENET via tape!

5.1

#### **Traffic**

Based on figures from R. Adams, H. Spencer, M. Horton, S. Bellovin and B. Reid:

- 1979: 3 sites, 2 articles per day
- 1980: 15 sites, 10 articles per day
- 1981: about 150 sites, 20 articles per day
- 1982: about 400 sites, 35 articles per day
- 1983: over 600 sites, 120 articles per day
- 1984: over 900 sites, 225 articles per day
- 1985: over 1300 sites, 375 articles per day, 1Mb+ per day
- 1986: over 2500 sites, 500 articles per day, 2Mb+ per day
- 1987: over 5000 sites, 1000 articles per day, 2.4Mb+ per day


#### Present Traffic (as of 10/1/88)

- Nearly 11000 sites.
- Sites in more than 17 countries, including Australia, New Zealand, Japan, Canada, England, Sweden, France, Italy and Germany.
- Over 1800 unique articles per day, average
- Over 4Mb of traffic per day, average
- Potential audience of 1,480,000 readers; actual readers in excess of 303,000.
- Most widely read group has over 40,000 regular subscribers.
- Over 450 active newsgroups
- over 80% of articles reach main sites in 1 day, over 97% in 3 days

5.5

2.1

# **Growth in Sites**



# **Growth in Traffic**



**USENET/NNTP** 

2.

÷

#### **Control**

... interesting feature — there is no authority!

Usenet operates on consensus and momentum.

- Any site can join
- No one controls flow, although some "old-hands" are listened to more carefully than others.
- Peer pressure is main control
- Abuses are surprisingly few and minor
- Voluntary education and upgrades structure has some aids
- Increasing cost having more significance

#### <u>NNTP</u>

- Developed from independent work by Brian Kantor and Phil Lapsley, 1985.
- RFC 977, released in 1986
- Four major goals:
  - \* Reduce phone traffic for news transfer
  - \* Reduce "flooding" IP traffic
  - \* Allow diskless computers to access news
  - \* Reduce impact of mailing lists by integration with news
- Uses server daemon on TCP port.
- Supports posting, reading, transfers
- Reader agents for Unix, VMS, TOPS-20, MS-DOS, and Genera-7.
- Vastly increased connectivity; tremendous reduction in machine impact.

÷...:

#### Concerns

- Increasing volume
- Educating users; maturity of users
- Comprehension of namespace
- Status of Usenet sites not common carrier
- Costs communications, CPU, disk, human
- Legal questions copyright, trade secret, slander, over-zealous prosecutors
- Nutcases
- Continuity of software and guidance

#### Social Effects

- Citations to USENET
- Collaborative projects
- Conferences
- Software community
- Friendships, romances, marriages
- USENET as a condition of employment
- Image of schools and companies
- Growth of new services (uunet, for example)
- Source of research material
- Publications media scholarly
- Publications media fanzines (e.g., *OtherRealms*)

**?** (

1

### Some Futures

- Commercial USENET?
- Alternate networks?
- The "Balkanization of USENET
- Reappearance of mailing lists
- Hypermedia

. . . -. • . • • s.' 

. . . .

The NIC Domain Chart

.

Mark Lottor SRI-NIC

-

4 1

<u>.</u>

£

ZONE Zealot Of Name Edification

1

.

.

# **Domain Tree-Walker Statistics**

| Domains                                                                                                           | 1280                                                            |
|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| <i>Domains (no data)</i>                                                                                          | <i>140</i>                                                      |
| Internet Hosts                                                                                                    | 56000                                                           |
| <i>Registered Hosts</i>                                                                                           | <i>5700</i>                                                     |
| MX-only entries                                                                                                   | 3500                                                            |
| "*" MX entries                                                                                                    | <i>550</i>                                                      |
| Gen'd host table                                                                                                  | 4340 kb                                                         |
| Official host table                                                                                               | <i>600 kb</i>                                                   |
| host table string searches<br>"Sun"<br>"Sun.Com"<br>"Unix"<br>"Vax"<br>"IBM"<br>"GW"<br>Registered GWs<br>"Tops-" | 17800<br>7500<br>14200<br>5500<br>4700<br>2200 – N<br>260<br>60 |

#### On Some T<sub>1</sub> Satellite Link Performance

•

John Lekashman NASA-Ames

[slides not provided]

• .

•

-

-

. :

#### 7. ADDITIONAL WORKING GROUP UPDATES

~ **د**... Š è. 5 - 2 -

Interconnectivity

Guy Almes Rice University

NASA Ames Meeting 27 September 1988

5 . . . • • 

. . . :

-

. .

Interconnectivity WG Update Reported by Guy Almes

27 September 1988 NASA Ames Rsch Ctr. Moffett Field, CA

Attendees: Guy Almes <almes@rice.edu>, chair Hans-Werner Braun <hwb@mcr.umich.edu> Michael Brescia <brescia@alexander.bbn.com> Scott Brim <swb@tcgould.tn.cornell.edu> Joe Choy <choy@windom.ucar.edu> Phill Gross <gross@gateway.mitre.org>, ex officio as IETF chair

Milo Medin <medin@nsipo.nasa.gov> Russ Mundy <mundy@beast.ddn.mil> Mike St. Johns <stjohns@beast.ddn.mil>

Also in the Working Group, but unable to attend this meeting: Marianne Lepp <marianne@alexander.bbn.com> Jacob Rekhter <yakov@ibm.com>

The first meeting of the Interconnectivity Working Group was hosted by Milo Medin of NASA, and was called, more or less, to order at 9:00 a.m. Thanks to all those who could attend on such short notice and to Milo for serving as host under the twin disadvantages of recovering from a close encounter with a car and being torn away from InterOps preparations.

We discussed our short and long-term agenda. In the short-term, the IAB has asked Phill Gross for input on the status of EGP3, and he has asked us for recommendations since this matter falls squarely within our technical area. In the longer term we hope to improve inter-autonomous-system routing in practical ways that allow timely implementation. (Refer to the IWG Charter for a more detailed discussion of this.) (NB: In hindsight, as the meeting progressed, it seemed to me as though these two agenda foci did not conflict as much as I had feared.)

Hans-Werner Braun reported on a meeting held at Ann Arbor on 15 August to discuss Inter-AS routing in the NSFnet context. There was considerable overlap both of participants and of technical focus, and we benefitted from their work and insight. (Refer to Hans-Werner's notes from this meeting.) There were two technical suggestions that arose at that meeting that proved important for our our meeting:

Include in the entry for each destination network advertised the AS# (i.e., the 16-bit Autonomous-System Number) of the autonomous system from which the advertiser learned the route. <2> Develop some EGP3 metrics that describe how the route was learned. Much of our meeting consisted of:

- <a> discussing how we thought Inter-AS routing should work and
- <b> discussing how EGP-3 with these two suggestions could allow this to take place.

In the following discussion we agreed that the hierarchical NSFnet Model of (a) Multiple national backbones (backbones for short), (b) Multiple mid-level networks (regionals for short), and (c) Many campus networks (campuses for short) was normative. Each regional connects to a generally large set of campuses, and to one or more backbones. It advertises these campuses to each of the backbones, and advertises all its known routes to its campuses (or else advertises default to its campuses). It will occasionally happen that a regional connects to another regional; great care must be taken in this case. Each backbone connects to a possibly large subset of regionals, and may also connect to one or more other backbones and possibly to some campuses. There is a so-called Two-Phase Rule that dictates that a packet travels across the internet in two phases. During the first phase, it travels 'up'the hierarchy; each Inter-AS hop in this phase either stays at the same level (e.g., backbone to backbone) or goes up a level (e.g., from regional to backbone). During the second phase, it travels 'down' the hierarchy; each Inter-AS hop in this phase either stays at the same level (e.g., backbone to backbone) or goes down a level (e.g., from regional to campus). Thus, once a packet goes 'down' the hierarchy once, it can never go 'up' again. In our consideration of EGP3, we tried to think about how it would enable smart gateways between AS's to make appropriate decisions without violating simple policy rules or creating routing loops. As usual, we want to determine strategies that improve the current situation while being deployable within the near-term future.

7 ( -

.

-

Ì

.

ŗ

-

ł,

2

With specific regard to EGP3, we came up with the following:

- <1> The EGP3 Idea paper should be revised and turned into an RFC as a Proposed Recommended Standard. We understand this will require work, and will help Marianne with the needed additions while keeping editorial leadership with her.
- <2> Add to the current EGP3 design a Next-AS field in each route. This field denotes the immediate AS from which the advertising AS received the route. There needs to be some denotation of an empty value for this field.
- <3> We will need a Metric Type that measures the number of AS's in the EGP chain from the originating AS. This metric is important in the case that a non-empty Next-AS value had to be "shifted out". The metric will have allowable values for other cases, but its presence will be manditory when this shifting out has occurred.

- <4> We will need to describe recommendations for normative use. For example, we should describe how the protocol can be used in a fashion that avoids routing loops.
- <5> We recommend that EGP3 be used within NSFnet, the NASA Science Network, the NSFnet-related mid-level networks, and other components of the national research internet. We understand that conversion of the DDN to EGP3 may take quite a long time for a variety of primarily non-technical reasons.
- <6> In addition to the Metric Type for AS hop count, we also recommend a Metric Type that, for advertisements coming from the NSFnet Backbone, will mark the route as via the primary or secondary or tertiary Backbone exit point.
- <7> We recommend that vendors and other implementers of external gateways (as distinct from intra-AS routers) try to exploit the possibilities presented by EGP3 in evolving toward greater sophistication. The trend we encourage is one in which the notion of Border Gateways that connect different AS's to each other grow in capability.
- <8> We note that the route data communicated by the EGP3 packets can be split into two kinds: (1) information about the interconnection of various AS's and (2) information about which destination networks are reachable via these AS's. There is reason to think these two kinds of data will change in different patterns and that updates to them can be handled differently. Studying this distinction in practice and exploiting it are important for us to do.
- <9> We stress that there is a great need for an active engineering effort in this area, and we urge both the refinement and implementation of EGP3 and its exploitation.
- <10> This engineering effort will need to include the use of such measurement tools as Braden's statspy.
- <11> This engineering effort will provide fruitful areas of interaction between the Interconnectivity Working Group and the FRICC's "Intersec" Workshop and the IETF's Open Inter-Autonomous System Routing Working Group. We look forward to this interaction.
- With specific regard to the Core, we came up with the following:
- <1> Part of our answer is implicit on our recommendations regarding EGP3.
- <2> A certain amount of manually entered data, such as the so-called "Policy routing database" of the NSFnet backbone, will probably been needed for the foreseeable future.

<3> We discussed the following as normative patterns of routing
 exchange:

\* There would be one Backbone that advertises to its regionals routes learned from other regionals. (That backbone can be thought of as serving as the core.)

\* A regional may not advertise to one Backbone what it learned via another Backbone.

2

**R**.

2

31

3

.....

\* A Backbone, on the other hand, may advertise to its regionals routes learned via another Backbone.

\* We note that EGP3 allows more liberality than the current EGP without introducing dangerous exchanges of routes. Work and time will be needed to exploit this.

\* There is a two-phase rule that we regard as (near) absolute: What goes up does come down, but what goes down never comes up. (This refers to packets going up and down the hierarchy of Backbone, Regional, and Campus.) (In this context, lateral motion is fine, but it makes the two-phase rule more difficult to enforce.)

We will meet at the October 1988 IETF meeting in Ann Arbor to work further on these issues.

**PDN Routing** 

.

#### Carl-H. Rokitansky Fern University of Hagan

USNA, Annapolis Meeting 15-17 June 1988

.

- 200 A

• \*\*\* \*\*

PDN Routing WG Update Provided by Carl-H. Rokitansky

3 October 1988

Report of the Intial PDN Routing Group Meeting, June 16, IETF, USNA, Anapolis

(These summarizing notes of the initial PDN Routing group open meeting from the June 15 - 17 IETF were prepared by Carl-H. Rokitansky, Fern University of Hagen, FRG)

The PDN Routing group met on June 16, 1988 at IETF, USNA, Anapolis. The attendees were:

Len Bosack, CISCO
Mike Brescia, BBN
Ed Cain, DCA
J.J. Garcia-Luna, SRI
Martin Gross, DCA
Mike Little, M/A-COM
Mark Lottor, SRI-NIC
Bill Melohn, SUN
John Moy, PROTEON
Carl-H. Rokitansky (chair), Uni Hagen
Greg Satz, CISCO
Zaw-Sing Su, SRI

(\* indicates membership of the PDN Routing group)

The meeting covered administrative items, background information and technical discussion:

1. Charter and Goal of the PDN Routing Group

The DoD INTERNET TCP/IP protocol suite has developed into de facto industry standard for heterogenous packet switching computer networks. In the US the ARPANET/MILNET connects several hundreds of INTERNET networks, however the situation is completely different in Europe: The only network which could be used as a backbone to allow interoperation between the many local area networks in Europe, now subscribing to the DoD INTERNET TCP/IP protocol suite, would be the system of Public Data Networks (PDN). However no algorithms are provided so far to dynamically route INTERNET datagrams through X.25 public data networks. Therefore the goals of the Internet/Public Data Network Routing group are the development, definition and specification of required routing and gateway algorithms for an improved routing of INTERNET datagrams through the system of X.25 Public Data Networks (PDN) to allow worldwide interoperation between TCP/IP networks in various countries.

Main objectives of the PDN Routing group are:

- Define the cluster addressing scheme and its application to public data networks as an INTERNET standard

- Specify gateway algorithms and protocols to be used by VAN-gateways

- Develop an X.121 Address Server/Resolution Protocol

- Develop (or support other working groups in developing) routing algorithms based on routing metrics other than hop-count: costs, delay, throughput, TOS, etc.

- Provide interoperability with ISO/OSI networks via the PDN

₿°.

- Specification of protocols required for an Eurpean INTERNET/Public Data Network information and operation center (cooperation with US-INTERNET NICs and NOCs)

- ISO-Migration of the INTERNET/PDN cluster

2. Mailing Lists

The intention was to install two mailing lists for the PDN Routing group. Members of the PDN Routing group will be put on an "IETF-PDN" list for internal discussion of proposals and group organization. People, interested in the ongoing work of the PDN Routing group will be put on an "IETF-PDN-INTEREST" list on request. First draft versions of proposals of the PDN Routing group will be sent to this list to encourage discussion and comments.

3. Meetings

The PDN Routing Group will meet periodically at the regular IETF meeting. These meetings will be open meetings. In addition, members might meet right before or after the IETF meeting. BBN has offered to host such (closed) PDN Routing Group meetings, if no other place is available.

- 4. PDN Routing Group Short Term Goals (3 6 months)
- 4.1 PDN-Cluster

Reserve INTERNET network numbers for the PDN-cluster according to the cluster addressing scheme: check with Jon Postel and SRI-NIC

4.2 VAN-Gateways

Check which changes to the IP code would be required to support the cluster addressing scheme in existing VAN-gateways (BBN-VAN-GW).

4.3 INTERNET Gateways

Check if advertising a bunch of additional European INTERNET networks by means of EGP messages would cause a problem to the DoD INTERNET gateway system.

4.4 EGP3

Check for topological restrictions. Check if EGP3 satisfies the requirements for network reachability information exchange between VAN-gateways and if not develop a concept how a modified version of EGP3 could be used between VAN-gateways.

4.5 Routing Metrics

Develop a concept how PDN cost metrics can be taken into account in INTERNET routing decisions depending on hop count, etc.

4.6 Source Routing

Check which TCP/IP implementations (ULTRIX, TOPS-20, VMS, etc.) use the IP Source Route option, if specified in received datagrams, even in their reply packets; check with implementors if the IP Source Route option is neglected in reply packets.

4.7 Performance Tests

Provide a testbed for performance tests between PDN-hosts and INTERNET hosts via VAN-gateways subscribing to the cluster addressing scheme.

5. Medium-Term Goals (6 months to 2 years)

- Develop an X.121 Address Server/Resolution Protocol

- Develop (or support other working groups in developing) routing algorithms based on routing metrics other than hop-count: costs, delay, throughput, TOS, etc.

- Continue performance tests
- Specify the INTERNET/PDN-cluster as an INTERNET standard

- Interoperability with ISO/OSI networks in Europe and elsewhere

#### 6. Long-Term Goals (2 - 5 years)

- Specification of protocols required for an European INTERNET/Public Data Network Information and Operation Center (cooperation with US-INTERNET NICs and NOCs)

- ISO-migration of the INTERNET/PDN cluster

#### 7. ICCC '88 Presentation

The "Internet Cluster Addressing Scheme and its Application to Public Data Networks" will be presented at the 9th International Conference on Computer Communication (ICCC '88) in Tel Aviv, Israel, Oct 30 - Nov 4, 1988.

5

.

.

Ţ

8. Report on the European situation (LANs using TCP/IP and ISO/OSI status)

- DFN: The German Research Network (DFN) favorizes the implementation and use of ISO/OSI protocols. However since these protocols are not fully specified and not generally available so far, most of the attached universities are now running LANs using TCP/IP protocols. Most sites would be very interested in an interoperation between these LANs through the national X.25 Public Data Network (DATEX-P) as well as to interconnect these LANs to the US INTERNET via international links (point-to-point links and SVC through X.25 by means of VAN-gateways). One disadvantage of using X.25 connections is the fact that the costs depend on the data volume transfered. However, fortunately, the DFN has agreed with the German PTT, that the PTT will probably offer an X.25 research network for universities and research establishments at fixed (reasonable) costs. Since similar projects are under consideration in other European countries (Netherlands, etc.), an European X.25 research network might be implemented within the next years. This would have a significant advantage for the interconnection of academic LANs now using TCP/IP, because the exchange of INTERNET network reachability information between attached LANs via X.25 research network links would not be cost sensitive at all.

- BELWUE: The experimental Baden-WUErtemberg Extended Lan (BELWUE) is a high speed network at 140Mbit/sec (!), also subscribing to the TCP/IP protocol suite and interconnects computers and supercomputers (CRAY, etc.) at the University of Stuttgart and the University of Karlsruhe. Several universities and some companies in the Stuttgart area would be interested to be connected to this high speed network for online use of CRAY services via X.25 links.

- other: Several other networks in Europe are using (e.g., EUNET), or plan to use TCP/IP protocols, and are interested to be connected to the US INTERNET (point-to-point links or X.25 connections).

#### 9. X.121 Address Server/Resolution

An important issue is the development of an X.121 Address Resolution Protocol. X.25 specific characteristics (no broadcast feasibility, cost sensitive, no reverse charging on international calls) must be taken into account. 10. Routing of INTERNET datagrams through X.25 networks

To allow worldwide interoperation between LANS now using TCP/IP protocols via VAN-gateways and X.25 links, network reachability information must be exchanged. The question is, whether this information should be spreaded worldwide, and maintained and updated in all INTERNET gateways or it should be gathered and updated in specific route servers, and provided on request.

11. Action items

- Development of an X.121 address resolution protocol (Mike Brescia)

- Discussion of methods and requirements involving route servers (Len Bosack/Greg Satz)

- Development of hierarchical gateway algorithms for PDN routing and network reachability information exchange between level-1 and level-2 VAN-gateways (Carl-H. Rokitansky)

- Submission of final version of the INTERNET cluster addressing scheme paper for publication in Proceedings of the ICCC'88 (Carl-H. Rokitansky)

- Proposal for a sophisticated mapping between DNICs and INTERNET/PDN-cluster network numbers (Carl-H. Rokitansky)

- Procedure of assigning and organizing PDN-cluster network numbers (Zaw-Sing Su/Mark Lottor)

12. Next meeting

The next (open) meeting of the PDN Routing group will be at the IETF meeting at Ann Arbor in October.

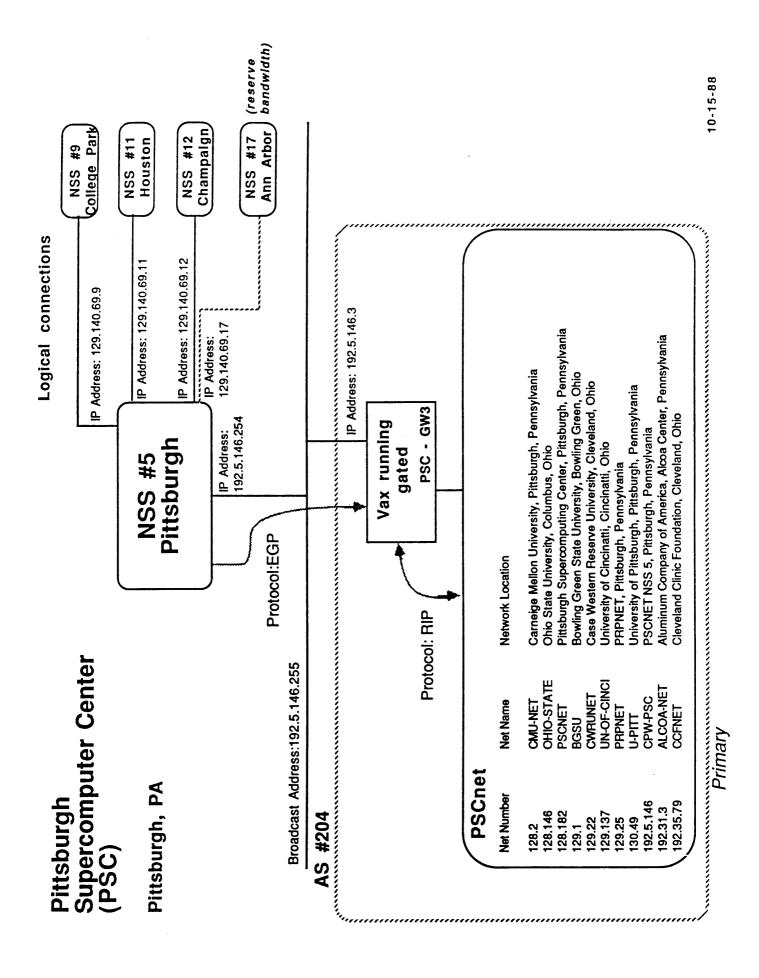
Carl-H. Rokitansky

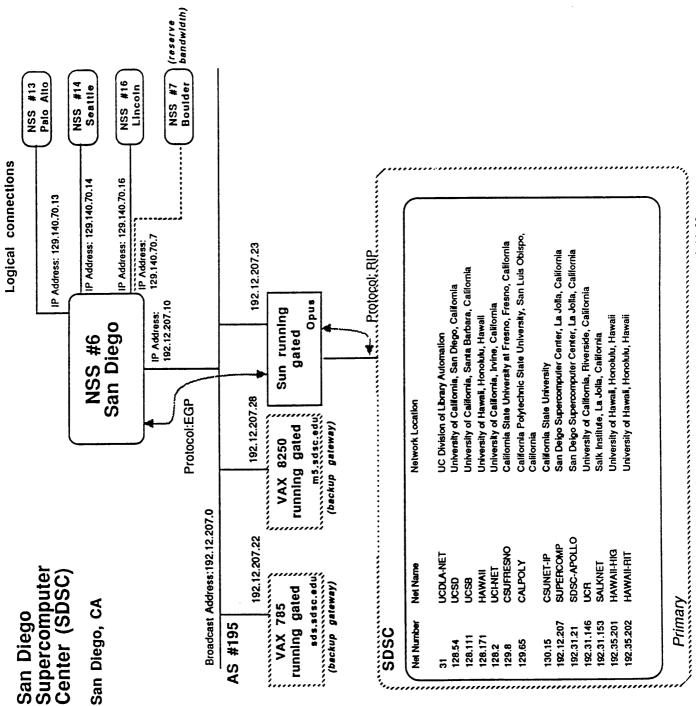
•

.

8. PAPERS DISTRIBUTED AT IETF

.


ŗ . €. 1.1.1 • e e de de est


NSFnet Connectivity and Configuration

Susan Hares Merit, Inc.

.

÷ ÷ ्, च ţ. . • 

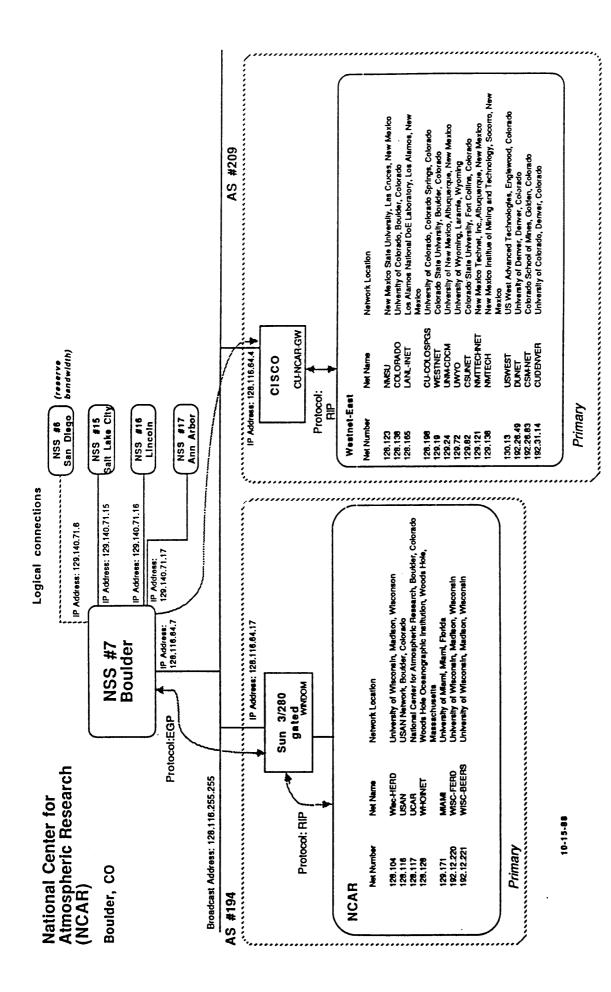




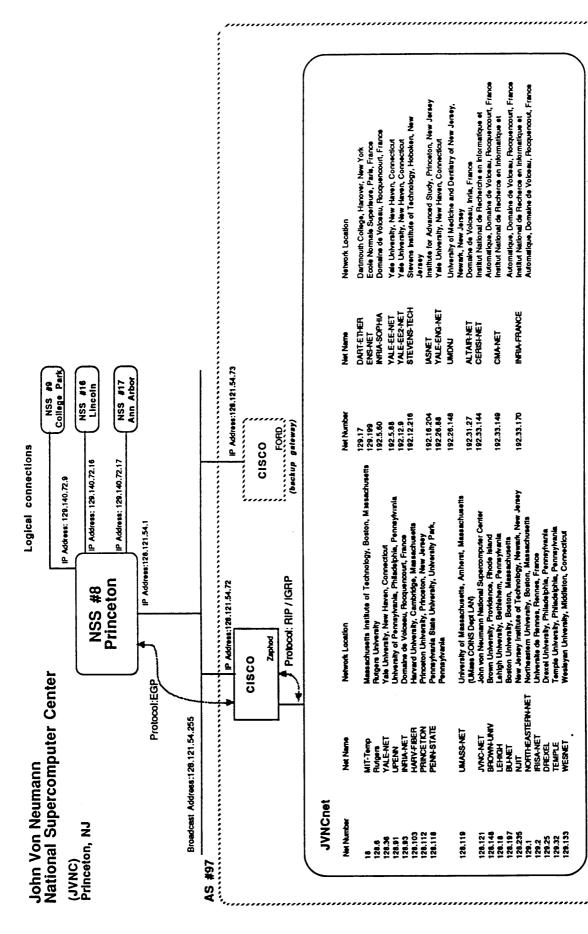
10-15-88

**5**0

-


•

Teres and

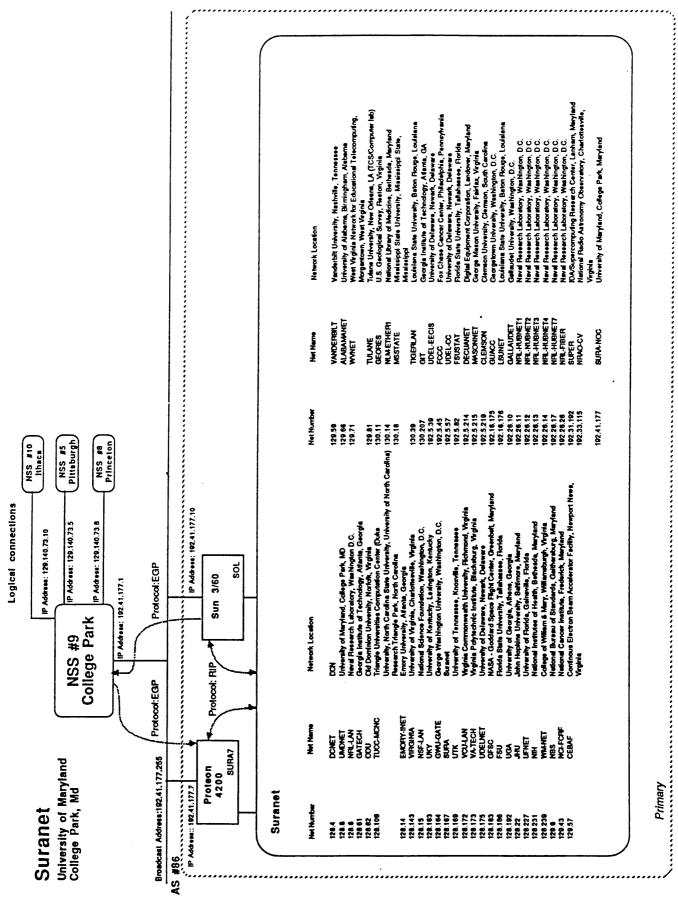

.....

1

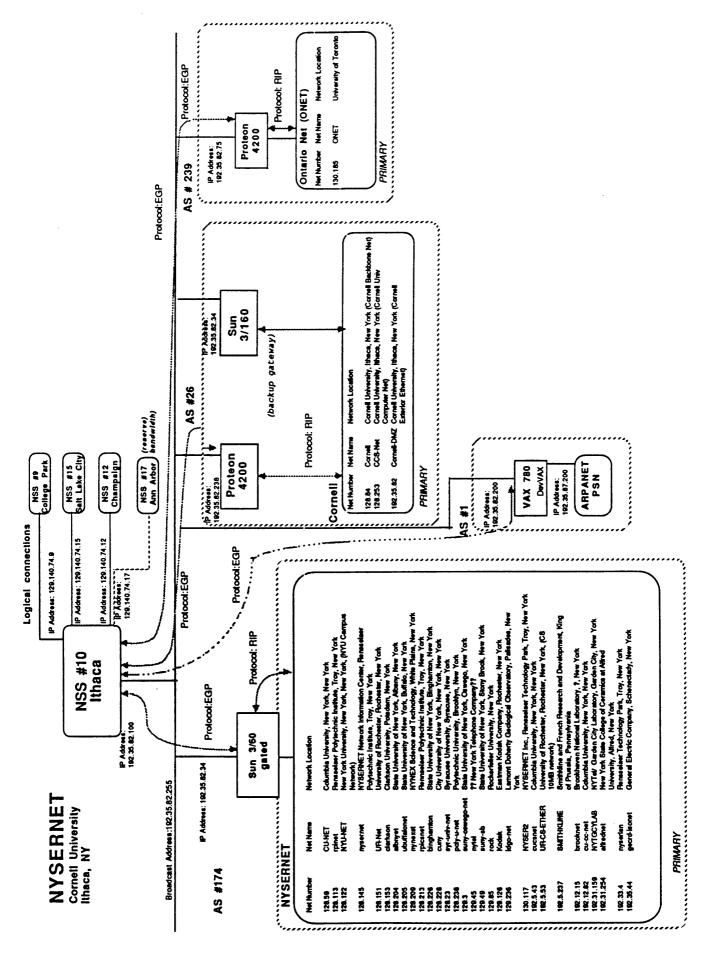
\*\*\*\*



•




PRIMARY

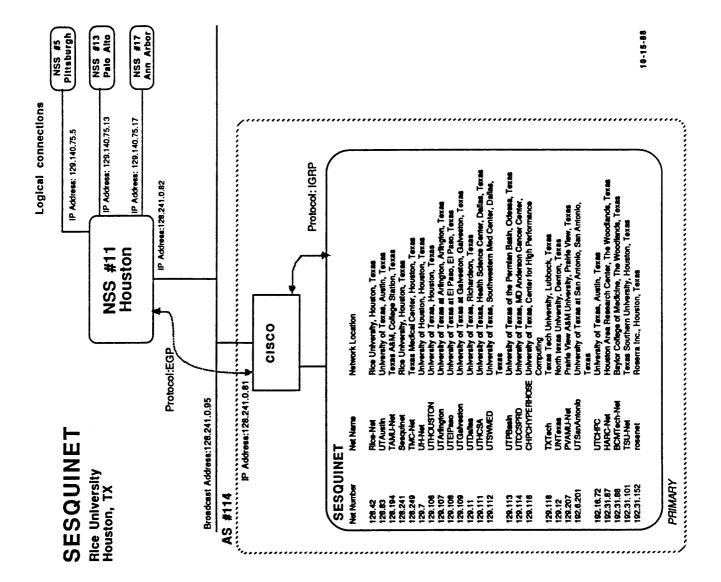

10-15-88

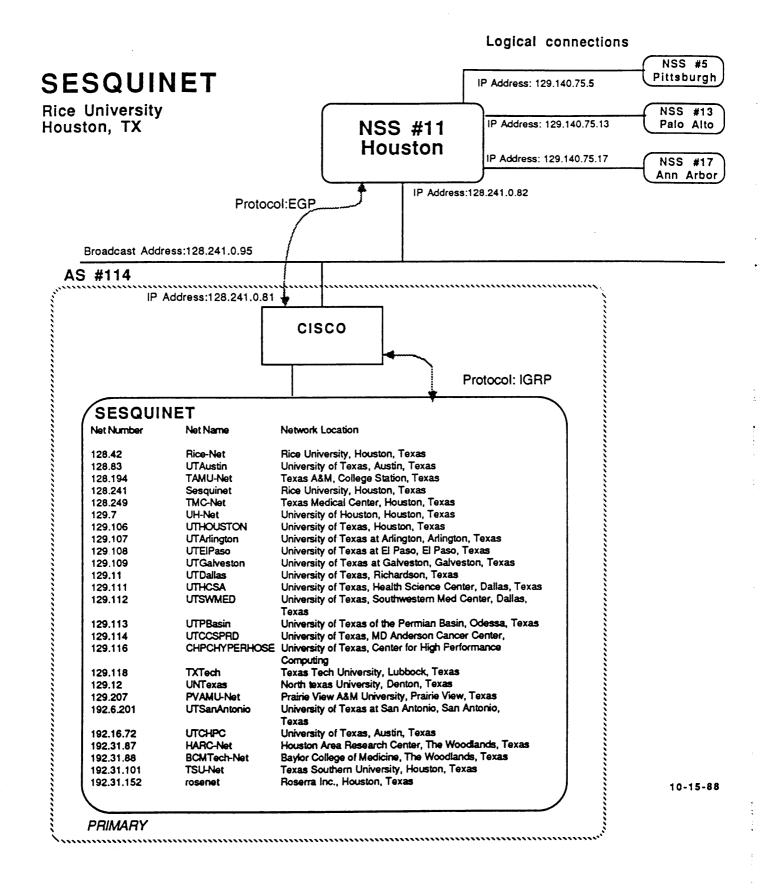
41 kaz - 1. sz

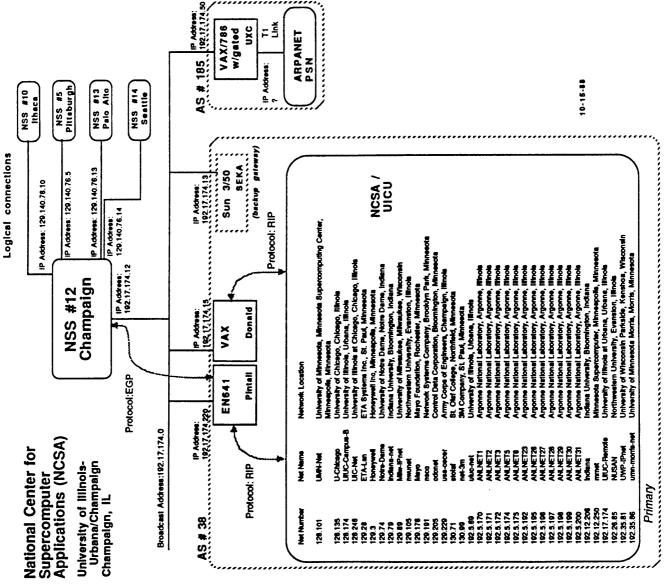
ς.

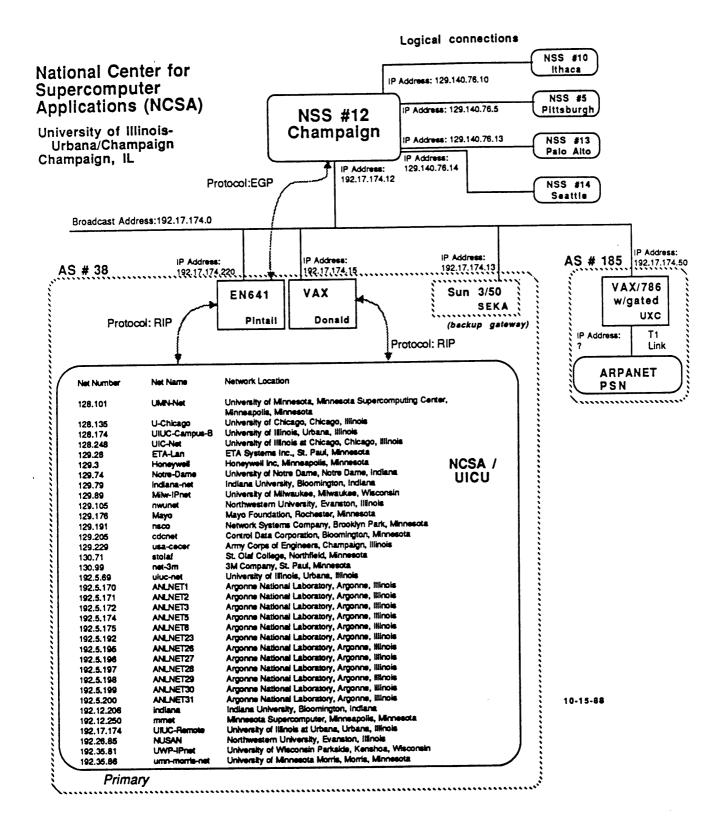


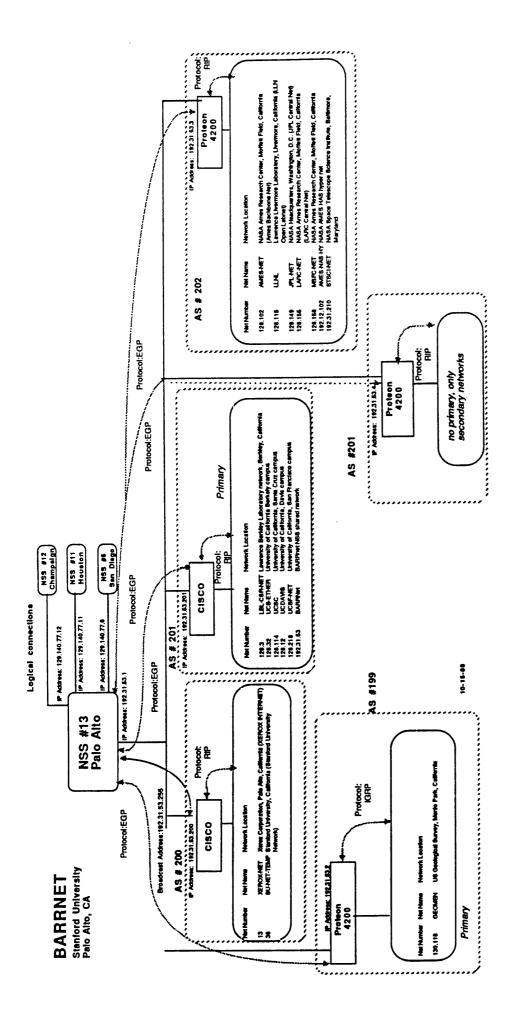
10-15-00

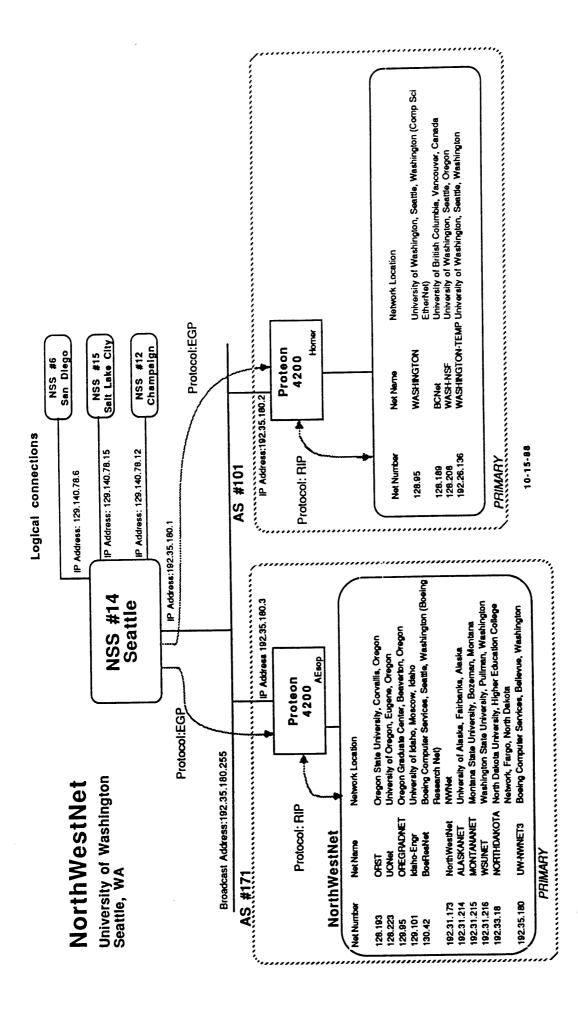




10-16-88


\*\*\*\*\*\*

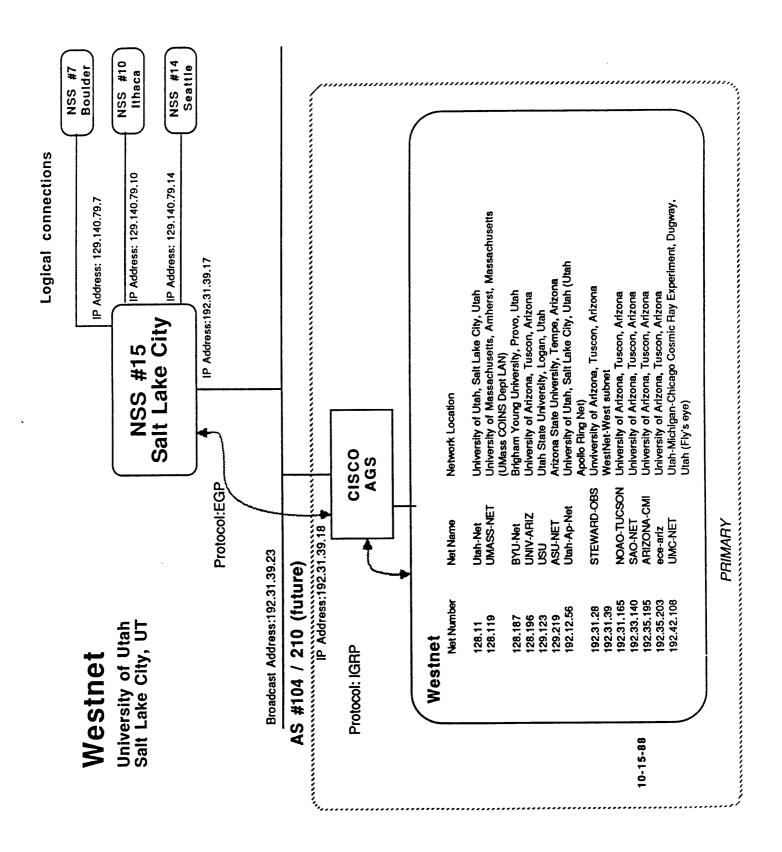

. .

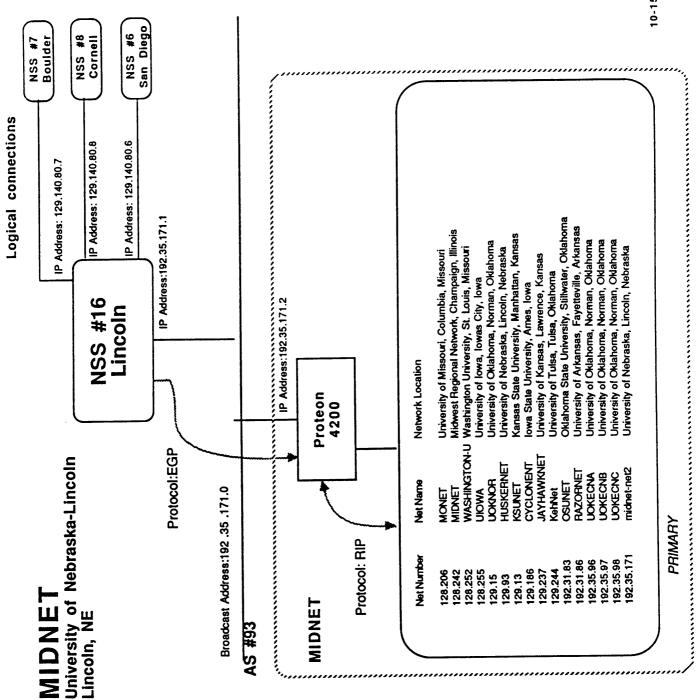

ę







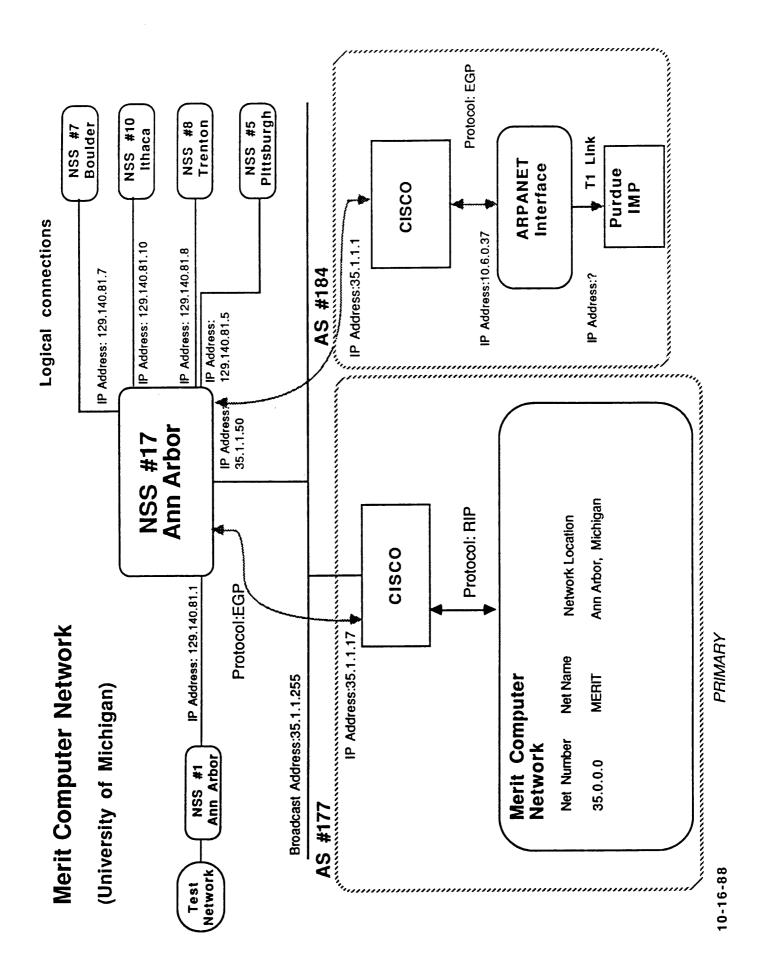



## 

E. . .






10-15-88

ł,

No. 10. 10

**F**. . . . .

÷.



-

**;-**:

·

.



### MANAGEMENT AND OPERATION OF THE NSFNET BACKBONE NETWORK PROJECT

Monthly Report August 1988 Merit Computer Network

The NSFNET Backbone Network Project, is managed and coordinated by The Merit Computer Network under sponsorship of the National Science Foundation, Agreement No. NCR 8720904.

\* -· · · · · **F** 

#### Management and Operation of the NSFNET Backbone Network

August Monthly Report

Merit Computer Network

#### **NSFNET Traffic Statistics**

With the advent of August, the production NSFNET backbone marks its first full month of sustained operation for all nodes. This is reflected in the traffic statistics, which are reported for all 31 days of the month. Again, the packet numbers are collected hourly and reflect packets into and out of each NSS as measured at the LAN-0 interface. These counts are collected via SGMP for each node and stored in a SPIRES database on the Information Services host machine. Figures A through F summarize the findings for August, with actual numbers shown in the spreadsheet in Table 1.

For August, the total packet counts are 202,641,056 packets in and 194,041,532 out. The daily number of packets peaked at over 20 million, more than 5 million higher than the maximum reported for July. Again in August, there is a consistent drop in traffic on weekends, with the lowest days recorded on Sundays. Highest counts are appearing on Wednesday (a trend which changes in September, judging by our preliminary analyses of September data). The lower rates on days around weekends may in part relate to the prevalence of vacations and long weekends many researchers have during August. In general, packet counts are steadily increasing, with the higher counts all occurring during the later part of August.

The packet numbers vary dramatically by NSS, with two sites reporting usage much greater than the other thirteen. Both JVNCnet (NSS 8) and CNSF/NYSERNet (NSS 10) have monthly totals greater than 60 million each. By contrast, Westnet (NSS 15) and Midnet (NSS 16) report less than 10 million packets each. This in part is related to the number of attached networks at each NSS, although other factors also are affecting these counts including the maturity of the regional networks and the co-location of a supercomputer center. The relationship between these factors will be further analyzed in future reports.

#### One-way delay data

As with packet data, August marks the first month for which a complete report of one-way delay data is available for the new backbone. Pings were recorded once each day between all pairs of NSSs. (However, technical problems resulted in the loss of data for NSS 8 during August.) The ping data has been divided by two to get the one-way delays in accordance with our agreement with NSF. Table 2 shows the minimum, maximum, and average times recorded for each pair. Perhaps the most notable trend is the fact that the average is at the lower part of each range, indicating that the higher delays are relatively rare. Variation in average times is partially related to real distance as well as the number of IDNX hops required between any given pair. These factors are continuing to be analyzed.

#### Significant Network Events

The data from the month of August shows overall stability of the network. Generally, the outages are short and infrequent. These data are presented in Table 3. Outages were divided into two categories "Class One" is full node outages and "Class Two" is partial node outage resulting in reduced performance relative to the backbone. As the tracking mechanisms develop and problem determination improves, it is our hope that certain outages will be avoidable.

All "Class One," full node outages, were limited to only a few hours. "Class Two," outages resulting in minor performance degradation, was limited to less than a day.

The longest "Class Two" outage was that of JVNC on August 8. Even in this case, full recovery was made in less than 24 hours. In other "Class One" outages, JVNC's link to SURANet was lost, and work is being done to determine exactly why this occurred and what can be done to prevent it from happening again.

This report includes the following information:

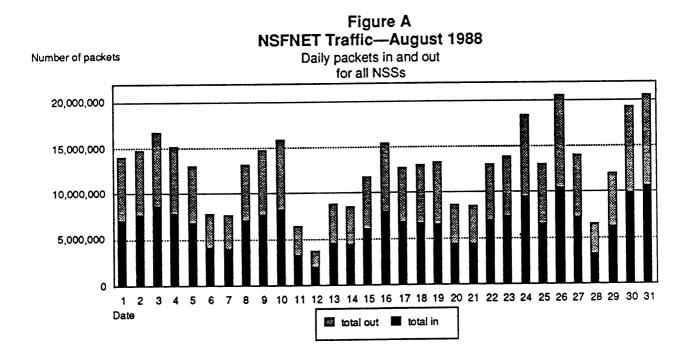
| Table 1:  | <b>Raw packet counts in and out of the NSFNET backbone</b><br>Shows the total number of packets per day for each NSS<br>for the month of August. |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure A: | <b>Daily aggregate packet counts</b><br>Shows the total packet count for all nodes for each day<br>during the month of August.                   |
| Figure B: | Weekly aggregate packet counts<br>Shows the total packet counts for all nodes by week during<br>the month of August                              |
| Figure C: | Average packet counts by day of the week                                                                                                         |

Shows the average number of packets in and out by day of the week for all NSSs.

- Figure D: Aggregate packet counts by node Shows the total packet count by node for the month of August
- Figure E Aggregate weekly packet counts in and out per NSS Shows the weekly number of packets *in* per NSS. Shows the weekly number of packets *out* per NSS.
- Figure F: Daily range and average of packets in and out per NSS Shows minimum, maximum and average packets for the Month of August *in* of each node. Shows minimum, maximum and average packets for the Month of August *out* of each node.
- Table 2Average one-way delay times (in milliseconds)Shows minimum, maximum, and average between allNSS pairs for the month of August.
- Table 3NSFNET Significant Network EventsShows outages, the resolution of the<br/>problem, and the classification for each outage.

The following figures are by NSS number. The key for these is:

- 5 PSCNET
- 6 SDSCNET
- 7 USAN
- 8 JVNCNET
- 9 SURANET
- 10 CNSF/NYSERNET
- 11 SESQUINET
- 12 NCSA
- 13 BARRNET
- 14 NORTHWESTNET
- 15 WESTNET
- 16 MIDNET
- 17 MERIT


# Table 1 NSFNET Traffic-August 1988 Packets per day for each NSS

TRAFFIC PATTERNS-AUGUST

|              | nee5               | n <b>se5</b>       | nee7               | nee6                   | nse9               | nse10                | nse11              | nss12              | nes13              | nes14              | nas15              | nse16                            |  |
|--------------|--------------------|--------------------|--------------------|------------------------|--------------------|----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------------------------------|--|
| Packets In   |                    |                    |                    |                        |                    |                      |                    |                    |                    |                    |                    |                                  |  |
| 8/1          | 252,008            | 461,233            | 445,926            | 1,115,228              | 1,067,611          | 1,100,730            | 407,431            | 643,968            | 779,087            | 200,153            | 161,755            | 116,446                          |  |
| 8/2          | 377,221            | 558,071            | 365,924            | 1,137,717              | 1,202,341          | 1,138,780            | 257,667            | 807,463            | 844,104            | 281,690            | 135,530            | 104,117                          |  |
| 8/3          | 315,926            | 783,008            | 466,948            | 2,261,856              | 1,063,481          | 1,295,505            | 269,134            | 711,149            | 642,378            | 277,560            |                    | 117,139                          |  |
| 8/4          | 383,848            | 509,499            | 414,330            | 1,552,535              | 706,463            | 1,414,877            | 294,781            | 890,074            | 766,099<br>450,304 | 308,944<br>282,963 | 106,468<br>189,025 | 82,811<br>123,601                |  |
| 8/5          | 429,381            | 377,635            | 310,058            | 1,279,183              | 527,114            | 1,504,711            | 256,890<br>171,206 | 652,023<br>529,821 | 450,504<br>515,195 | 191,575            | 72,283             | 77,589                           |  |
| 8/6          | 142,913            | 222,446            | 162,418            | 849,269                | 303,854            | 624,067<br>664,936   | 188,639            | 611,219            | 388,568            | 249,778            | 72,078             | 11,485                           |  |
| 8/7          | 114,017            | 132,440<br>387,417 | 182,558<br>344,784 | 791,479<br>1,141,208   | 290,982<br>693,973 | 1,374,886            | 435,885            | 719,426            | 771,907            | 316,464            | 123,848            | 90,629                           |  |
| 8/8<br>8/9   | 254,437<br>439,643 | 587,400            | 335,664            | 1,345,367              | 719,363            | 1,271,011            | 372,149            | 890,305            | 765,194            | 330,859            | 146,439            | 69,934                           |  |
| 8/10         | 378,989            | 657,832            | 450,916            | 1,752,468              | 713,086            | 1,057,245            | 319,884            | 849,993            | 888,120            | 368,337            | 170,838            | 87,858                           |  |
| 8/11         | 333,410            | 29,949             | 8,385              | 101,488                | 653,999            | 325,920              | 183,939            | 647,702            | 88,969             | 225,044            | 200,757            | 2,864                            |  |
| 8/12         | 86,148             | 190,494            | 76,251             | 278,902                | 152,042            | 294,172              | 56,673             | 198,254            | 328,776            | 112,647            | 24,652             | 9,344                            |  |
| 8/13         | 271,103            | 312,219            | 215,182            | 704,243                | 410,276            | 780,576              | 148,385            | 447,187            | 579,297            | 186,329            | 66,811             | 42,187                           |  |
| 8/14         | 230,661            | 212,353            | 343,979            | 818,572                | 302,548            | 665,550              | 208,657            | 445,776            | 464,636            | 168,599            | 99,976             | 61,284                           |  |
| 8/15         | 263,351            | 550,760            | 353,069            | 1,093,713              | 497,531            | 920,099              | 272,702            | 578,685            | 829,057            | 230,222            | 150,657            | 68,911                           |  |
| 8/16         | 318,142            | 823,225            | 450,581            | 1,175,316              | 832,203            | 1,387,200            | 337,287            | 733,642            | 693,632            | 414,385            | 206,515            | 102,324                          |  |
| 8/17         | 312,022            | 591,051            | 426,027            | 765,038                | 745,773            | 1,248,115            | 319,356            | 713,423            | 381,638            | 415,438            | 233,641            | 112,440<br>82,792                |  |
| 8/18         | 299,425            | 589,821            | 488,084            | 1,161,939              | 554,068            | 1,181,335            | 309,208            | 723,168            | 305,215            | 263,568            | 134,924<br>260,898 | 73,139                           |  |
| 8/19         | 349,924            | 662,229            | 390,306            | 1,359,742              | n/a                | 1,097,525            | 235,928<br>133,081 | 655,297<br>545,455 | 330,186<br>268,743 | 490,349<br>297,191 | 200,895<br>90,181  | 53,713                           |  |
| 8/20         | 266,120            | 229,489            | 231,947            | 1,063,313              | N/8.               | 753,110<br>589,733   | 176,783            | 408,132            | 203,351            | 259,795            | 66,744             | 21,796                           |  |
| 8/21         | 229,928            | 336,063            | 292,817<br>399,634 | 909,003<br>1,212,499   | 287,463<br>282,970 | 1,457,340            | 338,348            | 706,375            | 423.598            | 466,575            | 206,973            | 84,341                           |  |
| 8/22         | 156,989<br>164,648 | 639,606<br>425,370 | 615,635            | 1,792,461              | 667,284            | 1,541,932            | 239,610            | 720.979            | 235,993            | 239,993            | 98,050             | 58,082                           |  |
| 8/23<br>8/24 | 425,210            | 551,698            | 798,924            | 1,980,403              | 717,151            | 1,975,259            | 273,095            | 1,053,892          | 492,855            | 306,494            | 181,204            | 103,889                          |  |
| 8/25         | 262,662            | 465,465            | 494,622            | 1,079,866              | 616,955            | 1,137,529            | 215,150            | 808,373            | 870,079            | 269,638            | 190,172            | 90,525                           |  |
| 8/26         | 342,510            | 569,742            | 734,744            | 2,214,211              | 1,032,153          | 2,041,251            | 241,931            | 954,131            | 1,283,757          | 403,337            | 189,773            | 85,148                           |  |
| 8/27         | 217,319            | 271,796            | 343,392            | 1,601,178              | 733,296            | 1,351,982            | 273,748            | 761,462            | 823,163            | 154,761            | 139,688            | 36,790                           |  |
| 8/28         | n/a                | n/a                | 153,332            | 599,813                | 505,747            | 305,076              | 61,725             | 475,339            | 389,641            | 227,121            | 48,568             | 51,179                           |  |
| 8/29         | 277,714            | 331,926            | 360,768            | 1,174,004              | 688,002            | 1,036,581            | 231,271            | 738,694            | 567,187            | 195,095            | 96,400             | 64,163                           |  |
| 8/30         | 327,087            | 598,087            | 612,920            | 1,564,672              | 1,237,850          | 1,662,409            | 413,018            | 1,185,526          | 1,064,846          | 336,065            | 334,203            | 131,031                          |  |
| 8/31         | 596,390            | 662,572            | 679,445            | 1,841,653              | 1,188,315          | 1,678,332            | 375,922            | 1,032,600          | 1,214,623          | 442,188            | 258,182            | 81,441                           |  |
|              |                    |                    |                    |                        |                    |                      |                    |                    |                    |                    |                    |                                  |  |
| Packets      | out                |                    |                    |                        |                    |                      |                    |                    |                    |                    |                    |                                  |  |
| 8/1          | 221,102            | 427,640            | 400,017            | 896,310                | 879,874            | 971,815              | 393,733            | 892,112            | 1,036,189          | 267,145            | 71,619             | 51,673                           |  |
| 8/2          | 317,144            | 462,059            | 399,505            | 897,879                | 1,091,448          | 919,670              | 271,384            | 813,698            | 1,171,476          | 297,867            | 68,221             | 66,878                           |  |
| 8/3          | 324,303            | 464,234            | 1,311,271          | 1,293,423              | 922,626            | 880,467              | 298,834            | 754,585            | 1,074,846          | 310,541            | 54,955             | 74,269                           |  |
| 8/4          | 467,414            | 413,961            | 415,062            | 1,164,507              | 866,415            | 1,094,185            | 290,935            | 996,296            | 755,637            | 360,982            | 64,016             | 75,692                           |  |
| 8/5          | 331,624            | 290,941            | 336,352            | 1,078,955              | 587,996            | 839,392              | 276,968            | 741,227            | 608,336            | 384,062            | 208,412            | 63,487                           |  |
| 8/6          | 248,933            | 214,882            | 189,039            | 290,563                | 423,633            | 508,871              | 165,193            | 604,215            | 524,368            | 209,206            | 57,358             | 29,695                           |  |
| 8/7          | 124,120            | 116,293            | 202,829            | 511,174                | 366,978            | 630,751              | 195,166            | 659,408            | 397,076            | 280,209<br>367,027 | 60,134<br>76,436   | 10,250<br>48,229                 |  |
| 8/8          | 247,003            | 351,249            | 372,371            | 732,548                | 710,694            | 913,302              | 487,584            | 864,448<br>945,905 | 607,492<br>660,630 | 321,701            | 83,454             | 53,924                           |  |
| 8/9          | 421,439            | 455,021            | 422,854            | 1,264,977              | 757,190            | 894,316<br>1,146,270 | 379,915<br>346,106 | 962,175            | 762,315            | 425,464            | 111,989            | 79,393                           |  |
| 8/10         | 359,124            | 610,869<br>426,015 | 493,550<br>26,798  | 1,233,449<br>51,539    | 786,808<br>747,251 | 1,000,571            | 10,457             | 33,495             | 67,794             | 20,857             | 104,310            | 74,419                           |  |
| 8/11<br>8/12 | 294,367<br>48,525  | 178,596            | 85,961             | 266,152                | 176,861            | 240,613              | 65,392             | 246,711            | 272,567            | 122,133            | 16,966             | 9,473                            |  |
| 8/13         | 174,799            | 262,458            | 242,240            | 660,891                | 444,468            | 641,724              | 143,762            | 585,112            | 491,149            | 245,081            | 60,293             | 41,541                           |  |
| 8/14         | 305,198            | 197,313            | 374,882            | 556,115                | 316,961            | 865,868              | 230,712            | 624,645            | 388,767            | 211,876            | 77,620             | 53,319                           |  |
| 8/15         | 262,592            | 451,744            | 346,761            | 620,376                | 697,400            | 869,986              | 316,425            | 667,034            | 761,096            | 279,410            | 130,069            | 61,454                           |  |
| 8/16         | 292,083            | 534,858            | 445,177            | 878,380                | 1,000,150          | 974,351              | 373,154            | 937,414            | 1,021,944          | 487,873            | 166,948            | 68,667                           |  |
| 8/17         | 359,152            | 310,630            | 409,616            | 635,394                | 687,407            | 733,855              | 336,924            | 720,989            | 776,091            | 427,981            | 194,470            | 67.917                           |  |
| 8/18         | 275,285            | 340,697            | 459,449            | 767,900                | 656,482            | 1,123,243            | 384,466            | 852,344            | 842,838            | 292,583            | 116,445            | 61,140                           |  |
| 8/19         | 366,829            | 401,750            | 390,120            | 864,046                | 692,127            | 1,235,259            | 308,460            | 803,226            | 748,844            | 335,861            | 162,729            | 64,054                           |  |
| 8/20         | 235,576            | 162,285            | 249,544            | 792,411                | 376,950            | 742,237              | 176,701            | 603,885            | 569,798            | 164,703            | 84,327             | 62, <b>398</b><br>27, <b>538</b> |  |
| 8/21         | 287,162            | 216,389            | 350,551            | 650,644                | 347,407            | 400,484              | 232,814            | 520,435            | 447,862            | 284,837            | 39,125             | 27,538<br>90,157                 |  |
| 8/22         | 292,562            | 399,476            | 432,381            | 764,918                | 334,008            | 1,121,880            | 330,890            | 719,997<br>590.016 | 629,080<br>519,157 | 611,853<br>283,741 | 174,897<br>117,382 | 43,345                           |  |
| 8/23         | 162,617            | 300,502            | 606,689            | 1,266,423              | 702,948            | 1,447,095            | 267,925            | 580,016<br>885,868 | 1,098,676          | 346,163            | 240,633            | 84,281                           |  |
| 8/24         | 357,004            | 356,419            | 819,687            | 1,499,027              | 886,979            | 1,597,386            | 316,932<br>266,874 | 755,152            | 775,085            | 314,355            | 224,328            | 81,709                           |  |
| 8/25         | 278,252            | 418,485            | 487,758            | 848,203                | 638,202<br>788,590 | 1,998,438            | 280,153            | 1,051,484          | 1,144,816          | 392,146            | 222,559            | 84,182                           |  |
| 8/26         | 414,377            | 547,147<br>255,202 | 711,399<br>316,749 | 1,697,862<br>1,065,841 | 481,479            | 1,772,877            | 274,600            | 645,694            | 845,228            | 184,127            | 160,894            | 46,751                           |  |
| 8/27<br>8/28 | 142,438<br>n/a     | 200,202            | 152,982            | 473,559                | 320,337            | 850,776              | 85,165             | 348,144            | 320,507            | 148,914            | 25,697             | 52,308                           |  |
| 8/29         | 309,270            | 290,696            | 338,223            | 820,867                | 555,052            | 1,058,251            | 281,426            | 513,097            | 540,802            | 182,185            | 101,715            | 51,900                           |  |
| 8/30         | 319,806            | 453,561            | 519,886            | 1,178,616              | 881,012            | 1,776,255            | 488,779            | 1,254,082          | 1,012,637          | 400,730            | 259,994            | 90,196                           |  |
| 8/31         | 450,896            | 508,287            | 653,264            | 1,405,300              | 956,204            | 1,852,981            | 420,389            | 1,059,445          | 960,848            | 541,212            | 255,533            | 73,954                           |  |
|              |                    |                    |                    |                        |                    |                      |                    |                    |                    |                    |                    |                                  |  |

4

<u>e</u>---



.

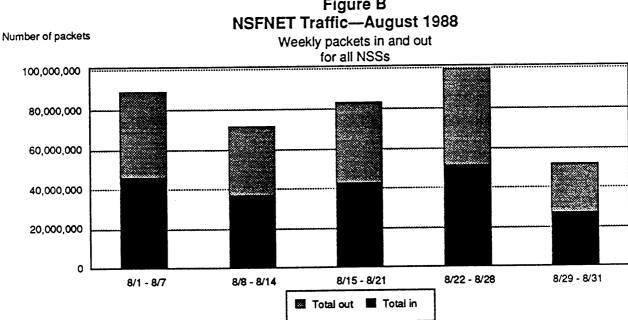
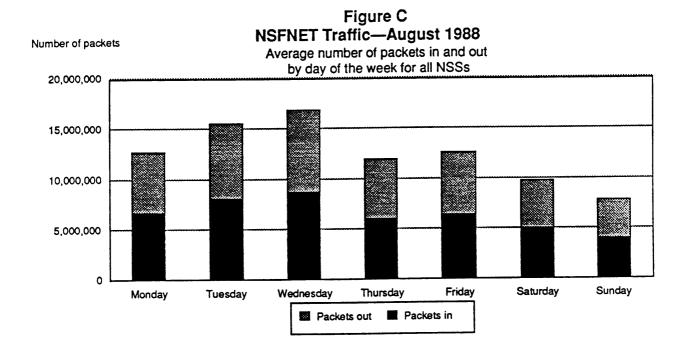




Figure B NSFNET Traffic—August 1988



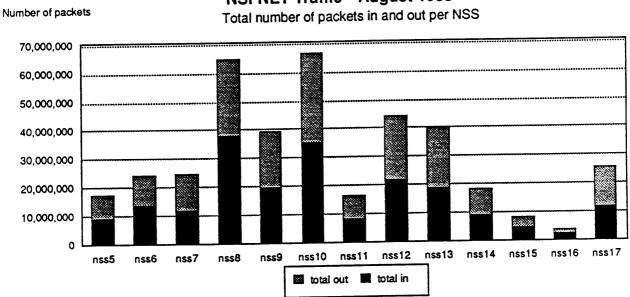



Figure D NSFNET Traffic—August 1988 Total number of packets in and out per NSS

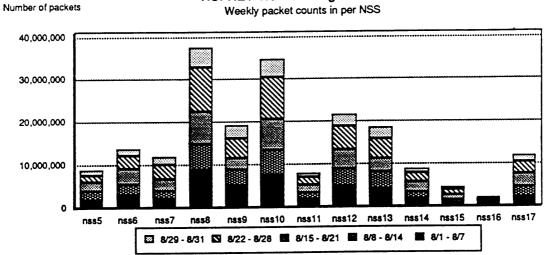
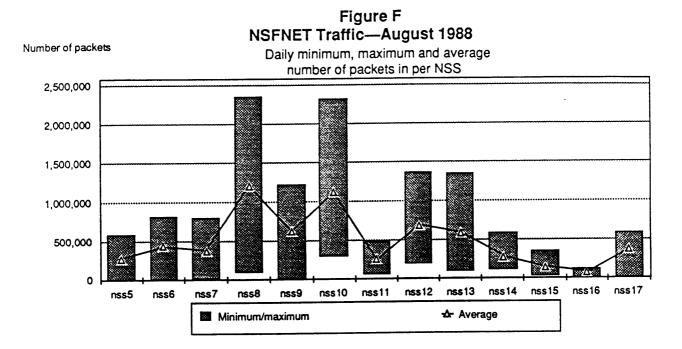
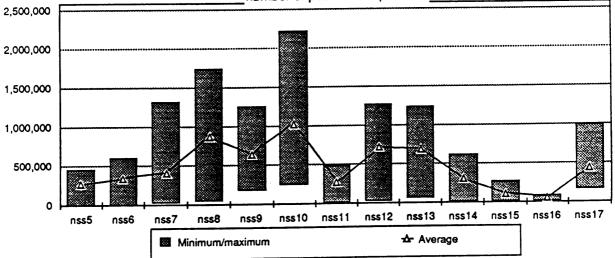




Figure E NSFNET Traffic—August 1988

Weekly packet counts out per NSS 40,000,000 30,000,000 20,000,000 10,000,000 0 nss15 nss16 nss17 nss12 nss13 nss14 nss10 nss11 nss5 nss6 nss7 nss8 nss9 🖾 8/29 - 8/31 🖾 8/22 - 8/28 📓 8/15 - 8/21 📓 8/8 - 8/14 8/1 - 8/7


Number of packets

### NSFNET Traffic—August 1988



#### NSFNET Traffic—August 1988

Daily minimum, maximum and average number of packets out per NSS\_\_\_\_\_



## Table 2NSFNET Traffic-August 1988Average one-way delay times

|      | One-w          | ay dela | y time |      |   | [     | One-w | ay dela | y time |       |
|------|----------------|---------|--------|------|---|-------|-------|---------|--------|-------|
| from | to             | max     | min    | avg  |   | from  | to    | max     | min    | avg   |
| NSS5 | NSS5           | 4.4     | 1.4    | 1.7  |   | NSS9  | NSS5  | 39.9    | 38.3   | 38.6  |
| NSS5 | NSS6           | 86.9    | 74.8   | 78.1 |   | NSS9  | NSS6  | 105.3   | 93.4   | 95.2  |
| NSS5 | NSS7           | 69.1    | 50.5   | 56.7 |   | NSS9  | NSS7  | 78.1    | 68.9   | 70.4  |
| NSS5 | NSS8           | 63.6    | 42.9   | 50.0 |   | NSS9  | NSS8  | 30.6    | 21.5   | 22.8  |
| NSS5 | NSS9           | 52.3    | 38.6   | 44.0 |   | NSS9  | NSS9  | 1.8     | -1.4   | 1.5   |
| NSS5 | NSS10          | 63.8    | 50.2   | 53.8 |   | NSS9  | NSS10 | 35.5    | 29.6   | 30.4  |
| NSS5 | NSS11          | 57.1    | 40.2   | 47.8 |   | NSS9  | NSS11 | 76.8    | 70.4   | 71.1  |
| NSS5 | NSS12          | 48.0    | 30.7   | 36.8 |   | NSS9  | NSS12 | 70.4    | 62.0   | 63.3  |
| NSS5 | NSS13          | 86.7    | 72.4   | 77.8 |   | NSS9  | NSS13 | 117.8   | 106.9  | 108.9 |
| NSS5 | NSS14          | 83.7    | 78.9   | 79.8 |   | NSS9  | NSS14 | 122.2   | 113.5  | 114.6 |
| NSS5 | NSS15          | 70.4    | 64.2   | 65.2 |   | NSS9  | NSS15 | 93.9    | 88.4   | 89.2  |
| NSS5 | NSS16          | 88.1    | 74.6   | 78.4 |   | NSS9  | NSS16 | 81.4    | 77.9   | 78.4  |
| NSS5 | NSS17          | 34.2    | 20.4   | 24.7 |   | NSS9  | NSS17 | 44.6    | 41.6   | 42.1  |
| NSS6 | NSS5           | 77.7    | 71.9   | 72.9 |   | NSS10 | NSS5  | 58.8    | 50.8   | 51.9  |
| NSS6 | NSS6           | 3.4     | 1.5    | 1.6  |   | NSS10 | NSS6  | 92.9    | 87.9   | 88.7  |
| NSS6 | NSS7           | 30.8    | 27.6   | 27.9 |   | NSS10 | NSS7  | 67.8    | 63.7   | 64.4  |
| NSS6 | NSS8           | 87.6    | 76.6   | 78.2 |   | NSS10 | NSS8  | 61.2    | 55.3   | 56.9  |
| NSS6 | NSS9           | 101.1   | 93.4   | 94.7 |   | NSS10 | NSS9  | 31.8    | 29.6   | 29.8  |
| NSS6 | NSS10          | 100.3   |        | 89.3 |   | NSS10 | NSS10 | 2.1     | 1.4    | 1.6   |
| NSS6 | NSS11          | 105.7   | 97.1   | 98.0 |   | NSS10 | NSS11 | 84.9    | 76.1   | 77.4  |
| NSS6 | NSS12          | 69.1    | 67.0   | 67.2 |   | NSS10 | NSS12 | 40.5    | 35.9   | 36.3  |
| NSS6 | NSS13          | 23.3    | 21.5   | 21.7 |   | NSS10 | NSS13 | 84.3    | 81.1   | 81.4  |
| NSS6 | NSS14          | 28.8    |        | 28.2 |   | NSS10 | NSS14 | 94.4    | 87.2   | 88.3  |
| NSS6 | NSS15          | 46.6    | 44.4   | 44.7 |   | NSS10 | NSS15 | 63.7    | 62.2   | 62.3  |
| NSS6 | NSS16          | 44.1    | 42.9   | 43.0 |   | NSS10 | NSS16 | 93.8    | 85.9   | 87.2  |
| NSS6 | NSS17          | 57.9    | 55.2   | 55.6 |   | NSS10 | NSS17 | 48.7    | 43.5   | 44.3  |
| NSS7 | NSS5           | 65.9    | 47.4   | 49.8 |   | NSS11 | NSS5  | 37.0    | 33.9   | 34.1  |
| NSS7 | NSS6           | 29.3    |        | 27.8 |   | NSS11 | NSS6  | 102.1   | 98.4   | 98.9  |
| NSS7 | NSS7           | 3.4     |        | 1.6  |   | NSS11 | NSS7  | 79.4    |        | 73.6  |
| NSS7 | NSS8           | 59.8    |        | 53.6 | 2 | NSS11 | NSS8  | 70.6    | 68.3   | 68.6  |
| NSS7 | NSS9           | 77.9    |        | 70.3 |   | NSS11 | NSS9  | 70.0    | 68.3   | 68.5  |
| NSS7 | NSS10          | 67.1    |        | 64.1 |   | NSS11 | NSS10 | 94.3    |        | 85.5  |
| NSS7 | NSS11          | 76.4    |        | 72.3 |   | NSS11 | NSS11 | 2.1     | 1.5    | 1.5   |
| NSS7 | NSS12          | 91.1    | 71.1   | 74.4 |   | NSS11 | NSS12 | 61.8    | 57.5   | 58.0  |
| NSS7 | NSS12<br>NSS13 | 48.9    |        | 46.4 |   | NSS11 | NSS13 | 89.9    |        | 89.0  |
| NSS7 | NSS14          | 53.9    |        | 52.4 |   | NSS11 | NSS14 | 114.0   |        | 109.8 |
| NSS7 | NSS15          | 21.9    |        | 20.6 |   | NSS11 | NSS15 | 93.1    | 89.8   | 90.1  |
| NSS7 | NSS16          | 29.2    |        | 25.8 |   | NSS11 | NSS16 | 98.6    | 94.8   | 95.5  |
| NSS7 | NSS17          | 38.9    |        |      |   | NSS11 | NSS17 | 47.1    | 45.3   | 45.4  |

# Table 2NSFNET Traffic-August 1988Average one-way delay times

| [      | One-wa | ay dela | y time |        |       | One-wa | ay dela | y time |      |
|--------|--------|---------|--------|--------|-------|--------|---------|--------|------|
| from   | to     | max     | min    | avg    | from  | to     | max     | min    | avg  |
| NSS12  | NSS5   | 38.5    | 30.6   | 31.8   | NSS15 | NSS5   | 74.0    | 64.3   | 65.8 |
| NSS12  | NSS6   | 73.1    | 66.9   | 67.7   | NSS15 | NSS6   | 46.9    | 44.6   | 44.9 |
| NSS12  | NSS7   | 82.9    | 72.3   | 75.2   | NSS15 | NSS7   | 25.3    | 20.5   | 21.0 |
| NSS12  | NSS8   | 74.9    | 66.5   | 68.0   | NSS15 | NSS8   | 78.2    | 69.2   | 70.5 |
| NSS12  | NSS9   | 69.3    | 62.1   | 63.1   | NSS15 | NSS9   | 92.9    | 88.3   | 88.8 |
| NSS12  | NSS10  | 43.3    | 35.9   | 36.7   | NSS15 | NSS10  | 73.6    | 62.2   | 63.4 |
| NSS12  | NSS11  | 67.7    | 60.6   | 61.9   | NSS15 | NSS11  | 96.6    | 88.8   | 89.8 |
| NSS12  | NSS12  | 1.9     | 1.4    | 1.5    | NSS15 | NSS12  | 95.7    | 87.9   | 89.8 |
| NSS12  | NSS13  | 50.2    | 48.6   | 48.8   | NSS15 | NSS13  | 69.8    | 62.8   | 63.5 |
| NSS12  | NSS14  | 56.8    | 55.2   | 55.4   | NSS15 | NSS14  | 57.0    | 56.1   | 56.1 |
| NSS12  | NSS15  | 95.4    | 89.2   | 90.3   | NSS15 | NSS15  | 2.0     | 1.5    | 1.6  |
| NSS12  | NSS16  | 102.0   | 94.9   | 96.3   | NSS15 | NSS16  | 46.8    | 42.3   | 42.6 |
| NSS12  | NSS17  | 51.1    | 45.6   | 46.7   | NSS15 | NSS17  | 49.6    | 47.7   | 47.9 |
| 110012 |        |         |        |        |       |        |         |        |      |
| NSS13  | NSS5   | 77.9    | 72.5   | 73.0   | NSS16 | NSS5   | 84.1    | 72.5   | 74.8 |
| NSS13  | NSS6   | 23.7    | 21.4   | 21.7   | NSS16 | NSS6   | 48.9    | 43.0   | 43.5 |
| NSS13  | NSS7   | 51.3    | 46.0   | 46.5   | NSS16 | NSS7   | 27.9    | 25.5   | 25.6 |
| NSS13  | NSS8   | 105.5   | 95.0   | 96.9   | NSS16 | NSS8   | 70.9    | 62.7   | 63.6 |
| NSS13  | NSS9   | 129.7   | 107.0  | 110.8  | NSS16 | NSS9   | 80.8    | 77.9   | 78.3 |
| NSS13  | NSS10  | 92.9    | 81.1   | 82.4   | NSS16 | NSS10  | 92.3    | 86.0   | 86.9 |
| NSS13  | NSS11  | 90.0    | 89.2   | 1      | NSS16 | NSS11  | 97.9    | 94.0   | 94.7 |
| NSS13  | NSS12  | 50.6    | 48.6   | 48.8   | NSS16 | NSS12  | 103.5   | 93.4   | 95.3 |
| NSS13  | NSS13  | 1.9     | 1.5    | 1.5    | NSS16 | NSS13  | 63.2    | 61.5   | 61.7 |
| NSS13  | NSS14  | 48.8    | 46.4   | 46.6   | NSS16 | NSS14  | 70.3    | 67.7   | 68.1 |
| NSS13  | NSS15  | 65.1    | 62.8   | 63.2   | NSS16 | NSS15  | 44.8    | 42.3   | 42.4 |
| NSS13  | NSS16  | 67.8    | 61.5   | 62.1   | NSS16 | NSS16  | 2.4     | 1.4    | 1.5  |
| NSS13  | NSS17  | 78.0    | 73.0   | 73.8   | NSS16 | NSS17  | 55.0    | 53.0   | 53.1 |
|        |        |         |        |        |       |        |         |        |      |
| NSS14  | NSS5   | 83.8    | 78.9   | 79.8   | NSS17 | NSS5   | 23.3    |        | 20.8 |
| NSS14  | NSS6   | 29.7    | 28.2   | 28.3   | NSS17 | NSS6   | 57.1    |        | 55.4 |
| NSS14  | NSS7   | 55.2    | 52.4   | 52.9   | NSS17 | NSS7   | 32.2    |        |      |
| NSS14  | NSS8   | 111.5   | 101.4  | 102.9  | NSS17 | NSS8   | 32.9    |        |      |
| NSS14  | NSS9   | 118.4   | 113.6  | 114.4  | NSS17 | NSS9   | 44.4    |        |      |
| NSS14  | NSS10  | 94.2    | 87.3   | 87.9   | NSS17 | NSS10  | 54.1    |        |      |
| NSS14  | NSS11  | 121.3   | 110.3  | 111.9  | NSS17 | NSS11  | 49.2    |        |      |
| NSS14  | NSS12  | 56.5    | 55.3   | 55.3   | NSS17 | NSS12  | 54.4    |        |      |
| NSS14  | NSS13  | 53.7    | 46.2   | . 47.6 | NSS17 | NSS13  | 79.4    |        |      |
| NSS14  | NSS14  | 2.2     | 1.5    | 5 1.5  | NSS17 | NSS14  | 83.6    |        |      |
| NSS14  | NSS15  | 57.3    | 56.0   | 56.2   | NSS17 | NSS15  | 49.7    |        |      |
| NSS14  | NSS16  | 72.8    | 67.8   | 68.3   | NSS17 | NSS16  | 55.8    |        |      |
| NSS14  | NSS17  | 83.5    | 79.8   | 80.5   | NSS17 | NSS17  | 1.7     | 7 1.5  | 1.5  |

12

#### Table 3

#### **NSFNET Significant Network Events** August 1988

Outage classifications:

Class 1: Full node outage Class 2: Partial node outage with impact to additonal nodes

| DATE           | PROBLEM                                        | RESOLUTION                             | CLASS  |
|----------------|------------------------------------------------|----------------------------------------|--------|
| <u></u>        |                                                |                                        |        |
| NISS #5 Pittch | urgh Supercomputer Center / PSCNET             |                                        |        |
| 1455 #5 11030  | angli Supercomputer Center / I Serter          |                                        |        |
| August 01      | PSP-5-13 & PSP-5-17 down temporarily           | Almaden cards changed                  | 2      |
| August 11      | All machines down for 40min.                   | RCP rebooted                           | 1      |
| August 09      | IDNX link down for 2hrs.20min.                 | Trunk card swapped                     | 1      |
| August 19      | All machines down for 2hrs.10min.              | MCI switching circuits                 | 1      |
|                | All Machines down for 2hrs.5min.               | MCI switching circuits                 | 1      |
|                | All machines down for 45min.                   | MCI switching circuits<br>Bad repeater | 1<br>2 |
|                | Ann Arbor to Pittsburgh link down 5hrs.20min.  | bau repeater                           | 2      |
|                |                                                |                                        |        |
|                |                                                |                                        |        |
| NSS #6 San D   | iego Supercomputer Center / SDSCNET            |                                        |        |
|                |                                                |                                        |        |
| August 04      | All machines down for 40min.                   | RCP rebooted                           | 1      |
|                |                                                |                                        |        |
|                |                                                |                                        |        |
| NICE #7 NIAHA  | nal Center for Atmospheric Research / NCAR     |                                        |        |
| 1955 #7 Inallu | har center for Autospheric Research? Iverac    |                                        |        |
| August 01      | PSP-7-12 down for 19hrs.                       | Hard drive replaced                    | 2      |
| August 20      | All machines down for 4hrs.35min.              | Fiber break                            | 1      |
| 0              |                                                |                                        |        |
|                |                                                |                                        |        |
|                |                                                | ALCATET                                |        |
| NSS #8 John    | Von Neumann National Supercomputer Center / JV | INCINEI                                |        |
| August 06      | All machines down 4hrs.30min.                  | Power outage-construction              | 1<br>1 |
| August 08      | All machines down temporarily                  | Power outage-power co.                 | 1      |
| August 08      | PSP-8-11 down 23hrs.30min                      | PSP rebooted                           | 2      |
| August 17      | All machines down 3hrs.45min.                  | Electrical storm                       | 1      |
| August 22      | All machines down 1hr.                         | Generator problems                     | 1      |
| August 25      | All machines down 3hrs.40min                   | Electrical storm                       | 1      |
|                |                                                |                                        |        |
|                |                                                |                                        |        |

NSS #9 University of Maryland College Park, MD / SURANET

Impacted by JVNC Power Outages

.

| DATE                   | PROBLEM                                                  | RESOLUTION                 | CLASS     |
|------------------------|----------------------------------------------------------|----------------------------|-----------|
|                        |                                                          |                            |           |
| NSS #10 Co             | rnell University Ithaca, NY / CNSF/NYSERN                | ET                         |           |
| August 30              | PSP-10-12 down 5hrs.                                     | PSP rebooted               | 2         |
| NSS #11 Rid            | ce University Houston, TX / SESQUINET                    |                            |           |
| August 04              | All machines down 1hr.                                   | Sliding cable locks repa   | ired 1    |
| August 31              | PSP-11-13 down 9hrs.                                     | PSP rebooted               | 2         |
| NSS #12 Na             | tional Center for Supercomputer Applications             | / NCSA                     |           |
| August 10              | All machines down 1hr.15min.                             | No disk space              |           |
| NSS #13 Sta            | anford University Palo Alto, CA / BARRNET                |                            |           |
|                        | oblems in August                                         |                            |           |
| 140 1414 00 1 1        |                                                          |                            |           |
| NSS #14 U1             | niversity of Washington Seattle, WA / NORT               | HWESTNET                   |           |
| August 18              | All machines down 5hrs.20min.                            | MCI replaced a link pa     | urt 1     |
| NSS #15 U              | niversity of Utah Salt Lake City, UT / WESTN             | VET                        |           |
| August 20              | All machines down 4hrs.35min.                            | Fiber break                | 1         |
| NSS #16 U1             | niversity of Nebraska-Lincoln Lincoln, NE / M            | IDNET                      |           |
| August 04              | PSP-16-10 was down 3hrs.                                 | Disk controller replace    | ed 1      |
| August 06              | All machines down 9hrs.                                  | Scheduled power outag      | ge 1<br>1 |
| August 13<br>August 20 | All machines down 3hrs.<br>All machines down 4hrs.35min. | Fiber break<br>Fiber break | 1         |
|                        |                                                          |                            |           |
| NSS #17 Ui             | niversity of Michigan Ann Arbor, MI / MERIT              |                            |           |
| August 15              | PSP-17-14 down temporarily                               | PSP rebooted               | 2         |
|                        |                                                          |                            |           |

.

.

#### **California Internet Federation Participants**

#### BARRNet

#### CERFNET

California State University

Los Nettos

#### NASA

San Diego Supercomputer Center State of California - Department of Water Resources University of California

-

۳.,

÷

•

#### California Internet Federation

The California Internet Federation of computer network organizations has the purpose of providing coordination and support of educational and research networking in California. California is recognized as a leader in high technology. To maintain this leadership, however, California's educational and research institutions require the communication tools to share information, resources and ideas. Isolated facilities can no longer compete in today's fast paced age of information. The California Internet Federation has been formed to insure that high quality communication tools are available for education and research to keep California in its position of leadership in these areas.

#### California Internet Federation Objectives

1) Coordinate interconnection of educational and research networks in California. Areas of coordination include:

a) Design of cost-effective and reliable interconnection among these computer networks.

b) Assist with agreements among network administrations in support of interconnections.

c) Implementation of connections and routing strategies.

d) Management schemes for the connection of interconnected networks.

2) Provide coordination for the connection of California networks with national and international networks.

3) Support of educational and research networking by promoting:

a) Use of standards and compatibility of networks.

b) The understanding of internetwork technologies.

c) dissemination of information about resources available via the internet.

d) Development of new resources available via the internet.

e) Collaboration between private and public sectors.

4) Increase visibility of internetworking and demonstrate its importance to California.

#### Calfornia Internet Federation Meeting August 23,1988

| Name                                                                                              | Organization                                                                 | Network<br>connections.                                               | Email Address                                                                                                                                                |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clark, Ray<br>Cooling, Mike<br>Darling, Gary<br>DeJarnett, Steve<br>Estrada, Susan<br>Hobby, Russ | CSU Chancellor<br>CSU Sacto<br>State DWR<br>Cal Poly SLO<br>SDSC<br>UC Davis | CSUNET<br>CSUNET<br>DWR nets<br>CSUNET<br>CERFNET<br>BARRNet<br>UCNET | rclark@calstate.bitnet<br>cssexb!cooling@ucdavis.edu<br>caldwr!gary@ucdavis.edu<br>steve@polyslo.calpoly.edu<br>estradas@sds.sdsc.edu<br>rdhobby@ucdavis.edu |
| Jones, Bill<br>Liu, Mei-ling<br>Love, E. Paul<br>Lynch, Clifford<br>Madden, Jim                   | NSI/NASA Ames<br>Cal Poly SLO<br>SDSC<br>UCOP<br>UC San Diego                | NSI/NASA<br>CSUNET<br>CERFNET<br>UCNET<br>CERFNET<br>UCNET            | jones@nsipo.nasa.gov<br>mliu@polyslo.calpoly.edu<br>loveep@sds.sdsc.edu<br>lynch@postgres.berkeley.edu<br>madden@ucsd.edu                                    |
| Neuman, Gerald K<br>Ollikainen, Ari                                                               | SDSC<br>RIACS/NASA                                                           | CERFNET<br>BARRNet<br>NASA Nets                                       | gkn@sds.sdsc.edu<br>ari@riacs.edu                                                                                                                            |
| Postel, Jon<br>Prue, Walt<br>Scott, Greg                                                          | USC/ISI<br>USC/ISI<br>UC Santa Cruz                                          | Los Nettos<br>Los Nettos<br>BARRNet<br>UCNET                          | postel@isi.edu<br>prue@isi.edu<br>greg@ucscm.ucsc.edu                                                                                                        |
| Smith, Dick<br>Taylor, Chris<br>Tomcheck, Dave<br>Walker, David                                   | CSU Sacto<br>CSU Chancellor<br>UC Irvine<br>UC Irvine                        | CSUNET<br>CSUNET<br>CERFNET<br>CERFNET<br>UCNET                       | lll-crg!csusac!dsmith<br>1gtlfct@calstate.bitnet<br>tomcheck@uci.bitnet<br>dhwalker@uci.bitnet                                                               |
| Wasley, David<br>Wills, Dave<br>Yundt, Bill                                                       | UC Berkeley<br>UCOP<br>Stanford                                              | BARRNet<br>UCNET<br>UCNET<br>BARRNet                                  | dlw@violet.berkeley.edu<br>gd.why@forsythe.stanford.edu                                                                                                      |

<u>:</u> .

.

1 - 1 - 4

•

#### Calfornia Internet Federation Meeting September 28, 1988

| Name                                                                                            | Organization                                        | Network<br>connections.                                       | Email Address                                                                                         |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Darling, Gary<br>Ferrin, Tom<br>Fink, Robert<br>Griffiths, Darren<br>Harel, Elie<br>Hobby, Russ | State DWR<br>UCSF<br>LBL<br>LBL<br>UCLA<br>UC Davis | DWR nets<br>BARRNet<br>BARRNet<br>BARRNet<br>UCNET<br>BARRNet | caldwr!gary@ucdavis.edu<br>tef@cgl.ucsf.edu<br>rlfink@lbl.gov<br>dagg@lbl.gov<br>aceh0@uclaais.bitnet |
| • /                                                                                             |                                                     | BARRNet<br>UCNET                                              | rdhobby@ucdavis.edu                                                                                   |
| Jones, Bill<br>Lynch, Clifford<br>Madden, Jim                                                   | NSI/NASA Ames<br>UCOP<br>UC San Diego               | NSI/NASA<br>UCNET<br>CERFNET<br>UCNET                         | jones@nsipo.nasa.gov<br>lynch@postgres.berkeley.edu<br>madden@ucsd.edu                                |
| Neuman, Gerald K<br>Ollikainen, Ari                                                             | SDSC<br>RIACS/NASA                                  | CERFNET<br>BARRNet<br>NASA Nets                               | gkn@sds.sdsc.edu<br>ari@riacs.edu                                                                     |
| Prue, Walt<br>Reese, David<br>Scott, Greg                                                       | USC/ISI<br>CSU Chancellor<br>UC Santa Cruz          | Los Nettos<br>CSUNET<br>BARRNet<br>UCNET                      | prue@isi.edu<br>1gtlfct@calstate.bitnet<br>greg@ucscm.ucsc.edu                                        |
| Stefferud, Einar<br>Taylor, Chris<br>Walker, David                                              | NMA-Northrop<br>CSU Chancellor<br>UC Irvine         | CSUNET<br>CERFNET<br>UCNET                                    | stef@nrtc.northrop.com<br>1gtlfct@calstate.bitnet<br>dhwalker@uci.bitnet                              |
| Wasley, David                                                                                   | UC Berkeley                                         | BARRNet<br>UCNET                                              | dlw@violet.berkeley.edu                                                                               |
| Wills, Dave<br>Yundt, Bill                                                                      | UCOP<br>Stanford                                    | UCNET<br>BARRNet                                              | gd.why@forsythe.stanford.edu                                                                          |

.

---

. . . . . . . .

-