Native HIP API

Miika Komu <miika@iki.fi>
Helsinki Institute for Information Technology

Julien Laganier < ju@sun.com>
SUN Microsystems / LIP (INRIA/CNRS/UCBL/ENSL)

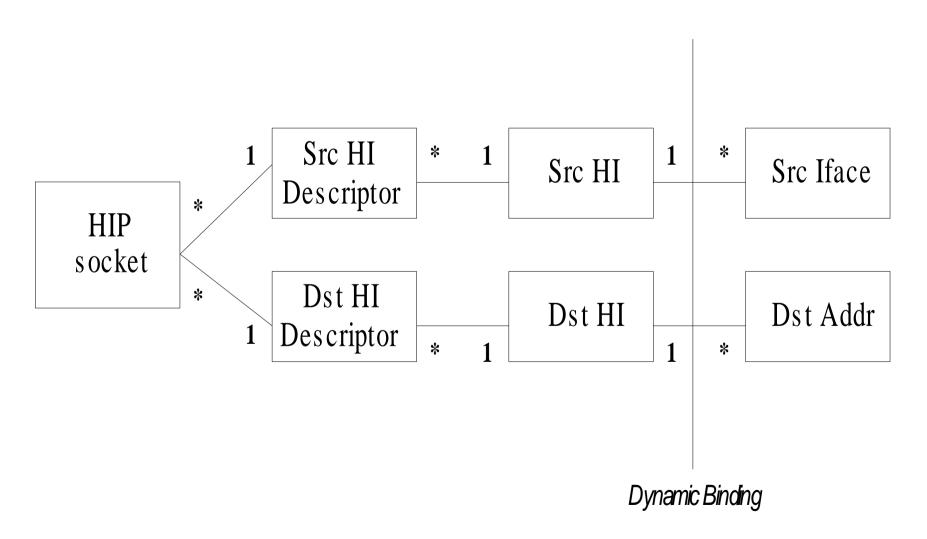
http://hipl.hiit.fi/hipl/hip-native-api-snapshot-20040708.pdf

Goals 1/3

- support variable sized HIs in the sockets API
- apps can gain a better control of the HIP layer
 - application specified identifiers
 - HIP socket options
- the API requires modifications in the app code
 - the application becomes HIP aware
- compatibility with the sockets API
 - extend where reuse is not possible

Goals 2/3

- hide HI/HIT/locator representation and management from apps
 - assumption: applications trust the system
 - ease the transition to IPv6
 - manual configuration is still possible
 - enables process migration (delegation)


Goals 3/3

- src locator is a network interface instead of an IP address
 - e.g. bind() to interface rather than IP address
- opportunistic HIP can be used when no identifiers for the peer are found
 - fallback to plain TCP/IP also possible

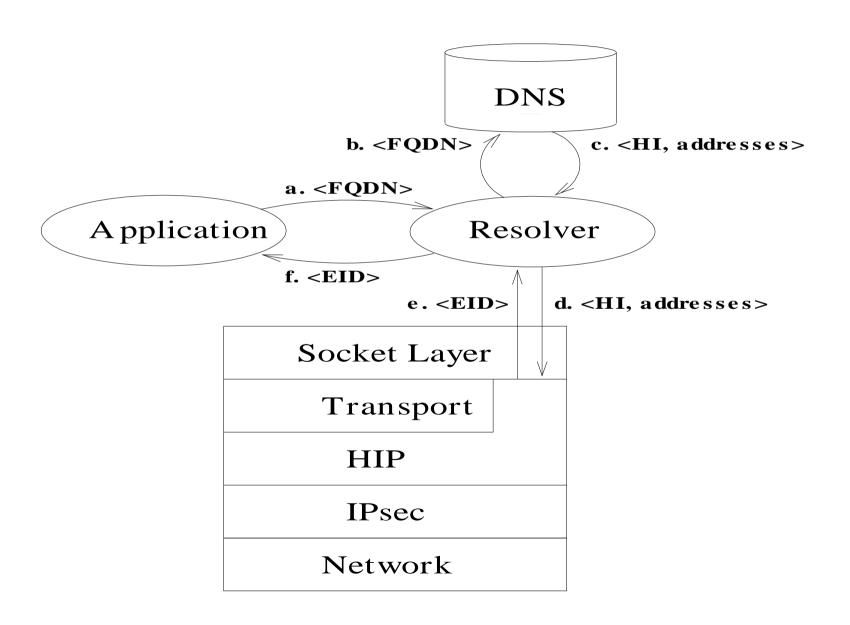
Layering

Application Layer	Application				
Socket Layer	IPv4 API	IPv6 API		HIP API	
Transport Layer	TCP	UD		UDP	
HIP Layer	HIP				
Network Layer	IPv4		IPv6		
Link Layer	Ethernet				

Socket Bindings

Endpoint identity descriptor

- forward compatible
 - the size and format of HIT can change
 - host identifier mobility = delegation of HIs
 - the "price" for this is the extra translation step
- collision free AID
 - HIT is not 100% collision free
- modular
 - each layer (app, transport, network) has their own identifiers


PF_HIP socket family

- results a cleaner implementation
 - no hooks required in the IP socket handlers
 - garbage collection in networking stack is less prone to cause problems
- HIP socket options
 - HIP SA attributes
 - QoS parameters

Resolver 1/2

- outputs endpoint identity descriptors, which can be used directly in bind, connect, etc
- provides HI-to-IP mappings to the HIP module
- the HI-to-IP binding is secure
- detects the HIP capability of a host
 - fall back to IP addresses possible

Resolver 2/2

Benefits

- applications can utilize the HIP layer better
- clean interfaces
 - PF_HIP socket family isolates HIP socket handler from the PF_INET and PF_INET6 socket handlers
- EID guarantees forward compatibility

Drawbacks

- applications need to be changed
- referrals need to be queried via separate function call
 - obtain locators in addition to identifiers
- the endpoint descriptor adds another layer of indirection
 - but explicit identifiers can be returned from different function calls

Evaluation

- resolver library implemented
- HIP socket handler was implemented on the Linux kernel (2.4 and 2.6)
- application specified HIs implemented
- telnet v6 was successfully ported to native API
- native HIP API for Java was implemented by Jaakko Kangasharju

Conclusion

- Native API provides secure HI-to-IP bindings
- HIP socket options and application specified identities are important elements of the API
- Is the generality of descriptors better than explicit identifier handling?

Questions?

- Contact Miika Komu <miika@iki.fi>
- Source code available in http://hipl.hiit.fi/hipl/
- See the full documentation in http://hipl.hiit.fi/hipl/hip-native-api-snapshot-20040708.pdf