Applicability of the Tunnel Setup Protocol (TSP) for the Hubs and Spokes Problem draft-blanchet-v6ops-tunnelbroker-tsp-03.txt

IETF Softwire interim meeting Hong Kong, Feb. 2006

Florent.Parent@hexago.com Jean-Francois.Tremblay@hexago.com

Overview

• TSP and softwires requirements

- Non-technical
 - Relation to existing standards and documentation
 - Document status
 - Independent implementations
 - Deployments
 - Time to market
- Technical
 - NAT traversal and encapsulation types
 - Nomadicity, address allocation and prefix delegation
 - Scalability
 - Multicast
 - AAA
 - O&M

Additional benefits

- Extensibility
- Debugging and to diagnostics
- Optimal encapsulation

Standards And Documentation

• TSP is based on existing standards

- Based on the tunnel broker model (RFC3053).
- SASL (RFC2222) is used as authentication framework.
 - Supports SASL anonymous (RFC2245)
 - Supports Digest-MD5 (RFC2831).
- Uses standard v6v4 encapsulation as specified in RFC4213.

Documentation

- First published as draft-vg-ngtrans-tsp-00.txt in 2001.
- Version 2.0 of the protocol (with NAT traversal) as draft-blanchet-v6ops-tunnelbroker-tsp-00.txt.
- Now published as draft-blanchet-v6ops-tunnelbroker-tsp-03.txt.

• Status

- No issue presently documented concerning the protocol.

Implementations

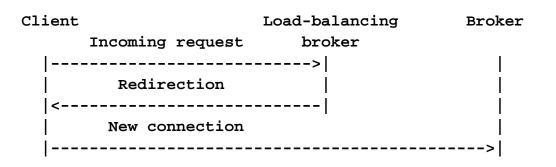
- Implemented on diverse client operating systems
 - Windows, MacOSX, Linux, FreeBSD, OpenBSD, NetBSD, VxWorks.
- Manufacturers have implemented the TSP client
 - Draytek home gateway Vigor 2900VG
 - Panasonic HGW-502 and HGW-700
 - NEC Aterm BL170HV
- Independent implementations
 - ENST (for DSTM)
 - University of Southampton (basic implementation)
 - Planned for AICCU (SixXS client)

Deployment

- Tunnel Broker using TSP available for public use for the past 5+ years (<u>www.freenet6.net</u>)
- Tunnel Brokers using TSP are deployed in commercial networks for trials
 - KDDI
 - AT&T
 - Wanadoo
- Time to market
 - Mentioned in softwires problem statement as a major factor.
 - Solution based on TSP is already on the market since 2003.
 - TSP being a signaling protocol, existing OS resources (interfaces) are used to encapsulate traffic.
 - IPv6-in-IPv4 (RFC4213) interfaces are available on most dualstack OSes.

Encapsulation

- IPv6-in-IPv4 (RFC4213)
- NAT traversal
 - IPv6-in-UDP-in-IPv4 encapsulation is supported for NAT traversal.
 - A keepalive mechanism exists to maintain the NAT state active.
 - In-band keepalive over IPv6
- IPv4-in-IPv6
 - TSP is designated as the preferred protocol to negotiate tunnel in the DSTM draft.
- All these encapsulation types are implemented and available today
- Other types of encapsulation can be added easily.

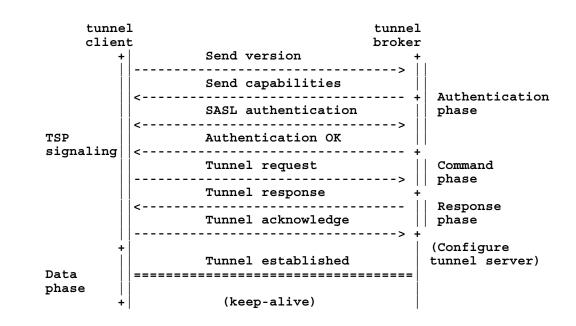

Addresses, Prefix Delegation and AAA

- Assignment of both temporary or permanent addresses is supported.
- Tunnel endpoints can be assigned with two /128 or a single /64.
- Prefix delegation with variable prefix length.
- Nomadicity is supported.
 - Authenticated users always get the same endpoint and prefix when reconnecting.
- TSP client-server authentication uses SASL
 - Server can use local database or external AAA server (RADIUS)
- User endpoints and prefix can be imported from the AAA server.
 - RFC3162, RFC2868

Scalability

• Scalability factors:

- Number of simultaneous tunnels on "concentrator"
- Bandwidth available for each tunnel
- Setup time
- Hardware assistance
- Scalability is in large part implementation related
 - A single broker with TSP support can handle up to 50 000 tunnels.
- Several brokers can be used in parallel.
- When connecting (either with anycast or unicast), the client is redirected through TSP to the unicast address of one of the brokers in parallel.


Scalability - Set-up time

• Depends on multiple factors

- Number of message exchanges
- Delay to contact AAA server
- Security association set-up, if enabled

• TSP message exchanges

- 7 messages when using anonymous authentication (RFC2245)
- 9 messages when using digest-md5 (RFC2831)

Multicast, O&M

• Multicast

- Established tunnels can transport multicast
- MLD proxy or PIM can be used on softwire concentrator, depending on deployment scenario

• O&M features:

- Logging: supported
- Accounting: supported, statistics can be sent to a AAA server
- End-point failure detection: the keepalive mechanism provides failure detection.

Other advantages

- Easy to debug, output can be read in text
- Easily expandable for new authentication methods and parameters through SASL and XML
- Encapsulation is optimal since it can be changed after the negotiation. For example, IPv6 in IPv4 can be used after negotiating over UDP.

Conclusion

http://www.freenet6.net

- Public tunnel broker using TSP
- TSP client source code
- <u>http://www.ietf.org/internet-drafts/draft-blanchet-v6ops-</u> <u>tunnelbroker-tsp-03.txt</u>
 - IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP)