
6TiSCH@IETF100 draft-satish-6tisch-6top-sf1

draft-satish-6tisch-6top-sf1-04

Satish Anamalamudi

Bing (Remy) Liu

Mingui (Martin) Zhang

Abdur Rashid Sangi

Charles E. Perkins

S.V.R Anand

1

6TiSCH@IETF100 draft-satish-6tisch-6top-sf1

Introduction to SF1

 Objectives

 Reserve a track to a destination multiple hops away

 Fulfill bandwidth and QoS (e.g., priority, time-critical) requirements

 Hop-by-hop, distributed

 Combination of RSVP-TE and 6top protocol (6P)

 RSVP-TE: end-to-end resource reservation

 6P: cell negotiation between two neighbors

 When to trigger SF1?

 The Sender has an outgoing bandwidth requirement for a new instance to

transmit data to Receiver.

 The Sender has a new outgoing bandwidth requirement for an existing

instance to transmit data to Receiver.

2

6TiSCH@IETF100 draft-satish-6tisch-6top-sf1

End-to-end operation

Step 1: The sender sends a PATH message downstream hop-by-hop to the receiver.

Step 2: The receiver initiates a 6P transaction to verify if there are enough cells to fulfill

the requirements. If so, the receiver sends the RESV message to reserve these

cells.

Step 3: Upon receiving a RESV message, an intermediate node reserves the cells

between its upstream neighbor in the same way as in Step 2.

Step 4: When RESV arrives at the sender before end-to-end timeout, a track from

sender to receiver is built.

Sender
Intermediate

Node Receiver

PATH Message

RESV Message

PATH Message

RESV Message

6P transaction(s) 6P transaction(s)

3

6TiSCH@IETF100 draft-satish-6tisch-6top-sf1

PATH and RESV messages
<PATH Message> ::= <Common Header> […]

<SESSION> <RSVP_HOP>

<TIME_VALUES>

[…]

<LABEL_REQUEST>

[<SF1 OPERATION REQUEST>]

[<6P OPERATION REQUEST>]

[…]

<sender descriptor>

<sender descriptor> ::= <SENDER_TEMPLATE> <SENDER_TSPEC>

[<ADSPEC>]

[<RECORD_ROUTE>]

<RESV Message> ::= <Common Header> […]

<SESSION> <RSVP_HOP>

<TIME_VALUES>

[<6P OPERATION>]

[…]

<STYLE> <flow descriptor list>

<flow descriptor list> ::= <FF flow descriptor>

<FF flow descriptor> ::= [<FLOWSPEC>] <FILTER_SPEC>

<LABEL>[<RECORD_ROUTE>]

• PATH: describe the flow (SENDER_TSPEC) and

collect path properties (ADSPEC).
• The three request objects: used to verify if the

nodes along the route have the requested

capabilities.

• The LABEL_REQUEST is set to TSC (timeslot

switching capability).

• RESV: describe the bandwidth and QoS

requirements (FLOWSPEC), assign label to the

upstream node (LABEL).
• Parameters in FLOWSPEC are calculated

according to SENDER_TSPEC and ADSPEC.
• In case of 3-step transaction, 6P confirmation is

encapsulated in 6P OPERATION.

4

6TiSCH@IETF100 draft-satish-6tisch-6top-sf1

One-hop operation using 3-step trans.

(updated)

Node A: upstream node Node B: downstream node

6P Request with an

empty CellList

Metadata: slotFrame_ID

6P Response with

candidate CellList

RESV carrying 6P

Confirmation with selected

CellList

Arrival of PATH (if Node B =

receiver) / Arrival of RESV

(otherwise)

Map bandwidth to number of cells,

QoS to constraints on cells, e.g.,

slotFrame, slotOffset.

Cells reservedCells reserved

Label assigned

Timeout

×
Timeout

×

Multiple 6P

transactions can be

attempted in sequence

5

Note that the 2-step trans. can also be

used.

6TiSCH@IETF100 draft-satish-6tisch-6top-sf1

Node B State Transition Diagram

Current

reservation

Requirement

Mapping

Updated

reservation

Arrival of PATH (if Node B =

Receiver) / Arrival of RESV

(otherwise)

Node A: upstream node
Node B: downstream node

Initiate 6P

transaction

on a

slotframe

Wait 6P

response

Select cells

from

candidate

CellList

Reservation

fails

No qualified slotframe

Qualified slotframes found

Send 6P request

Check

another

qualified

slotframe

No more

slotframe

Backup slotframe exists

Timeout

6P response

received

Not enough

qualified cells

Send ResvErr

to Receiver

Reservation

succeeds Qualified

cells

found

Send RESV

including 6P

confirmation to

Node A

6

6TiSCH@IETF100 draft-satish-6tisch-6top-sf1

TrackID, Label and Bundle
 TrackID in SF1 (updated definition)

 16 bits identifier, assigned by the sender

 Mapped from (source & destination IP address, RPLInstance)

 Encapsulated in SENDER_TEMPLATE of PATH and FILTER_SPEC of

RESV

 Label (updated definition)

 32 bits, mapped from a bundle between two neighbors

 Encapsulated in the LABEL object of RESV

 Locally valid between two neighbors, assigned by the downstream node

 Associated to a track

 Bundle between two neighbors

 A group of equivalent scheduled cells (slotFrame_ID, CellList)

TrackID Label Bundle
MappingAssociation

7

6TiSCH@IETF100 draft-satish-6tisch-6top-sf1

Next steps

 Complete the definition

 6P request, SF1 request, 6P operation, Teardown message, etc.

 Mapping the traffic requirements to cells

 As suggested in 6top, the following requirements need to be covered

 Error Handling (more detailed error code)

 Specify the SF behavior of a node when it boots

 Security considerations

 Examples

 Implementation: simulation and hardware deployment

8

6TiSCH@IETF100 draft-satish-6tisch-6top-sf1

Thank you!

9

6TiSCH@IETF100 draft-satish-6tisch-6top-sf1

Track Forwarding
 Not in the scope of SF1, just for the completeness of the story

 A track can be seen as an LSP using bundles as implicit labels

 The sender identifies which track a packet should follow based on

“sender/receiver IP address, RPLInstance”.

 Then G-MPLS is used

 The sender pushes the first label to the packet.

 The label is swapped at each intermediate node

 The label is popped out at the penultimate Hop or at the receiver

 At each hop, the packet is forwarded using the bundle associated to the

label.

PUSH SWAP SWAP POP

Sender Receiver

Label 1 Label 2 Label 3

10

