
draft-ietf-i2nsf-capability-00
Development Plans

L. Xia, J. Strassner, C. Basile, D. Lopez

I2NSF Meeting,
Singapore,

November 14th, 2017

 Policy Enforcement Defined by Capabilities

 Capability: the functions that an NSFs provides, independent
of the customer and provider interfaces

 An abstraction with well-defined semantics

 Flexibility to represent functionality that can be either
vendor-dependent or -independent

 This Draft

 Defines the concept of NSF Capabilities and their use

 Information model – characteristics and behavior in a
protocol-, platform-, and vendor-independent manner

 Info model defines a common lexicon for multiple data
models

 Capability Algebra – ensure that actions of different Policy
Rules do not conflict with each other 2

Introduction: the Context

 Policy Rules Describe, Define, and Manage Capabilities

 Policy Rules can be used to govern definition, configuration, monitoring,
visibility, and usage of Capabilities

 For example, Policy Rules can define:

 What is or is not a Capability

 What Capabilities can be exposed to which consumers

 Which OAM data is exposed to which consumers

 Capabilities Define Reusable Functionality that is

Manipulated by Policy Rules

 Capabilities abstract the functionality of network elements into reusable
objects that are used as building blocks to provide security features

 Capabilities can be combined to provide more powerful features that are
made selectively available to consumers (via Policies)

 Capabilities enable security protection to be customized to suit the needs of
the applications using it in a given context without relying on specific
technologies or even vendors

3

Policy Rule – Capability Duality

 Security is independent of physical vs. virtual packaging

 Security is described by one or more Capabilities

 Policies define how to manage Capabilities

 Policies are defined in an object-oriented info model to

maximize interoperability

 This enables

 An infinite number of NSFs to be described and managed

 An infinite number of Policy Rules to be defined to manage NSF behavior

 Capabilities and Policy Rules to be reused as is, or for building more
powerful Capabilities and Policies

4

Key Abstractions

 The Current Model Uses ECA Policy Rules

 Events: significant occurrences the NSF is able to react to

 Conditions: how the NSF decides which actions to apply

 Actions: what operations to execute

 PolicyRule: a container that aggregates an Event, a

Condition, and an Action (Boolean) clause

 Behavior

 Actions MAY execute if Event and Condition clauses BOTH

evaluate to TRUE (both clauses are Boolean clauses)

 Controlled by resolution strategy and metadata

 Capability Algebra used to make resolution strategy decidable

 Default actions MAY be specified
5

The ECA Policy Rule Model

Conceptual Operation

6

External Info Model

SecurityPolicyRule NSFMetadata

SecurityCapability

DescribedBySecurityCapability

DescribedBySecurityCapabilityDetail

0..n

0..n

ManagesSecurityCapability

0..n

0..1

 Improvements / extensions to consider for the next revision of
this draft

 Event clause / Condition clause representation

 e.g., CNF vs. DNF for Boolean clauses

 Event clause / Condition clause evaluation function

 more complex expressions than simple Boolean
expressions to be used

 Action clause evaluation strategies

 e.g., execute first action only, execute last action only,
execute all actions, execute all actions until an action fails

 More on metadata

 authorship, time periods, (+ priorities)

 more elaborate behavior description and specification

7

Enhancements to the Capabilities I-D

 Categories and subcategories determined with sub-classing

 pros: intuitive, simple, easy to design

 cons: not very elegant, requires non-trivial maintenance at
every minor update, does not work well at run-time

 The Decorator Pattern

 Defined in 1995 (!), used in java and windowing toolkits

 much more expressive

 reduces number of objects at runtime

 provides dynamic behavior (composition) instead of fragile,
inheritance-based behavior (which is static)

8

Switching to the Decorator Pattern

 Define either an Appendix or a separate I-D to define and
describe other patterns

 Patterns are templates that provide an abstract solution to a
recurring situation that requires modeling

 Large library of templates exist, but little use in networking
(and especially security)

 Next version of draft will restructure content to make maximal
use of templates

 Enables scalable solutions to be prototyped

9

More Patterns

Questions?

Questions?

“Create like a god. Command like a king. Work like a slave”

- Constantin Brancusi

