
LEDBAT++: Low priority TCP Congestion
Control in Windows

Praveen Balasubramanian
pravb@microsoft.com

Background
• Software updates, telemetry, or error reporting
• Should not interfere with Skype call, interactive web browsing, etc.
• Four solutions to “lower than best effort” service:

• Delay based transport protocols
• Congestion window update algorithm designed to be “less aggressive”
• Application level solutions such as BITS, monitor network usage
• Network assisted solutions flag the packets as low priority

• In 2016, started exploring LEDBAT
• Easier to deploy and maintain than app layer alternatives e.g. BITS
• Versus waiting for hypothetical universal support in the network

• Literature survey and our own experiments found issues with LEDBAT
as described in the RFC

2

LEDBAT (RFC 6817) Brief Recap

• Low Extra Delay Background Transport
• Minimize the impact of “lower than best effort” connections on the

latency and bandwidth of other connections
• Compare measured delay with the base delay
• If delay is less than target, additive increase
• If delay is higher than target, additive decrease
• No strict requirements on slow start (with a suggestion to avoid)
• React to packet loss and ECN like standard TCP

3

Problems with LEDBAT
• One-way delay measurements are hard with TCP

• No standard clock frequency or synchronization
• Clock skew

• Latecomer advantage
• Reliance on inherent burstiness of network traffic to detect base delay

• Inter-LEDBAT fairness
• Proportional feedback uses both additive increases and decreases, stable queue but

no fair sharing
• Carofiglio, G. et al. “Rethinking the LEDBAT Protocol”

• Somewhat vague recommendations regarding slow start
• Latency drift

• Impacts long running LEDBAT connections

• Low latency competition
• If bandwidth is large, queueing delay never exceeds the fixed target

4

Introducing LEDBAT++

• LEDBAT++ comprises of the following
• Round trip latency measurements
• Slower than Reno cwnd increase with adaptive gain factor
• Multiplicative cwnd decrease with adaptive reduction factor
• Modified slow start
• Initial and periodic slowdown

• Part of Windows 10 since Anniversary Update
• Internal API currently in use by WER (Windows Error Reporting) and

Windows Update Delivery Optimization
• Working on making the API and config public in future releases

5

Round trip latency
• Advantages

• Already available in TCP
• No need for clock synchronization

• Disadvantages
• Incorporates queuing delay in both directions
• Receiver delays and delayed ACKs

• Mitigations
• Erring on the side of higher latency estimation is acceptable
• Enable TCP timestamp option implicitly for LEDBAT connections
• Filter the RTT samples (minimum of the 4 most recent samples)
• Use a TARGET delay of 60 ms

• Larger than typical* server ACK delay (50ms)
• 100 msec consumes 2/3rd of budget for 150 msec maximum acceptable delay for VoIP

6

Slower than Reno

• Reno
• On packet loss: W -= W/2
• On packet acknowledgement: W += 1/W

• Introduce a reduction factor F:
• On packet loss: W -= W/2
• On packet acknowledgement: W += 1/(F*W)

• Throughput of LEDBAT++ connection will be a fraction (1/SQRT(F)) of
the throughput of regular TCP connection

• Based on experimentation we picked an adaptive scheme for F
• F = min (16, CEIL (2*TARGET/base))
• 16 is a good tradeoff between responsiveness and performance

• Solves low latency competition problem

7

Multiplicative Decrease

• Carofiglio, G. et al “Rethinking the Low Extra Delay Background
Transport (LEDBAT) Protocol” suggest multiplicative decrease

• Only works when all connections measure same base delay, so
• Use constant value of 1 and cap the multiplicative decrease coefficient to be

at least 0.5
• Ensure that cwnd never decreases below 2 packets

• Solves the Inter-LEDBAT fairness problem

8

Standard LEDBAT, per RTT Multiplicative decrease, per RTT
Delay lower than
target

W += Gain * (1 –
delay/target)

W += Gain

Delay larger than
target

W -= Gain * (delay/target - 1) W += Gain – Constant * W *
(delay/target - 1)

Modified slow start

• Skipping slow start results in really poor performance on long delay
links

• Slower than Reno ramp up
• Apply the adaptive reduction factor F to the congestion window increases
• Limit the initial cwnd to 2 packets

• If queuing delay is larger than 3/4ths of the TARGET, exit slow start
• Immediately move to the “congestion avoidance” phase

• Only apply the “exit on excessive delay” during the initial slow start
• Subsequent slow starts capped by recorded ssthresh

9

Initial and periodic slowdown
• Traffic is sustained for long periods

• Inaccurate base delay estimates
• Causes latency drift as well as the lack of inter-LEDBAT fairness

• Force gaps for measuring base delay, or “slowdown” periods
• “slowdown” is an interval during which the LEDBAT++ connection voluntarily reduces

its traffic
• Upon entering slowdown, set ssthresh = cwnd, and reduce cwnd to 2 packets
• Keep CWND frozen at 2 packets for 2 RTT
• After 2 RTT, ramp up according to “slow start” until cwnd reaches ssthresh

• Initial slowdown 2*RTT after first slow start exit
• Periodic slowdown – not more than 10% drop in throughput

• Measure duration of slowdown from entry to ramp up to ssthresh
• Schedule next slowdown 9 times this duration

• Solves the latency drift problem
10

11

Bandwidth sharing with normal priority traffic

Blue: Standard TCP
Purple: Short flows

Red: LEDBAT++
Purple: Short flows

12

Reduced latency impact of LEDBAT++

Standard TCP

LEDBAT++

13

Handling latency drift

Standard LEDBAT

Mult. Decrease

Mult. Decrease +
slowdowns

14

Latecomer advantage & Inter-LEDBAT fairness

LEDBAT++

Standard LEDBAT

LEDBAT++

15

Handling low latency competition

Blue: Standard TCP
Red: LEDBAT++,

Fixed F=1

Blue: Standard TCP
Red: LEDBAT++,

adaptive F=16

Conclusion

• We found several shortcomings of LEDBAT as a solution for
background connections

• LEDBAT++ is an attempt to overcome these problems
• Experiments show that LEDBAT++ addresses the shortcomings
• LEDBAT++ is already deployed and used on millions of systems
• Working on making API and knob public
• Working on a draft submission

• Should it be to iccrg or tcpm?

16

References and Q&A
• LEDBAT working group page: https://datatracker.ietf.org/wg/ledbat/charter/
• Welzl, M., and D. Ros. “A Survey of Lower-than-Best-Effort Transport Protocols”, RFC 6297, June 2011.

https://datatracker.ietf.org/doc/rfc6297/
• Shalunov, S., Hazel, G., Iyengar, J. and M. Kuehlewind. Low Extra Delay Background Transport (LEDBAT). RFC 6817,

December 2012. https://datatracker.ietf.org/doc/rfc6817/
• Shalunov, S., Dunn, L., Gu, Y., Low, S., Rhee, I., Senger, S., Wydrowski, B., and L. Xu, "Design Space for a Bulk

Transport Tool", Technical Report, Internet2 Transport Group, May 2005.
• Carofiglio, G., Muscariello, L., Rossi, D., and S. Valenti, "The quest for LEDBAT fairness", Proceedings of IEEE

GLOBECOM 2010, December 2010. http://perso.telecom-paristech.fr/~drossi/paper/rossi10globecom-a.pdf
• Carofiglio, G., Muscariello, L., Rossi, D., Testa, C. and S. Valenti. “Rethinking the Low Extra Delay Background

Transport (LEDBAT) Protocol”, Computer Networks, Volume 57, Issue 8, 4 June 2013, Pages 1838–1852.
http://perso.telecom-paristech.fr/~drossi/paper/rossi13comnet.pdf

• “Background Intelligent Transfer Service (BITS)”, Microsoft Developer Network, https://msdn.microsoft.com/en-
us/library/aa362708(v=vs.85).aspx

• Cisco. “Understanding Delay in Packet Voice Networks.” February 2006.
http://www.cisco.com/c/en/us/support/docs/voice/voice-quality/5125-delay-details.html.

Q&A

