
MoonGen: A Fast and Flexible Packet Generator

Paul Emmerich
emmericp@net.in.tum.de
Technical University of Munich
Chair of Network Architectures and Services
IETF-100, 16.11.2017

• AS56357: Chair of Network Architectures and Services
− Prof. Dr.-Ing. Georg Carle
− 5 Post-docs
− 15 PhD students/research associates

• Broad range of network research topics
− Traffic measurement and analysis
− Software-defined networking
− Security
− Privacy
− Peer-to-peer networks
− IoT
− Performance analysis and modeling

Research at net.in.tum

2

• Packet processing becomes more complex
− Software-defined networking, network function virtualization, …

• More and more can be done in software nowadays
− Frameworks like DPDK
− Complex virtualized network functions, e.g., in 5G
− Performance impacts unclear

• Research questions
− What are important performance metrics?
− How to measure them in a realistic scenario?
− How to make measurements reproducible?
− How can performance be predicted with models?

Performance analysis and modeling

3

Our testbed

4

20

SDN-based Testbed

Fully automated workflow for
reproducible network experiments
•  Input: Test Configuration File
•  Allocate Resources
•  Boot Test Machines
•  Deploy System Image via Network
•  Configure Network Topology
•  Deploy Host Scripts
•  Supervise Test Sequence
•  Collect Results
•  Output: Measurement Results
Multi-User capable
Reproducible experiments

• 15 servers, 36 x 10 Gbit/s ports, 8 x 40 Gbit/s ports
− NICs from Intel, Mellanox, and Netronome
− SDN switches/routers

• Fully automated test workflow from a management server
− Allocate servers exclusively
− Define and run experiment test scripts
− Get results in a Jupyter notebook

• Servers boot pre-built live images via PXE
− Ensures reproducibility
− Collection of different kernel versions/distributions

• PhD student at Technical University of Munich
• Started in 2014
• PhD thesis about testing network devices
• Built the MoonGen packet generator for this
− Used quite often in academia nowadays :)

About me

5

6
Source: www.spirent.com

Packet generators

7

Source: www.intel.com

Commodity hardware

Combines the advantages of software (cheap, flexible)
and hardware (precise, accurate) packet generators.

−Fast: DPDK for packet I/O, explicit multi-core support
−Flexible: Craft all packets in user-controlled Lua scripts
−Timestamping: Hardware features found on NICs
−Rate control: Hardware features and novel software approach
−Free and open source: Code available on GitHub

https://github.com/emmericp/MoonGen

Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and Georg Carle. 
MoonGen: A Scriptable High-Speed Packet Generator. Internet Measurement Conference (IMC) 2015, October 2015.

MoonGen
Packet Generator & Latency Measurement

Technische Universität München

Chair for Network Architectures and Services

Sebastian Gallenmüller, Paul Emmerich, Daniel Raumer, Georg Carle
Contact: {gallenmu | emmericp | raumer | carle}@net.in.tum.de

Features & Architecture

MoonGen is a scriptable high-speed packet generator built on a Intel’s Data
Plane Development Kit (DPDK) as backend offering a wide range of features:

I Speed: �10Gbit/s with minimal sized packets using a single CPU core

I Flexibility: Configuration & packet crafting in user-controlled Lua scripts

I Efficiency: Code optimization to generate fast scripts using LuaJIT

I Precision: Sub-µsec delay measurements on Intel 10Gbit NICs

I Parallelization: Multi-core support for rates beyond 10Gbit/s

MoonGen Core

DPDK

U
s
e
rs
c
ri
p
t

M
o
o
n
G
e
n

H
a
rd
w
a
re

NIC NIC

Port

q0 qn

Userscript
slaveUserscript

slave spawn

Userscript
slave

Userscript
master

config API data API

config API data API

MoonGen’s architecture

Latency Measurement Feature

I MoonGen reuses hardware features originally de-
signed for the Precision Time Protocol (PTP)

I Timestamping happens in hardware shortly be-
fore/after sending/receiving

I Precision of ± 3.2 ns on Intel X540 10Gbit NICs

I Limitations: Packets must look like PTP packets:
only UDP and PTP layer 2 packets are supported

Latency Measurement Example

50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

Latency [µs]

P
ro
b
a
b
ili
ty

[%
]

Latency distribution of traffic forwarded through a VM
running on top of Open vSwitch at a load of 322k
packets/s.

Latency Measurement Demo

I Cable length determination through time-of-flight

I Demo setup uses an unaltered Intel X540 dual port
NIC

NIC
Intel X540

NIC
Intel X540

55
60

5

10

1545

50

20

25
30

35

40

More Information

Additional information and source code of MoonGen is
available at:

https://github.com/emmericp/MoonGen

USENIX Symposium on Networked Systems Design and Implementation, May 4 - 6, 2015, Oakland, CA, USA

MoonGen - A fast software packet generator

8

Traffic patterns matter: CBR is hard!

9

400
500

R
el

at
iv

e
la

te
nc

y
[%

] Burst Sizes 4 16 32 64 128

0 0.5 1 1.5 2

100

150

200

Offered load [Mpps]

• Bursts are important for performance
• Typical default burst sizes: 16 to 256
• Packet generators often fail to generate CBR reliably

• Forwarding latency of Open vSwitch (kernel), increasing load
• Baseline latency: CBR traffic, varying burst sizes

CBR can lead to weird effects

10

• Forwarding latency of Open vSwitch (kernel), increasing load
• Dynamic interrupt throttling (ixgbe driver) and poll-mode (NAPI) 

don’t play well with CBR traffic

0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

160

180

O↵ered Load [Mpps]

L
a
te
n
cy

[µ
s]

CBR (median)

CBR (25th/75th percentile)

0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

160

180

O↵ered Load [Mpps]

L
a
te
n
cy

[µ
s]

CBR (median)

CBR (25th/75th percentile)

Poisson (median)

Poisson (25th/75th percentile)

Real-world traffic isn’t CBR

11

• Only change: time between packets
• Real-world traffic is a self-similar pattern
• Can be approximated with a Poisson process on short time scales

Latency measurements

12

RT latency distributions, QoS enabled, 8Gbit/s BG

12

1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

5

6

Latency [µs]

R
e
l
a
t
i
v
e
P
r
o
b
a
b
i
l
i
t
y
[
%
]

Figure 3. Latency distribution of 1 Gbit/s RT traffic with 8 Gbit/s BG
traffic, QoS enabled

The total forwarding latency l consists of the delay
introduced by the connection from the packet generator to
the switch lgen, the forwarding latency lswitch of the switch,
and the number of hops n:

l = 2 · lgen + n · lswitch

We measured the forwarding latency through the switch with
various loop lengths from n = 0 (sending the traffic back
directly) to n = 23. Figure 6 shows the CDFs of different
loop lengths up to n = 15 to improve the readability of
the graph as the remaining CDFs look similar. We can
calculate the following median latencies from these results:
lgen = 480ns and lswitch = 729ns. These values include
propagation delay due to varying cable lengths, we used
copper cables with various lengths between 0.5 and 3 meter.
This introduces an additional error of 12 ns (assuming a
propagation speed of 0.7c [?]) in addition to the granularity
of 12.8 ns of the packet generator [?].

Note that these results are crucial for FLOWer: The
latency of the switch is important for further tests using
the switch to amplify traffic for a separate DuT. In such
a setup, the switch is part of the measurement equipment,
and its accuracy therefore limits the total accuracy of the
experiment.

These results show that forwarding latency does not
depend on the switch ports. This indicates the high accuracy
of the packet generator and that latency is independent from
the used switch port. We did not test all combinations of
ports, one should repeat this test with the appropriate set of
ports to verify this before relying on a switch to run latency-
critical experiments. There may be differences in the latency
between ports on a switch due to the internal architecture
of the switch.

The difference between the minimum and maximum
observed forwarding latency was only 217.6 ns (cf. the
steep CDFs in Figure 6, each based on 48 000 timestamped

1 1.5 2 2.5 3 3.5

0

20

40

60

80

100

1Gbit/s BG tra�c

2Gbit/s BG tra�c

4Gbit/s BG tra�c

8Gbit/s BG tra�c

16 - 414Gbit/s BG tra�c

Latency [µs]

C
u
m
u
l
a
t
i
v
e
p
r
o
b
.
[
%
]

Figure 4. Latency distributions of 1 Gbit/s RT traffic with varying BG
traffic, QoS enabled

Switch

Moon-
Gen

Switch wiring
OpenFlow connection
Packet generator wiring

Figure 5. Loop forwarding test setup

0 2 4 6 8 10 12

0

20

40

60

80

100

n
=
0

n
=

1

n
=
2

n
=

3

n

=

4

n

=

5

n
=

6

n
=
7

n
=

8

n
=

9

n

=
1
0

n
=
1
1

n
=

1
2

n
=
1
3

n
=

1
4

n

=
1
5

Latency [µs]

C
u
m
u
l
a
t
i
v
e
p
r
o
b
.
[
%
]

Figure 6. Latency distributions traffic forwarded through the switch n times

packets over 48 seconds3). This is important when the switch
is used to amplify traffic while also measuring latency, the
inaccuracy of the switch affects the measurement. OpenFlow
switches with a far lower jitter exist [?] and can be used if
a better precision is required.

5. Amplifying Traffic

After evaluating the suitability of an OpenFlow Switch
for our testing purposes in Section 4 we apply the FLOWer

3. MoonGen cannot timestamp all packets, only random samples.

Latency measurements

13

0 5 10 15 20 25 30 35 40 45 50 55 60 65

0

0.2

0.4

0.6

0.8

Latency [µs]

P
r
o
b
a
b
i
l
i
t
y
[
%
]

0 50 100 150 200 250 300 350

0

0.1

0.2

0.3

Latency [µs]

P
r
o
b
a
b
i
l
i
t
y
[
%
]

• Arbitrarily complex header stacks
• Generates and JIT compiles C structs
• Defaults for all header fields
− E.g., calculates lengths, ports based on upper protocol

• Getters and setters, automatic endianness handling
• Following example code based on

https://github.com/emmericp/moongen-scripts/blob/master/vxlan.lua

 local vxlanStack = packetCreate(
 "eth", "ip4", "udp", "vxlan",
 {"eth_8021q", "innerEth"},
 {"ip4", "innerIp4"},
 {"udp", "innerUdp"}
)

Generating complex packets

14

•Create a mempool with a packet archetype

 local mempool = memory.createMemPool(function(buf)
 local pkt = vxlanStack(buf)
 pkt:fill{
 -- fields not explicitly set here are initialized to defaults
 ethSrc = queue, -- MAC of the tx device
 ethDst = arpTask.lookup("10.0.0.3"),
 ip4Src = "10.0.0.2",
 ip4Dst = "10.0.0.3",
 vxlanVNI = 10100,
 -- outer UDP ports are set automatically by the VXLAN handler
 innerEthSrc = "12:34:56:78:90:ab",
 innerEthDst = eth.BROADCAST,
 innerEthVlan = 100,
 innerIp4Src = "192.168.0.1",
 innerIp4Dst = "255.255.255.255",
 innerUdpSrc = 1024,
 innerUdpDst = 1024,
 pktLength = 128
 }
 pkt.innerIp4:calculateChecksum()
 end)

Generating complex packets

15

•Write a transmit loop
 local bufs = mempool:bufArray()
 while mg.running() do
 bufs:alloc()
 for i, buf in ipairs(bufs) do
 local pkt = vxlanStack(buf)
 pkt.innerUdp:setDstPort(

 1000 + math.random(0, 1000)
)
 -- randomize other fields here

 end
 bufs:offloadUdpChecksums()
 queue:send(bufs)
 end

Generating complex packets

16

• Define one or multiple flows in a config file, e.g.

 Flow{"syn-flood6", Packet.Tcp6{
 ethSrc = txQueue(),
 ethDst = mac"12:34:56:78:90:00",
 ip6Dst = ip"2a00:4700::2:225:90ff:fe74:7716",
 ip6Src = range(ip"fe80::1", ip“fe80::ffff:ffff“),
 tcpSrc = randomRange(0, 2^16 - 1),
 tcpDst = 80,
 tcpSyn = 1,
 tcpSeqNumber = randomRange(0, 2^32 - 1),
 tcpWindow = 10
 }

}

Don’t want to write a script? Use our CLI!

17

• Send out previously defined flows

 ./moongen-simple start syn-flood6:<dev>,<dev>:rate=40Gbit/s

• Combine arbitrary flows
• Different traffic patterns: CBR, Poisson, …
• Time limits for automated tests
• Per-flow packet counters
• Quick debugging by printing instead of sending
• See ./moongen-simple help for more

• Caution: the CLI is still new and you might encounter bugs

Don’t want to write a script? Use our CLI!

18

• OPNFV project: Test/benchmark framework VSPERF,
MoonGen is one of multiple supported packet generators

• PISCES, SIGCOMM’16: Software P4 switch, performance
evaluation

• NFVnice, SIGCOMM’17: NFV service chain scheduling,
performance evaluation

• Flurries, CoNEXT’16: NFV framework, performance
evaluation

• DNS DDoS Resilience Tests, RIPE 74: DNS traffic generation

How are others using MoonGen?

19

How are others using MoonGen?

20

Project and authors Publication
venue

Doing what

PISCES
Shahbaz et al.

SIGCOMM’16 Software P4 switch, performance
evaluated with MoonGen. Contributed
timestamping code for Intel 40 Gbit/s NIC.

Neutral Net Neutrality
Yiakoumis et al.

SIGCOMM’16 Privacy-preserving quality of service,
MoonGen used for the evaluation. Custom
protocol/payload for test traffic.

NFVnice
Kulkarni et al.

SIGCOMM’17 NFV chaining and scheduling, performance
evaluated with MoonGen.

DNS DDoS Resilience
Rincón et al.

RIPE-74 Replicating large DDoS attacks against
DNS servers. Contributed DNS protocol
code for MoonGen.

OPNFV VSPERF
Linux Foundation

- MoonGen is one of multiple supported
packet generators to test and benchmark
the OPNFV project.
Complex MoonGen script as test harness.

MoonGen comes with a lot of examples
See if one fits your use case

Check out MoonGen on GitHub

21

Questions?

Check out MoonGen on GitHub

https://github.com/emmericp/MoonGen

Paul Emmerich (TUM) | NetApp TUM Workshop | I8 - MoonGen 13

22

Questions?

