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Research at net.in.tum

« AS56357: Chair of Network Architectures and Services
— Prof. Dr.-Ing. Georg Carle
— 5 Post-docs
— 15 PhD students/research associates
« Broad range of network research topics
— Traffic measurement and analysis
— Software-defined networking
— Security
- Privacy
— Peer-to-peer networks
- loT
—| Performance analysis and modelingJ




Performance analysis and modeling

» Packet processing becomes more complex

- Software-defined networking, network function virtualization, ...

« More and more can be done in software nowadays
— Frameworks like DPDK
— Complex virtualized network functions, e.g., in 5G
— Performance impacts unclear

* Research questions
— What are important performance metrics?
— How to measure them in a realistic scenario?
— How to make measurements reproducible?
— How can performance be predicted with models?



Our testbed

» 15 servers, 36 x 10 Gbit/s ports, 8 x 40 Gbit/s ports
— NICs from Intel, Mellanox, and Netronome
— SDN switches/routers
 Fully automated test workflow from a management server
— Allocate servers exclusively
— Define and run experiment test scripts
— Get results in a Jupyter notebook
» Servers boot pre-built live images via PXE
— Ensures reproducibility
— Collection of different kernel versions/distributions




About me

* PhD student at Technical University of Munich
 Started in 2014
* PhD thesis about testing network devices
* Built the MoonGen packet generator for this
— Used quite often in academia nowadays :)




Packet generators
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Source: www.spirent.com



Commodity hardware

Source: www.intel.com



MoonGen - A fast software packet generator

Combines the advantages of software (cheap, flexible)
and hardware (precise, accurate) packet generators.

—Fast. DPDK for packet I/O, explicit multi-core support

- Flexible: Craft all packets in user-controlled Lua scripts

— Timestamping: Hardware features found on NICs

— Rate control. Hardware features and novel software approach
—Free and open source:. Code available on GitHub

https://github.com/emmericp/MoonGen

Paul Emmerich, Sebastian Gallenmduller, Daniel Raumer, Florian Wohlfart, and Georg Carle.
MoonGen: A Scriptable High-Speed Packet Generator. Internet Measurement Conference (IMC) 2015, October 2015.



T
Traffic patterns matter: CBR is hard!

» Forwarding latency of Open vSwitch (kernel), increasing load
» Baseline latency: CBR traffic, varying burst sizes
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» Bursts are important for performance
 Typical default burst sizes: 16 to 256
» Packet generators often fail to generate CBR reliably



CBR can lead to weird effects
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* Forwarding latency of Open vSwitch (kernel), increasing load
» Dynamic interrupt throttling (ixgbe driver) and poll-mode (NAPI)
don’t play well with CBR traffic
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Real-world traffic isn't CBR
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» Only change: time between packets
« Real-world traffic is a self-similar pattern

* Can be approximated with a Poisson process on short time scales
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Latency measurements
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Latency measurements
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Generating complex packets

* Arbitrarily complex header stacks
» Generates and JIT compiles C structs
» Defaults for all header fields
- E.q., calculates lengths, ports based on upper protocol
» Getters and setters, automatic endianness handling

 Following example code based on
https://github.com/emmericp/moongen-scripts/blob/master/vxlan.lua

local vxlanStack = packetCreate(
Ilethll’ Ilip4ll’ Iludpll’ IIVX'LanII’
1"eth_8021q9", "innerEth"},
{"ip4", "innerIp4"},
{"udp", "innerUdp"}

)
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Generating complex packets

*Create a mempool with a packet archetype

local mempool = memory.createMemPool( (buf)

local pkt = vxlanStack(buf)

pkt: fill{
— fields not explicitly set here are initialized to defaults
ethSrc = queue, —— MAC of the tx device
ethDst = arpTask. lookup("10.0.0.3"),
ip4Src = "10.0.0.2",
ip4Dst = "10.0.0.3",

)

vxlanVNI = 10100,
—— outer UDP ports are set automatically by the VXLAN handler

innerEthSrc = "12:34:56:78:90:ab",
innerEthDst = eth.BROADCAST,
innerEthVlan = 100,

innerIp4Src = "192.168.0.1",
innerIpd4Dst = "255.255.255.255",
innerUdpSrc = 1024,

innerUdpDst = 1024,

pktLength = 128

I3
pkt.innerIp4:calculateChecksum()
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Generating complex packets

* Write a transmit loop

local bufs = mempool:bufArray()
while mg.running() do
bufs:alloc()
for i, buf in (bufs) do
local pkt = vxlanStack(buf)
pkt.innerUdp:setDstPort/(
1000 + (0, 1000)
)

—— randomize other fields here
end
bufs:offloadUdpChecksums()
queue:send(bufs)
end
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Don’'t want to write a script”? Use our CLI!

* Define one or multiple flows in a config file, e.g.

Flow{"syn-flood6", Packet.Tcp6{

ethSrc = txQueue(),

ethDst = mac'"12:34:56:78:90:00",

ip6Dst = ip'"'2a00:4700::2:225:90ff:fe74:7716",
ip6Src = range(ip'fe80::1", ip“fe80::ffff:ffff"),
tcpSrc = randomRange(@, 2716 - 1),

tcpDst = 80,

tcpSyn = 1,

tcpSeqNumber = randomRange(0, 2732 - 1),
tcpWindow = 10
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Don’'t want to write a script”? Use our CLI!

» Send out previously defined flows
./moongen-simple start syn—-flood6:<dev>,<dev>:rate=40Gbit/s

« Combine arbitrary flows

* Different traffic patterns: CBR, Poisson, ...

* Time limits for automated tests

* Per-flow packet counters

« Quick debugging by printing instead of sending
*See ./moongen-simple help for more

 Caution: the CLI is still new and you might encounter bugs
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How are others using MoonGen??

* OPNFV project: Test/benchmark framework VSPEREF,
MoonGen is one of multiple supported packet generators
* PISCES, SIGCOMM'16: Software P4 switch, performance

evaluation
* NFVnice, SIGCOMM’17: NFV service chain scheduling,

performance evaluation
* Flurries, CONEXT 16: NFV framework, performance

evaluation
* DNS DDoS Resilience Tests, RIPE 74: DNS traffic generation
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How are others using MoonGen??

Project and authors Publication Doing what
venue
PISCES SIGCOMM’16 |Software P4 switch, performance
Shahbaz et al. evaluated with MoonGen. Contributed
timestamping code for Intel 40 Gbit/s NIC.
Neutral Net Neutrality SIGCOMM'16 |Privacy-preserving quality of service,
Yiakoumis et al. MoonGen used for the evaluation. Custom
protocol/payload for test traffic.
NFVnice SIGCOMM'17 |NFV chaining and scheduling, performance
Kulkarni et al. evaluated with MoonGen.
DNS DDoS Resilience RIPE-74 Replicating large DDoS attacks against
Rincon et al. DNS servers. Contributed DNS protocol
code for MoonGen.
OPNFV VSPERF - MoonGen is one of multiple supported

Linux Foundation

packet generators to test and benchmark
the OPNFV project.
Complex MoonGen script as test harness.
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Check out MoonGen on GitHub

MoonGen comes with a lot of examples
See if one fits your use case

Clfemall
L
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https://github.com/emmericp/MoonGen

21



Questions?
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