TUTI

MoonGen: A Fast and Flexible Packet Generator

Paul Emmerich

emmericp@net.in.tum.de

Technical University of Munich

Chair of Network Architectures and Services
IETF-100, 16.11.2017




Research at net.in.tum

« AS56357: Chair of Network Architectures and Services
— Prof. Dr.-Ing. Georg Carle
— 5 Post-docs
— 15 PhD students/research associates
« Broad range of network research topics
— Traffic measurement and analysis
— Software-defined networking
— Security
- Privacy
— Peer-to-peer networks
- loT
—| Performance analysis and modelingJ




Performance analysis and modeling

» Packet processing becomes more complex

- Software-defined networking, network function virtualization, ...

« More and more can be done in software nowadays
— Frameworks like DPDK
— Complex virtualized network functions, e.g., in 5G
— Performance impacts unclear

* Research questions
— What are important performance metrics?
— How to measure them in a realistic scenario?
— How to make measurements reproducible?
— How can performance be predicted with models?



Our testbed

» 15 servers, 36 x 10 Gbit/s ports, 8 x 40 Gbit/s ports
— NICs from Intel, Mellanox, and Netronome
— SDN switches/routers
 Fully automated test workflow from a management server
— Allocate servers exclusively
— Define and run experiment test scripts
— Get results in a Jupyter notebook
» Servers boot pre-built live images via PXE
— Ensures reproducibility
— Collection of different kernel versions/distributions




About me

* PhD student at Technical University of Munich
 Started in 2014
* PhD thesis about testing network devices
* Built the MoonGen packet generator for this
— Used quite often in academia nowadays :)




Packet generators

..m 9
lasasse
.“."-. i3
SS2238
JESSSES

.

O

O

il
P

’
" Y

G SPIRENT )

GO0 RRNNOOORNNINS (A A AL LA Al il 2]l

QOO PPPPOPPPPPIOOIOIORIOIONYS .......0..0..:0::::::::
L L R A L L L L L L LA A L L R R R R A L L D
L L L A L R L A A AL R R L R D R Y
[T PR L DL DL L DL DL L A A AL LA R DA DL DL B L LY )
P T R L L L L L L L L L LI L L L L L L L L R L R R Y

Source: www.spirent.com



Commodity hardware

Source: www.intel.com



MoonGen - A fast software packet generator

Combines the advantages of software (cheap, flexible)
and hardware (precise, accurate) packet generators.

—Fast. DPDK for packet I/O, explicit multi-core support

- Flexible: Craft all packets in user-controlled Lua scripts

— Timestamping: Hardware features found on NICs

— Rate control. Hardware features and novel software approach
—Free and open source:. Code available on GitHub

https://github.com/emmericp/MoonGen

Paul Emmerich, Sebastian Gallenmduller, Daniel Raumer, Florian Wohlfart, and Georg Carle.
MoonGen: A Scriptable High-Speed Packet Generator. Internet Measurement Conference (IMC) 2015, October 2015.



T
Traffic patterns matter: CBR is hard!

» Forwarding latency of Open vSwitch (kernel), increasing load
» Baseline latency: CBR traffic, varying burst sizes

200 Burst Sizes —e—4 16 —— 32 64 ——— 128

g 400_ | ]
= — -
O
S 200
© A
Cé) 150 f(if\\;*—/\/\k
<
r 100 7
N \

Offered load [Mpps]

» Bursts are important for performance
 Typical default burst sizes: 16 to 256
» Packet generators often fail to generate CBR reliably



CBR can lead to weird effects

180 \
160 | | —*— CBR (median)
140 - | = - - CBR (25th/75th percentile)

120 |
100 |-
80 |-
60 |-
40 |
20 |-
0 \ \ \

Latency [us]

Offered Load [Mpps]

* Forwarding latency of Open vSwitch (kernel), increasing load
» Dynamic interrupt throttling (ixgbe driver) and poll-mode (NAPI)
don’t play well with CBR traffic

10



Real-world traffic isn't CBR

=

180 \ ;
160 | | —*— CBR (median) I
140 | |~ - - CBR (25th/75th percentile) :
Z 120 Poisson (median) 5
= Poisson (25th/75th percentile) !
> 100 |- |
§ 80 e E T = T T T ¥ :
S 60f AT o :
/ \ —w |
40 | :" -t //.\Q/-/ “““““ l
2 | o ST T T T :
0 ‘ | |
0 0.5 1 5

Offered Load [Mpps]

» Only change: time between packets
« Real-world traffic is a self-similar pattern

* Can be approximated with a Poisson process on short time scales

11



Latency measurements

Relative Probability [%)]

1.5 2 2.9
Latency |us]

12



Latency measurements

-
oo
l

0.6 |-

.O L]
N
|

Probability [%)]
-
T~
l

-

-

15

20

25

30 35
Latency |us]

40

45

50

995

60 65

e
NCRIU

Probability [%]
&

-

|
100

150

200
Latency [us]

250

300

350

13



Generating complex packets

* Arbitrarily complex header stacks
» Generates and JIT compiles C structs
» Defaults for all header fields
- E.q., calculates lengths, ports based on upper protocol
» Getters and setters, automatic endianness handling

 Following example code based on
https://github.com/emmericp/moongen-scripts/blob/master/vxlan.lua

local vxlanStack = packetCreate(
Ilethll’ Ilip4ll’ Iludpll’ IIVX'LanII’
1"eth_8021q9", "innerEth"},
{"ip4", "innerIp4"},
{"udp", "innerUdp"}

)

14



Generating complex packets

*Create a mempool with a packet archetype

local mempool = memory.createMemPool( (buf)

local pkt = vxlanStack(buf)

pkt: fill{
— fields not explicitly set here are initialized to defaults
ethSrc = queue, —— MAC of the tx device
ethDst = arpTask. lookup("10.0.0.3"),
ip4Src = "10.0.0.2",
ip4Dst = "10.0.0.3",

)

vxlanVNI = 10100,
—— outer UDP ports are set automatically by the VXLAN handler

innerEthSrc = "12:34:56:78:90:ab",
innerEthDst = eth.BROADCAST,
innerEthVlan = 100,

innerIp4Src = "192.168.0.1",
innerIpd4Dst = "255.255.255.255",
innerUdpSrc = 1024,

innerUdpDst = 1024,

pktLength = 128

I3
pkt.innerIp4:calculateChecksum()

15



Generating complex packets

* Write a transmit loop

local bufs = mempool:bufArray()
while mg.running() do
bufs:alloc()
for i, buf in (bufs) do
local pkt = vxlanStack(buf)
pkt.innerUdp:setDstPort/(
1000 + (0, 1000)
)

—— randomize other fields here
end
bufs:offloadUdpChecksums()
queue:send(bufs)
end

16



Don’'t want to write a script”? Use our CLI!

* Define one or multiple flows in a config file, e.g.

Flow{"syn-flood6", Packet.Tcp6{

ethSrc = txQueue(),

ethDst = mac'"12:34:56:78:90:00",

ip6Dst = ip'"'2a00:4700::2:225:90ff:fe74:7716",
ip6Src = range(ip'fe80::1", ip“fe80::ffff:ffff"),
tcpSrc = randomRange(@, 2716 - 1),

tcpDst = 80,

tcpSyn = 1,

tcpSeqNumber = randomRange(0, 2732 - 1),
tcpWindow = 10

17



Don’'t want to write a script”? Use our CLI!

» Send out previously defined flows
./moongen-simple start syn—-flood6:<dev>,<dev>:rate=40Gbit/s

« Combine arbitrary flows

* Different traffic patterns: CBR, Poisson, ...

* Time limits for automated tests

* Per-flow packet counters

« Quick debugging by printing instead of sending
*See ./moongen-simple help for more

 Caution: the CLI is still new and you might encounter bugs

18



How are others using MoonGen??

* OPNFV project: Test/benchmark framework VSPEREF,
MoonGen is one of multiple supported packet generators
* PISCES, SIGCOMM'16: Software P4 switch, performance

evaluation
* NFVnice, SIGCOMM’17: NFV service chain scheduling,

performance evaluation
* Flurries, CONEXT 16: NFV framework, performance

evaluation
* DNS DDoS Resilience Tests, RIPE 74: DNS traffic generation

19



How are others using MoonGen??

Project and authors Publication Doing what
venue
PISCES SIGCOMM’16 |Software P4 switch, performance
Shahbaz et al. evaluated with MoonGen. Contributed
timestamping code for Intel 40 Gbit/s NIC.
Neutral Net Neutrality SIGCOMM'16 |Privacy-preserving quality of service,
Yiakoumis et al. MoonGen used for the evaluation. Custom
protocol/payload for test traffic.
NFVnice SIGCOMM'17 |NFV chaining and scheduling, performance
Kulkarni et al. evaluated with MoonGen.
DNS DDoS Resilience RIPE-74 Replicating large DDoS attacks against
Rincon et al. DNS servers. Contributed DNS protocol
code for MoonGen.
OPNFV VSPERF - MoonGen is one of multiple supported

Linux Foundation

packet generators to test and benchmark
the OPNFV project.
Complex MoonGen script as test harness.

20



Check out MoonGen on GitHub

MoonGen comes with a lot of examples
See if one fits your use case

Clfemall
L

Db

https://github.com/emmericp/MoonGen

21



Questions?

22



