
 1

Daala Transforms

Timothy B. Terriberry
Nathan Egge

Christopher “Monty” Montgomery

 2

Transform Design Goals

● Exact integer implementation
– Lots of iterated prediction with unstable (gain=1.0) filters, no drift acceptable

● Many variations
– Low bit-depth, high bit-depth, rectangular, DCT, DST, etc.

● High accuracy
– We don’t need to compromise quality for complexity

● Low software complexity
– In particular implementation in SIMD

● Reasonable hardware complexity
– Low latency for small sizes

– Transform re-use/embedded designs

 3

H.264 4-point DCT

● Very low complexity (8 adds, 2 shifts):

● Drawback: non-uniform scale
– Saves one multiply/coeff. by combining it with quantization

– But costs several multiplies/coeff. when rate-distortion optimizing coefficients in
an encoder

● Need uniform scale for distortion to make good trade-offs
● Encoder costs multiplied by search space

– Costs a large table of constants (very large for large transform sizes)

● New goal: uniform scaling (4 multiplies)
– Achievable with much less than 1 multiply/coeff for large sizes

[
1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

]

 4

VP9 4-point DCT

● 6 multiplies (full 32-bit products needed), 8
adds (2 at 32 bits), 4 shifts

+

+

─

─

+

─

11585 (√½ in Q14)

11585

-15137

6270

15137 (sin (π/8) in Q14)
+

+

6270 (cos(π/8) in Q14)

1/16384

1/16384

1/16384

1/16384

 5

Avenues for Improvement

● Simplify the multiplies
– Just scaling the output of the H.264 transform only costs 4

multiplies (but less accurate)

● Scaling
– Adds a factor of √2 relative to a unitary transform

– VP9 adds an additional √2 each time the size doubles

– When log2(width) + log2(height) is even, correct with a shift

– But it’s odd for rectangular transforms (e.g., 8x4)
– Costs 1 multiply/coeff. to correct for

 6

Extra Scaling

● Where does this scaling come from
structurally?

 7

N-point Type II DCT

+

+

+

+

─

++

─

─

─

N/2 Type II DCT

N/2 Type IV DST

 8

N-point Type II DCT

+

+

+

+

─

++

─

─

─

N/2 Type II DCT

N/2 Type IV DST

This part is non-unitary

sqrt(12 + 12) = √2

 9

N-point Type II DCT

+

+

+

+

─

++

─

─

─

N/2 Type II DCT

N/2 Type IV DST

This part is non-unitary

There’s another one in here

sqrt(12 + 12) = √2

 10

Getting Rid of the Extra Scaling

● Can use multiplies
– Source of 2 of the multiplies in VP9’s 4-point DCT

– Kind of expensive

● Another approach:
– Restrict ourselves to shifts and adds

– Use asymmetric scaling

 11

Asymmetric Scaling (1)

● Asymmetric output scales
● Overall scaling remains unity
● Cancel out the asymmetry in subsequent steps

+

–
½

x
0

x
1

y
0

y
1

y
0
 = x

0
 + x

1

y
1
 = (y

0
 >> 1) – x

1

= x
0
 + x

1

= (x
0
 – x

1
)/2

–

–

½

x
0

x
1

y
0

y
1

y
0
 = x

0
 – (y

1
 >> 1)

y
1
 = x

0
 – x

1

= (x
0
 + x

1
)/2

= x
0
 – x

1

OR

 12

Asymmetric Scaling (2)

● Asymmetric input scales
● Cancels out the asymmetry from previous steps

+

–

½

x
0

x
1

y
0

y
1

y
0
 = x

0
 + (x

1
 >> 1)

y
1
 = y

0
 – x

1

= x
0
 + x

1
/2

= x
0
 – x

1
/2

–

–

x
0

x
1

y
0

y
1

y
0
 = x

0
 – y

1

y
1
 = (x

0
 >> 1) – x

1

= x
0
/2 + x

1

= x
0
/2 – x

1

OR

½

 13

Simplifying the Multiplies

● Multiplies arise from plane rotations between
two variables

● Can trade one multiply for one addition

[y 0y1]=[cos (θ) sin(θ)

−sin (θ) cos(θ)][x0x1]

p0=x0−
cos (θ)−1
sin (θ)

x1

y1=x1−sin (θ) p0

y0= p0−
cos (θ)−1
sin (θ)

y1

 14

Asymmetric Scaling Multiplies

● Can also arbitrarily scale inputs and outputs

● Becomes

[y 0y1]=[
u 0

0
1
stu] [cos (θ) sin (θ)

−sin(θ) cos(θ)][s 0
0 t][x0x1]

p0= x0−
t
s
cos (θ)−su
sin (θ)

x1

y1= x1−
sin (θ)

tu
p0

y0= p0−tu
su cos(θ)−1
sin(θ)

y1

 15

Advantages

● 25% fewer multiplies
– Much more expensive than adds

● All have x += a*y structure
● Becomes x += (a*y + 16384) >> 15 in fixed point

– Only need top part of multiplier output

– 16-bit SIMD stays in 16 bits
● Going to 32 bits halves SIMD throughput

– SSSE3 and NEON both have an instruction for this
● PMULHRSW (parallel multiply high, round, and shift word)
● VQRDMULH.S16 (vector saturated rounding doubled multiply high)

– Single instruction to multiply, add rounding offset, and shift down

 16

Putting It All Together

● 9 adds, 3 multiplies, 2 shifts

─

+

─

─

+

─

+

+

½

½

½

+
M

0

M
1

M
2

M 0=

2cos (3π8)−√2

sin (3π8)
M 1=√ 12 sin(3π8) M 2=

cos (3π8)−√2

sin (3π8)

 17

Putting It All Together

● 9 adds, 3 multiplies, 2 shifts

─

+

─

─

+

─

+

+

½

½

½

+
M

0

M
1

M
2

M 0=

2cos (3π8)−√2

sin (3π8)
M 1=√ 12 sin(3π8) M 2=

cos (3π8)−√2

sin (3π8)

 Same value

 18

8-Point DCT

 19

16-Point DCT

 20

And more...

● Up to 64-point DCT implemented
– The margin of this slide is too small to contain...

● Embedded structure
– Both N-point DCT and N-point DST are embedded

in the 4N-point DCT
● Embedding skips a level because of the asymmetries

 21

Accuracy (1)

● Right shifts and multiplies introduce rounding errors
● Want to keep these as small as possible
● Solution?

– Shift up input

– Forward transform, quantize, code, inverse transform

– Shift down output

● Diminishing returns at 4 bits (for 8-bit input)
– Enough to make all DCTs match a double-precision floating point

implementation after rounding to nearest integer
● Error ≤ 0.5

 22

Accuracy (2)

● How does this compare with VP9?
– Also shifts up inputs (by a smaller amount)

– And shifts down outputs (by a larger amount)
● Sometimes between row and column transforms, too

● Scale of VP9 coefficients grows as transform
progresses
– Rounding errors early in process get magnified

● Daala: all stages have the same scale
– All errors injected at the same level

– Accumulate, but aren’t magnified

 23

High Bit Depth

● Accuracy less important for higher bit depths (10
or 12 bits)
– Importance is accuracy relative to quantizer, and

higher bit depths use larger quantizers

● We shift up less for higher bit depths
– 10 bits = 2 bit shift

– 12 bits = no shift

● Result: Can use same transforms for all bit depths

 24

Dynamic Range (1)

● Everything has orthonormal (unitary) scaling
● Dynamic range of the outputs still increases

– Dynamic range = minimum/maximum output values

– Unitary transforms are N-dimensional rotations

– If the input is a box, the length of the diagonal is
longer than the length of an edge

● By a factor of √2 every time N doubles

● So how big can the outputs be?

 25

Dynamic Range (2)

● All transforms with 64 pixels or less fit in 16 bits
– 9-bit residual + 4-bit up shift + 3 bits of dynamic range

expansion

– Includes 4x4, 4x8, 8x4, 8x8, 4x16, 16x4

● All column transforms fit in 16 bits
– Maximum size needed for hardware transpose buffer

● VP9 has larger intermediaries in the transforms, but
shifts final coefficients down to fit in 16 bits
– Think this is a mis-optimization

– Just as easy to pack during quantization

– Avoids double-rounding, simplifies RDO (no special cases)

 26

Reversibility (1)

● Steps of the form

 are called lifting steps
● Exactly reversible:

● Inverse transform: just reverse all of the steps
● Why is this good?

x i= xi+ f (x0,… , x i−1 , xi+1 ,… , xN)

x i= xi− f (x0,… , xi−1 , xi+1 ,… , xN)

 27

Reversibility in Daala

● Daala used lapping instead of a deblocking
filter

● Deblocking filters are low pass
– Tend to blur out details over consecutive frames

● Forward and inverse lapping are matched
– No low passing

● If that match is not exact, errors will build up
over multiple frames
– Costs bits to correct

 28

Reversibility (2)

● Do we need perfect reversibility?
– It seems to help (small coding gain improvements)

– Probably not required, but it’s basically free

– Don’t actually have it in Daala anymore
● 4 bit down shift after inverse breaks it
● Using 12-bit references (even for 8-bit data) restores it [1]
● But using CLPF/deringing also solves the problem

– Adds the low pass filter we were missing from deblocking

[1] https://people.xiph.org/~xiphmont/demo/daala/random.shtml

https://people.xiph.org/~xiphmont/demo/daala/random.shtml

 29

Reversibility and Dynamic Range

● Transform coefficients values are larger than pixel values
– Forward transform expands dynamic range

● Inverse transform is also an N-dim. rotation
– How do we know it doesn’t expand dynamic range?

● E.g., if x0 and x1 just barely fit in 16 bits, how do we know
x0 + x1 won’t overflow?

● Answer: Reversibility
– Values computed in inverse same as forward transform

● ± quantization error

– Only guaranteed if coefficients result of transforming pixels

 30

Type IV vs. Type VII DST

● For intra prediction residuals, prediction error is
asymmetric
– Less error closer to edges we’re predicting from

● Want an asymmetric transform to code them
● Optimal transform is a Type VII DST

– Compute correlation matrix, solve eigensystem problem
in the limit as the correlation approaches 1

● Type VII DST factorizations are much nastier than
Type IVs

 31

Type VII vs. Type IV DST

● Type IV

● Type VII

yk=∑n=0

N−1
xnsin (π

N (n+ 12)(k + 12))

yk=√
2

N+
1
2

∑n=0

N−1
xnsin (

π

N +
1
2

(n+1)(k + 12))

 32

Type VII vs. Type IV

● Type IV transforms almost as good, and
already embedded inside our DCTs

● Current approach
– Use Type VII for small DSTs (4-point and 8-point)

– Use embedded Type IV for larger DSTs

 33

Overall Complexity

● [1] SIMD benchmarked at 26.2% faster
● [2] Daala TX uses a Type VII DST, while TXMG uses a Type IV

Daala TX TXMG

muls/coeff adds/coeff shifts/coeff muls/coeff adds/coeff shifts/coeff

DCT 4 1 2 0.5 2 2 1

DST 4 1.25 2.75 0.5 3 2.5 1.5

DCT 8 [1] 1.875 3.875 0.625 2.5 3.25 1.25

DST 8 [2] 2.625 9.375 2.25 4 4 2

DCT 16 2.0625 5.1875 1 3.25 4.625 1.625

DST 16 3.1875 6.1875 1.25 5 5.5 2.5

DCT 32 2.7188 6.2188 1.1875 4.125 6.0625 2.0625

DST 32 3.6562 7.6562 1.125 6 7 3

 34

Hardware Considerations (1)

● Intra prediction requires reconstructed pixels
from neighboring blocks

● This serializes reconstruction of these blocks
– Including the inverse transform

– Particularly a problem for encoders

● Our 3-multiply rotations chain them all
consecutively

● This is a bottleneck for small transform sizes

 35

Low-Latency Small Transforms

● 4-point DCT: replace 3-multiply block with 4-
multiply version
– All multiplies can proceed in parallel

– Still only use top part of multiply
● Full SIMD throughput

● 4-point Type VII DST:
– Use custom factorization with 5 parallel multiplies

● These are not exactly reversible

 36

Hardware Considerations (2)

● Most hardware already “multi-standard”
– Including VP9

● Dedicates a lot of gates to parallel multipliers
● Can replace serial multiplies in rotations with

parallel multiplies

● Still experimenting to see impact on accuracy,
potential for overflows

u0= x0+ x1
u1=(1+ab)u0

u2=(b(a−1)+1) x0
u3=(a+(a−1)(1+ab)) x1

y0=u1+u3
y1=u1−u2

u0=x0+a x1
y1=u0+bu0
y0= y1+a x1

becomes

 37

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

