Updates on Thor, AV1 and CDEF

High Efficiency, Moderate Complexity Video Codec using only RF IPR

(https://datatracker.ietf.org/ipr/2636/)

draft-fuldseth-netvc-thor-03 draft-midtskogen-netvc-cdef-00 Steinar Midtskogen (Cisco) IETF 100 – Singapore, SG – November 2017

Thor status

- Since IETF99 support for CDEF has been added
- The single-pass version of CDEF was adopted in AV1, and Thor only supports that version
- Thor uses a faster and simpler RDO for CDEF
 - Can be improved further for a better compression/complexity trade-off for real-time encoders
 - Thor is much faster than the AV1 reference codec, so CDEF experimentation is more convenient in Thor, and improvements can easily be backported to AV1
- Support for Daala EC not yet completed

Some minor CDEF changes

- New skip block test
 - Before: No filtering only if all coding blocks within the 64x64 filter block were "skip" (i.e. no coded residual)
 - The CDEF preset had to be signalled at the end of the superblock since the test needed to know about partitioning
 - Now: No filtering if the coding block size is 64x64 (i.e. no partitioning) and the coding block is "skip".
 - This allows the CDEF preset to be signalled right after the first skip bit, making it possible to apply the filter once a coding block has been decoded
 - Adds a slight coding overhead (fewer blocks are implicitly not filtered), and a slight complexity increase (but not for the worst case). But the loss is < 0.1%.

Some minor CDEF changes

- Adaptation for 128x128 superblocks
 - AV1 now supports 128x128 superblocks with the EXT_PARTITION experiment
 - CDEF still needs to signal at 64x64 resolution
 - So for 128x128 up to four CDEF presets must be signalled
 - The details not yet decided
 - Investigating possible compression impact

CDEF in Thor

- Running CDEF instead of CLPF gives objective gains
 - 0.5 2.2% full results will follow on a separate slide
 - Fairly large gains for chroma (up to 4%)
- CDEF adds complexity, though
- Running CLPF on top of CDEF gives little gain
 - If the CDEF RDO is greatly simplified, CLPF does give gains
 - Adds a risk of over-filtering despite objective results
 - Adds buffering requirements
- Is CLPF still attractive for fast real-time encoders?
 - May be hard to make the CDEF RDO as fast as CLPF RDO, but it should be possible to come close.

Loop filter integration in AV1

- Three loop filters in AV1 applied in cascade (in this order):
 - Deblocking
 - CDEF
 - Loop restoration
- Without integration this cascade requires a line buffer of **30 lines** (for filterering a frame in a single pass). This is a significant hardware cost.
- Proposal from ARM (with contributions from Intel, Google and Mozilla) can reduce this to 16 lines

Loop filter integration in AV1

- Basic ideas:
 - Outside the superblock, loop restoration (LR) will read the deblocked output rather than the CDEF output
 - Shift the CDEF/LR filtering to align with the output from the deblock filter
- Requires no normative changes to CDEF
- No impact on AWCY results (-0.01 0.03%)
- Makes the line buffer requirements for AV1 the same as for VP9.
- Will probably be adopted along with LR

CDEF encoder complexity

- CDEF works well even with greatly simplified ratedistortion optimisation (RDO)
- Even restricting the filter to do no block level signalling gives similar objective gains as CLPF
 - The encoder must still select the optimal CDEF parameters for every frame, but the search space becomes small
- Simplifications that work well:
 - Damping selected can be based on frame QP
 - The number of bits to signal per block can be selected based on frame type and bitrate
- Still many ways to improve the CDEF RDO

CDEF gains in Thor (AWCY)

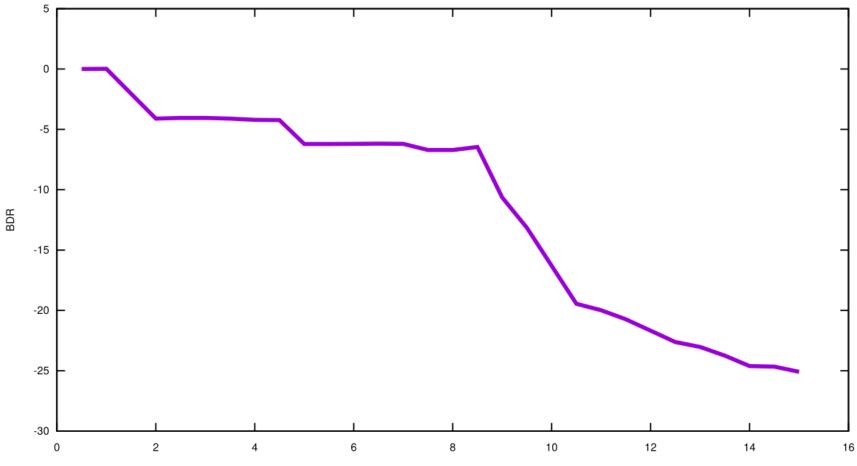
Gains for deblocking + CDEF ← deblocking only:

•	Low complexity, low delay: PSNR PSNR Cb PSNR Cr PSNR HVS SSIM MS SSIM CIEDE 2000 -6.1689 -10.4772 -11.2394 -4.1280 -7.6027 -6.1057 -10.3280
•	Low complexity, high delay: PSNR PSNR Cb PSNR Cr PSNR HVS SSIM MS SSIM CIEDE 2000 -4.0168 -6.3353 -6.6232 -1.6408 -5.3347 -2.9643 -6.3557
•	Medium complexity, low delay: PSNR PSNR Cb PSNR Cr PSNR HVS SSIM MS SSIM CIEDE 2000 -4.8637 -7.8556 -8.0799 -2.6514 -5.5668 -4.0526 -7.6489
•	Medium complexity, high delay: PSNR PSNR Cb PSNR Cr PSNR HVS SSIM MS SSIM CIEDE 2000 -3.9115 -5.1303 -4.9574 -1.6244 -5.1654 -2.9807 -5.3456
•	High efficiency, low delay: PSNR PSNR Cb PSNR Cr PSNR HVS SSIM MS SSIM CIEDE 2000 -3.1898 -5.2852 -5.4605 -1.3447 -3.3103 -2.2294 -5.1828
•	High efficiency, high delay: PSNR PSNR Cb PSNR Cr PSNR HVS SSIM MS SSIM CIEDE 2000 -2.2629 -2.7290 -2.5596 -0.4865 -2.7491 -1.3874 -3.1324

CDEF gains in Thor (AWCY)

Gains for replacing CLPF with CDEF:

•	Low complexity, low delay: PSNR PSNR Cb PSNR Cr PSNR HVS SSIM MS SSIM CIEDE 2000 -0.8304 -4.0167 -3.6906 -0.7987 -1.3478 -1.1405 -2.1609
•	Low complexity, high delay: PSNR PSNR Cb PSNR Cr PSNR HVS SSIM MS SSIM CIEDE 2000 -0.9475 -2.8048 -2.4094 -0.7117 -0.9714 -0.7862 -1.8283
•	Medium complexity, low delay: PSNR PSNR Cb PSNR Cr PSNR HVS SSIM MS SSIM CIEDE 2000 -0.8560 -3.5034 -3.1839 -0.7653 -1.2580 -1.0508 -1.9946
•	Medium complexity, high delay: PSNR PSNR Cb PSNR Cr PSNR HVS SSIM MS SSIM CIEDE 2000 -0.7082 -2.5633 -2.3938 -0.7030 -1.0557 -0.9237 -1.4765
•	High efficiency, low delay: PSNR PSNR Cb PSNR Cr PSNR HVS SSIM MS SSIM CIEDE 2000 -0.5777 -2.6286 -2.3601 -0.5300 -1.0664 -0.8435 -1.5601
•	High efficiency, high delay: PSNR PSNR Cb PSNR Cr PSNR HVS SSIM MS SSIM CIEDE 2000

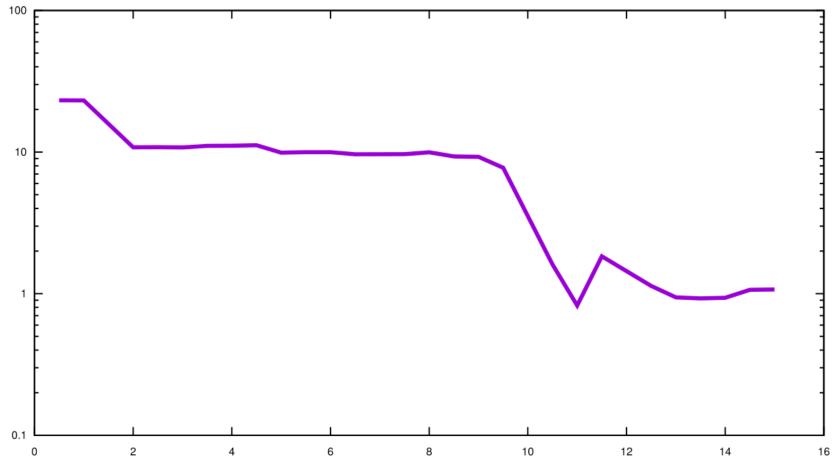

-0.4942 | -1.6534 | -1.5278 | -0.4858 | -0.9091 | -0.7584 | -1.0541

AV1 compression history

- Compression/speed relationships measured using AWCY
 - Mixed content: objective-1-fast
 - About 5% improvement since IETF99 and 2x complexity
- Low delay configuration
- BDR anchor is AV1 in July 2016, roughly equivalent to VP9
- Note that the speed axis is logarithmic

AV1 compression history

AV1 compression history



Months since 2016-07-01

AV1 complexity history

рm

AV1 complexity history

Months since 2016-07-01

13